metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­[5-(2-pyridylmeth­yl)tetra­zolato-κ2N1,N5]manganese(II)

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: seuwangwei@gmail.com

(Received 20 June 2008; accepted 25 June 2008; online 5 July 2008)

The title complex, [Mn(C7H6N5)2(H2O)2], was obtained by the in situ hydro­thermal reaction of MnCl2 with 2-(2-pyrid­yl)acetonitrile in the presence of NaN3. The MnII atom, which is located on an inversion centre, has a distorted octa­hedral coordination geometry formed by two water mol­ecules and two chelating ligands. Inter­molecular hydrogen bonds and ππ inter­actions (3.452 Å) stabilize the crystal structure and lead to the formation of a three-dimensional network.

Related literature

For related literature, see: Demko & Sharpless (2001[Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945-7950.]); Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]). For the synthesis of similar complexes, see: Hu et al. (2007[Hu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.]); Liu & Fan (2007[Liu, J.-T. & Fan, S.-D. (2007). Acta Cryst. E63, m1628.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C7H6N5)2(H2O)2]

  • Mr = 411.31

  • Monoclinic, P 21 /n

  • a = 6.638 (2) Å

  • b = 13.788 (5) Å

  • c = 8.771 (3) Å

  • β = 90.01 (5)°

  • V = 802.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 293 (2) K

  • 0.20 × 0.12 × 0.12 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.802, Tmax = 1.000 (expected range = 0.723–0.902)

  • 8070 measured reflections

  • 1836 independent reflections

  • 1550 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.172

  • S = 1.13

  • 1836 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N2i 0.96 2.04 2.889 (8) 146
O1—H1B⋯N5i 0.96 2.45 3.371 (8) 162
O1—H1C⋯N4ii 0.96 1.96 2.786 (8) 142
C6—H6A⋯N5iii 0.97 2.60 3.343 (5) 133
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since Sharpless et al. reported the environmentally friendly process for the preparation of tetrazole (Demko & Sharpless, 2001), many novel tetrazole compounds have been reported through 2 + 3 cycloaddition reactions. Work in our group have found that single crystals of coordination polymers can often be generated under hydrothermal conditions through in situ synthesis. (Zhao et al., 2008) The title complex was obtained by the in situ hydrothermal reaction of MnCl2 with pyridin-2-yl-acetonitrile in the presence of NaN3.

In the title compound, the central Mn(II) ion is located on an inversion center and coordinated by two water molecules and two 5-(pyridin-2-ylmethyl)tetrazolate ligands through the pyridine N and tetrazole N atoms with a distorted octahedral geometry (Fig. 1). Extensive intermolecular O—H···N and C—H···N hydrogen bonds and π-π interactions stabilize the crystal structure which leads to the formation of a three-dimensional network.

Related literature top

For related literature, see: Demko & Sharpless (2001); Zhao et al. (2008). For the synthesis of similar complexes, see: Hu et al. (2007); Liu & Fan (2007).

Experimental top

A mixture of pyridin-2-yl-acetonitrile (26 mg, 0.2 mmol), NaN3 (26 mg, 0.4 mmol), MnCl2.4H2O(59.3 mg, 0.3 mmol), ethanol (1 ml) and a few drops of water sealed in a glass tube was maintained at 105°C. Colorless crystals suitable for X-ray analysis were obtained after a week.

Refinement top

The C-bound H atoms were placed in calculated positions (C—H 0.93 Å) and treated in the subsequent refinement as riding atoms, with Uiso(H) = 1.2Ueq(C) while the water H atoms were located in Fourier difference map and refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. [symmetry code: -x, -y+2, -z+2]
[Figure 2] Fig. 2. The packing view of title compound with π···π stacking along the b axis.
Diaquabis[5-(2-pyridylmethyl)tetrazolato-κ2N1,N5]manganese(II) top
Crystal data top
[Mn(C7H6N5)2(H2O)2]F(000) = 422
Mr = 411.31Dx = 1.701 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2050 reflections
a = 6.639 (2) Åθ = 2.8–27.5°
b = 13.788 (5) ŵ = 0.86 mm1
c = 8.771 (3) ÅT = 293 K
β = 90.01 (5)°Prism, colorless
V = 802.9 (4) Å30.20 × 0.12 × 0.12 mm
Z = 2
Data collection top
Rigaku Mercury2)
diffractometer
1836 independent reflections
Radiation source: fine-focus sealed tube1550 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.802, Tmax = 1.000l = 1111
8070 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0834P)2 + 0.8368P]
where P = (Fo2 + 2Fc2)/3
1836 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Mn(C7H6N5)2(H2O)2]V = 802.9 (4) Å3
Mr = 411.31Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.639 (2) ŵ = 0.86 mm1
b = 13.788 (5) ÅT = 293 K
c = 8.771 (3) Å0.20 × 0.12 × 0.12 mm
β = 90.01 (5)°
Data collection top
Rigaku Mercury2)
diffractometer
1836 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1550 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 1.000Rint = 0.057
8070 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.13Δρmax = 0.39 e Å3
1836 reflectionsΔρmin = 0.73 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00001.00001.00000.0261 (3)
N50.4367 (4)0.7962 (2)0.8387 (3)0.0354 (7)
O10.2353 (4)1.10029 (18)0.9172 (3)0.0382 (6)
H1B0.32411.11640.99970.057*
H1C0.17301.15830.87920.057*
N30.1879 (4)0.88112 (19)0.9162 (3)0.0299 (6)
C70.1284 (5)0.8238 (2)0.8048 (4)0.0275 (7)
N20.3843 (4)0.8625 (2)0.9339 (3)0.0346 (7)
N40.2778 (4)0.7701 (2)0.7545 (3)0.0332 (6)
C60.0793 (5)0.8223 (2)0.7415 (4)0.0317 (7)
H6A0.17200.80280.82140.038*
H6B0.08600.77380.66140.038*
C50.1465 (5)0.9175 (2)0.6782 (4)0.0289 (7)
C40.2173 (5)0.9233 (3)0.5316 (4)0.0359 (8)
H4A0.22620.86770.47200.043*
C30.2743 (6)1.0105 (3)0.4737 (4)0.0371 (8)
H3A0.32021.01550.37380.045*
C20.2628 (6)1.0907 (3)0.5649 (4)0.0377 (8)
H2A0.30221.15130.52900.045*
C10.1925 (5)1.0797 (2)0.7089 (4)0.0340 (8)
H1A0.18321.13450.77040.041*
N10.1363 (4)0.99533 (17)0.7671 (3)0.0273 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0329 (4)0.0185 (4)0.0270 (4)0.0025 (2)0.0001 (3)0.0016 (2)
N50.0353 (15)0.0297 (15)0.0413 (16)0.0058 (12)0.0018 (12)0.0047 (12)
O10.0381 (13)0.0326 (13)0.0439 (14)0.0103 (10)0.0061 (11)0.0116 (11)
N30.0341 (15)0.0230 (13)0.0326 (14)0.0049 (11)0.0004 (11)0.0030 (11)
C70.0324 (16)0.0155 (13)0.0345 (16)0.0003 (11)0.0025 (13)0.0007 (12)
N20.0328 (15)0.0265 (14)0.0446 (16)0.0041 (11)0.0027 (12)0.0019 (12)
N40.0371 (15)0.0253 (13)0.0371 (16)0.0054 (11)0.0003 (12)0.0037 (12)
C60.0339 (17)0.0217 (15)0.0395 (17)0.0018 (12)0.0022 (14)0.0058 (13)
C50.0271 (15)0.0245 (15)0.0349 (17)0.0007 (12)0.0006 (13)0.0032 (13)
C40.0334 (17)0.0372 (19)0.0373 (18)0.0010 (14)0.0045 (14)0.0081 (15)
C30.0299 (18)0.051 (2)0.0303 (17)0.0013 (14)0.0013 (14)0.0029 (15)
C20.0399 (19)0.0357 (18)0.0376 (18)0.0039 (15)0.0015 (15)0.0079 (15)
C10.0417 (19)0.0246 (16)0.0357 (17)0.0038 (13)0.0001 (14)0.0003 (13)
N10.0289 (14)0.0239 (14)0.0291 (14)0.0009 (9)0.0012 (11)0.0003 (10)
Geometric parameters (Å, º) top
Mn1—N32.187 (5)C6—H6A0.9700
Mn1—O12.209 (5)C6—H6B0.9700
Mn1—N12.235 (3)C5—N11.328 (5)
N5—N21.286 (5)C5—C41.371 (6)
N5—N41.337 (5)C4—C31.359 (6)
O1—H1B0.9600C4—H4A0.9300
O1—H1C0.9600C3—C21.367 (6)
N3—C71.317 (5)C3—H3A0.9300
N3—N21.338 (6)C2—C11.355 (6)
C7—N41.314 (5)C2—H2A0.9300
C7—C61.487 (6)C1—N11.324 (5)
C6—C51.494 (6)C1—H1A0.9300
N3—Mn1—O187.43 (11)C7—C6—H6B108.8
N3i—Mn1—O192.57 (5)C5—C6—H6B108.8
N3—Mn1—N184.39 (17)H6A—C6—H6B107.7
N3i—Mn1—N195.61 (17)N1—C5—C4121.4 (3)
O1i—Mn1—N189.79 (18)N1—C5—C6118.5 (4)
O1—Mn1—N190.21 (18)C4—C5—C6120.1 (3)
N2—N5—N4109.6 (3)C3—C4—C5119.9 (3)
Mn1—O1—H1B109.3C3—C4—H4A120.1
Mn1—O1—H1C109.3C5—C4—H4A120.1
H1B—O1—H1C109.5C4—C3—C2118.8 (4)
C7—N3—N2105.3 (3)C4—C3—H3A120.6
C7—N3—Mn1121.9 (3)C2—C3—H3A120.6
N2—N3—Mn1131.4 (2)C1—C2—C3118.3 (4)
N3—C7—N4111.1 (3)C1—C2—H2A120.9
N3—C7—C6124.3 (3)C3—C2—H2A120.9
N4—C7—C6124.5 (3)N1—C1—C2123.7 (3)
N5—N2—N3109.0 (3)N1—C1—H1A118.2
C7—N4—N5105.0 (3)C2—C1—H1A118.2
C7—C6—C5113.8 (3)C1—N1—C5118.0 (4)
C7—C6—H6A108.8C1—N1—Mn1116.2 (2)
C5—C6—H6A108.8C5—N1—Mn1125.5 (2)
O1i—Mn1—N3—C764.4 (3)C7—C6—C5—C4125.9 (3)
O1—Mn1—N3—C7115.6 (3)N1—C5—C4—C31.5 (5)
N1—Mn1—N3—C725.2 (3)C6—C5—C4—C3178.6 (3)
O1i—Mn1—N3—N2131.9 (3)C5—C4—C3—C21.1 (6)
O1—Mn1—N3—N248.1 (3)C4—C3—C2—C10.8 (6)
N1—Mn1—N3—N2138.5 (3)C3—C2—C1—N10.8 (6)
N1i—Mn1—N3—N241.5 (3)C2—C1—N1—C51.1 (5)
N2—N3—C7—N40.8 (4)C2—C1—N1—Mn1174.6 (3)
Mn1—N3—C7—N4168.2 (2)C4—C5—N1—C11.5 (5)
N2—N3—C7—C6177.6 (3)C6—C5—N1—C1178.7 (3)
Mn1—N3—C7—C610.2 (4)C4—C5—N1—Mn1174.3 (2)
N4—N5—N2—N30.7 (4)C6—C5—N1—Mn15.9 (4)
C7—N3—N2—N50.9 (4)N3—Mn1—N1—C1145.1 (3)
Mn1—N3—N2—N5166.6 (2)N3i—Mn1—N1—C134.9 (3)
N3—C7—N4—N50.3 (4)O1i—Mn1—N1—C1122.3 (3)
C6—C7—N4—N5178.0 (3)O1—Mn1—N1—C157.7 (3)
N2—N5—N4—C70.3 (4)N3—Mn1—N1—C527.8 (3)
N3—C7—C6—C559.0 (5)N3i—Mn1—N1—C5152.2 (3)
N4—C7—C6—C5119.2 (4)O1i—Mn1—N1—C564.8 (3)
C7—C6—C5—N154.2 (4)O1—Mn1—N1—C5115.2 (3)
Symmetry code: (i) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N2ii0.962.042.889 (8)146
O1—H1B···N5ii0.962.453.371 (8)162
O1—H1C···N4iii0.961.962.786 (8)142
C6—H6A···N5iv0.972.603.343 (5)133
Symmetry codes: (ii) x+1, y+2, z+2; (iii) x+1/2, y+1/2, z+3/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C7H6N5)2(H2O)2]
Mr411.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.639 (2), 13.788 (5), 8.771 (3)
β (°) 90.01 (5)
V3)802.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.20 × 0.12 × 0.12
Data collection
DiffractometerRigaku Mercury2)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.802, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8070, 1836, 1550
Rint0.057
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.173, 1.13
No. of reflections1836
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.73

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N2i0.962.042.889 (8)146.1
O1—H1B···N5i0.962.453.371 (8)161.8
O1—H1C···N4ii0.961.962.786 (8)142.1
C6—H6A···N5iii0.972.603.343 (5)133.2
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1/2, y+1/2, z+3/2; (iii) x1, y, z.
 

Acknowledgements

The authors are grateful to the Starter Fund of Southeast University for financial support to buy the CCD X-ray diffractometer.

References

First citationDemko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945–7950.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J.-T. & Fan, S.-D. (2007). Acta Cryst. E63, m1628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds