Download citation
Download citation
link to html
In the title compound, C23H28Br2N2O2, all bond lengths and angles are within normal ranges. The two cyclo­hexyl groups adopt the normal chair conformation. The sum of the angles around the amide N and C atoms are both 360°, implying a planar configuration. The crystal packing is stabilized by inter­molecular C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052117/hg2315sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052117/hg2315Isup2.hkl
Contains datablock I

CCDC reference: 667458

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](Wave) = 0.000 Å
  • R factor = 0.044
  • wR factor = 0.107
  • Data-to-parameter ratio = 17.6

checkCIF/PLATON results

No syntax errors found



Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.930 Tmax scaled 0.526 Tmin scaled 0.448
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

8-Hydroxyquinoline and its derivatives have found extensive application as analytical reagents, e.g. in absorption spectrophotometry, fluorimetry, solvent extraction and partition chromatography (Bratzel et al., 1972). Some 8-hydroxyquinoline derivatives and their complexes with transition metals demonstrate antibacterial activity (Patel & Patel,1999). Recently, the structures of the unsubstituted 8-hydroxyquinolinate amide-type compounds, namely N-phenyl-2-(quinolin-8-yloxy)acetamide, (II) (Li et al., 2005) and N,N-diphenyl-2-(quinolin-8-yloxy)acetamide, (III) (Wen et al., 2005) have been reported. Here, we have synthesized and carried out the structure determination of the title compound, (I) (Fig. 1), a new amide-based 5,7-dibrom-8-hydroxyquinoline derivative.

All bond lengths and angles in (I) (Table 1) are within normal ranges (Allen et al., 1987) and comparable with those in the related compounds (II) and (III). The geometry of two cyclohexyl groups is the normal chair conformation·The sum of the angles around atoms N2 and C11 are 359.99° and 360.0°, respectively, implying the planar configuration. The crystal packing is stabilized by intermolecular C6—H6···O2 and C10—H10···O2 hydrogen bonds (Fig. 2).

Related literature top

For related literature, see: Allen et al. (1987); Bratzel et al. (1972); Li et al. (2005); Patel & Patel (1999); Wen et al. (2005).

Experimental top

2-Chloro-N,N-dicyclohexylacetamide was prepared by the reaction of dicyclohexylamine and chloroacetyl chloride in the presence of triethylamine, according to the literature method of Wen et al. (2005). To a solution of 5,7-dibrom-8-hydroxyquinoline (3.02 g, 10 mmol) in acetone (60 ml) were added 2-chloro-N,N-dicyclohexylacetamide (2.58 g,10 mmol), K2CO3 (1.52 g, 11 mmol) and KI (0.5 g), and the resulting mixture was stirred at 333 K for 5 h. After cooling to room temperature, the mixture was washed three times with water and filtered. Colourless single crystals of (I) suitable for X-ray diffraction study were obtained by slow evaporation of an ethanol solution over a period of 10 d.

Refinement top

All H atoms were located in a difference Fourier map and constrained to ride on their parent atoms, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 Ueq(C).

Structure description top

8-Hydroxyquinoline and its derivatives have found extensive application as analytical reagents, e.g. in absorption spectrophotometry, fluorimetry, solvent extraction and partition chromatography (Bratzel et al., 1972). Some 8-hydroxyquinoline derivatives and their complexes with transition metals demonstrate antibacterial activity (Patel & Patel,1999). Recently, the structures of the unsubstituted 8-hydroxyquinolinate amide-type compounds, namely N-phenyl-2-(quinolin-8-yloxy)acetamide, (II) (Li et al., 2005) and N,N-diphenyl-2-(quinolin-8-yloxy)acetamide, (III) (Wen et al., 2005) have been reported. Here, we have synthesized and carried out the structure determination of the title compound, (I) (Fig. 1), a new amide-based 5,7-dibrom-8-hydroxyquinoline derivative.

All bond lengths and angles in (I) (Table 1) are within normal ranges (Allen et al., 1987) and comparable with those in the related compounds (II) and (III). The geometry of two cyclohexyl groups is the normal chair conformation·The sum of the angles around atoms N2 and C11 are 359.99° and 360.0°, respectively, implying the planar configuration. The crystal packing is stabilized by intermolecular C6—H6···O2 and C10—H10···O2 hydrogen bonds (Fig. 2).

For related literature, see: Allen et al. (1987); Bratzel et al. (1972); Li et al. (2005); Patel & Patel (1999); Wen et al. (2005).

Computing details top

Data collection: SMART (Bruker 2001); cell refinement: SAINT (Bruker 2001); data reduction: SAINT (Bruker 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of (I), viewed down the c axis, showing the intermolecular hydrogen bonds (dashed lines).
N,N-Dicyclohexyl-2-(5,7-dibromoquinolin-8-yloxy)acetamide top
Crystal data top
C23H28Br2N2O2Z = 2
Mr = 524.29F(000) = 532
Triclinic, P1Dx = 1.523 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9579 (19) ÅCell parameters from 1863 reflections
b = 10.811 (2) Åθ = 2.3–24.0°
c = 11.294 (2) ŵ = 3.57 mm1
α = 72.064 (3)°T = 294 K
β = 86.885 (4)°Column, colourless
γ = 81.366 (3)°0.24 × 0.20 × 0.18 mm
V = 1143.6 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4612 independent reflections
Radiation source: fine-focus sealed tube3053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.482, Tmax = 0.566k = 1313
6611 measured reflectionsl = 914
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.3567P]
where P = (Fo2 + 2Fc2)/3
4612 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
C23H28Br2N2O2γ = 81.366 (3)°
Mr = 524.29V = 1143.6 (4) Å3
Triclinic, P1Z = 2
a = 9.9579 (19) ÅMo Kα radiation
b = 10.811 (2) ŵ = 3.57 mm1
c = 11.294 (2) ÅT = 294 K
α = 72.064 (3)°0.24 × 0.20 × 0.18 mm
β = 86.885 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4612 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3053 reflections with I > 2σ(I)
Tmin = 0.482, Tmax = 0.566Rint = 0.024
6611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.00Δρmax = 0.69 e Å3
4612 reflectionsΔρmin = 0.68 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.03290 (7)0.89977 (6)0.91083 (5)0.0925 (2)
Br20.10028 (4)0.42835 (4)0.79360 (4)0.04862 (15)
O10.2236 (2)0.6051 (2)0.5599 (2)0.0358 (6)
O20.1713 (2)0.4081 (2)0.4135 (2)0.0410 (6)
N10.2223 (3)0.8703 (3)0.4919 (3)0.0474 (8)
N20.3227 (3)0.5463 (3)0.3177 (2)0.0295 (6)
C10.1047 (4)0.6110 (4)0.7471 (3)0.0365 (8)
C20.0481 (4)0.6795 (4)0.8296 (3)0.0473 (10)
H20.01070.63500.90510.057*
C30.0485 (4)0.8106 (4)0.7980 (4)0.0473 (10)
C40.1048 (4)0.8829 (4)0.6840 (4)0.0428 (9)
C50.1102 (4)1.0194 (4)0.6452 (4)0.0556 (11)
H50.07381.06970.69590.067*
C60.1677 (5)1.0771 (4)0.5353 (5)0.0618 (13)
H60.17101.16710.50900.074*
C70.2225 (5)0.9988 (4)0.4616 (4)0.0591 (12)
H70.26181.03990.38580.071*
C80.1632 (3)0.8124 (3)0.6027 (3)0.0355 (8)
C90.1617 (3)0.6746 (3)0.6354 (3)0.0333 (8)
C100.1437 (3)0.6126 (3)0.4542 (3)0.0331 (8)
H10A0.13580.70030.39550.040*
H10B0.05310.59250.48110.040*
C110.2157 (3)0.5133 (3)0.3934 (3)0.0297 (8)
C120.3800 (3)0.6695 (3)0.2997 (3)0.0296 (8)
H12A0.33220.71240.35790.036*
C130.3550 (4)0.7651 (3)0.1691 (3)0.0418 (9)
H13A0.39730.72440.10830.050*
H13B0.25810.78490.15340.050*
C140.4123 (4)0.8913 (4)0.1546 (4)0.0498 (10)
H14A0.36190.93730.20810.060*
H14B0.40100.94740.06930.060*
C150.5617 (4)0.8651 (4)0.1877 (4)0.0515 (11)
H15A0.61360.82720.12900.062*
H15B0.59370.94730.18170.062*
C160.5843 (4)0.7722 (4)0.3184 (4)0.0460 (10)
H16A0.53880.81320.37770.055*
H16B0.68070.75390.33650.055*
C170.5297 (4)0.6444 (3)0.3319 (3)0.0381 (9)
H17A0.58040.60000.27730.046*
H17B0.54220.58740.41690.046*
C180.3855 (3)0.4595 (3)0.2438 (3)0.0308 (8)
H180.45710.50410.19290.037*
C190.4553 (4)0.3268 (3)0.3240 (3)0.0372 (9)
H19A0.38850.27840.37690.045*
H19B0.52160.34020.37700.045*
C200.5256 (4)0.2481 (4)0.2411 (4)0.0504 (10)
H20A0.59900.29220.19520.060*
H20B0.56470.16190.29280.060*
C210.4273 (4)0.2328 (4)0.1499 (4)0.0515 (11)
H21A0.47640.18700.09570.062*
H21B0.35970.18000.19560.062*
C220.3571 (4)0.3641 (4)0.0722 (3)0.0475 (10)
H22A0.29090.35050.01930.057*
H22B0.42350.41270.01900.057*
C230.2861 (4)0.4444 (4)0.1531 (3)0.0433 (9)
H23A0.24780.53040.10060.052*
H23B0.21230.40110.19920.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1217 (5)0.0965 (4)0.0829 (4)0.0135 (4)0.0330 (3)0.0680 (4)
Br20.0544 (3)0.0414 (2)0.0444 (2)0.00424 (18)0.00150 (18)0.00636 (18)
O10.0381 (14)0.0396 (14)0.0294 (12)0.0032 (11)0.0026 (11)0.0149 (11)
O20.0440 (15)0.0339 (14)0.0500 (15)0.0169 (12)0.0162 (12)0.0171 (12)
N10.052 (2)0.043 (2)0.047 (2)0.0115 (16)0.0074 (16)0.0130 (16)
N20.0311 (16)0.0291 (15)0.0309 (15)0.0071 (12)0.0090 (12)0.0130 (12)
C10.036 (2)0.039 (2)0.035 (2)0.0027 (17)0.0009 (16)0.0137 (17)
C20.053 (3)0.060 (3)0.035 (2)0.008 (2)0.0054 (19)0.023 (2)
C30.048 (2)0.060 (3)0.046 (2)0.005 (2)0.0061 (19)0.036 (2)
C40.042 (2)0.041 (2)0.052 (2)0.0027 (18)0.0025 (19)0.026 (2)
C50.062 (3)0.049 (3)0.068 (3)0.010 (2)0.003 (2)0.035 (2)
C60.070 (3)0.033 (2)0.086 (4)0.011 (2)0.008 (3)0.020 (2)
C70.071 (3)0.042 (3)0.064 (3)0.021 (2)0.005 (2)0.012 (2)
C80.034 (2)0.038 (2)0.037 (2)0.0056 (16)0.0016 (16)0.0137 (17)
C90.0311 (19)0.039 (2)0.0314 (19)0.0004 (16)0.0014 (15)0.0160 (16)
C100.0305 (19)0.037 (2)0.0338 (19)0.0063 (16)0.0031 (15)0.0131 (16)
C110.0309 (19)0.0314 (19)0.0258 (17)0.0033 (16)0.0026 (15)0.0080 (15)
C120.037 (2)0.0240 (17)0.0281 (17)0.0081 (15)0.0092 (15)0.0073 (14)
C130.048 (2)0.035 (2)0.039 (2)0.0059 (18)0.0013 (18)0.0057 (17)
C140.066 (3)0.031 (2)0.044 (2)0.010 (2)0.005 (2)0.0021 (18)
C150.068 (3)0.039 (2)0.051 (2)0.026 (2)0.017 (2)0.013 (2)
C160.054 (3)0.043 (2)0.045 (2)0.019 (2)0.0032 (19)0.0134 (19)
C170.047 (2)0.032 (2)0.034 (2)0.0097 (17)0.0016 (17)0.0065 (16)
C180.0334 (19)0.0321 (19)0.0295 (18)0.0074 (15)0.0065 (15)0.0128 (15)
C190.042 (2)0.037 (2)0.035 (2)0.0034 (17)0.0000 (17)0.0164 (17)
C200.057 (3)0.044 (2)0.051 (2)0.006 (2)0.000 (2)0.022 (2)
C210.076 (3)0.040 (2)0.046 (2)0.008 (2)0.009 (2)0.024 (2)
C220.062 (3)0.053 (3)0.037 (2)0.015 (2)0.0023 (19)0.0244 (19)
C230.049 (2)0.046 (2)0.036 (2)0.0011 (19)0.0055 (18)0.0176 (18)
Geometric parameters (Å, º) top
Br1—C31.902 (4)C13—H13A0.9700
Br2—C11.888 (4)C13—H13B0.9700
O1—C91.367 (4)C14—C151.517 (6)
O1—C101.446 (4)C14—H14A0.9700
O2—C111.234 (4)C14—H14B0.9700
N1—C71.325 (5)C15—C161.514 (5)
N1—C81.361 (4)C15—H15A0.9700
N2—C111.349 (4)C15—H15B0.9700
N2—C121.480 (4)C16—C171.522 (5)
N2—C181.489 (4)C16—H16A0.9700
C1—C91.376 (5)C16—H16B0.9700
C1—C21.405 (5)C17—H17A0.9700
C2—C31.352 (5)C17—H17B0.9700
C2—H20.9300C18—C231.523 (5)
C3—C41.419 (5)C18—C191.526 (5)
C4—C51.413 (5)C18—H180.9800
C4—C81.416 (5)C19—C201.527 (5)
C5—C61.346 (6)C19—H19A0.9700
C5—H50.9300C19—H19B0.9700
C6—C71.398 (6)C20—C211.520 (5)
C6—H60.9300C20—H20A0.9700
C7—H70.9300C20—H20B0.9700
C8—C91.422 (5)C21—C221.509 (5)
C10—C111.519 (5)C21—H21A0.9700
C10—H10A0.9700C21—H21B0.9700
C10—H10B0.9700C22—C231.524 (5)
C12—C171.518 (5)C22—H22A0.9700
C12—C131.526 (5)C22—H22B0.9700
C12—H12A0.9800C23—H23A0.9700
C13—C141.517 (5)C23—H23B0.9700
C9—O1—C10114.4 (3)C15—C14—H14B109.3
C7—N1—C8116.7 (4)H14A—C14—H14B107.9
C11—N2—C12123.1 (3)C16—C15—C14110.8 (3)
C11—N2—C18120.0 (3)C16—C15—H15A109.5
C12—N2—C18116.9 (2)C14—C15—H15A109.5
C9—C1—C2121.3 (3)C16—C15—H15B109.5
C9—C1—Br2120.6 (3)C14—C15—H15B109.5
C2—C1—Br2118.1 (3)H15A—C15—H15B108.1
C3—C2—C1119.4 (4)C15—C16—C17110.6 (3)
C3—C2—H2120.3C15—C16—H16A109.5
C1—C2—H2120.3C17—C16—H16A109.5
C2—C3—C4122.4 (3)C15—C16—H16B109.5
C2—C3—Br1117.9 (3)C17—C16—H16B109.5
C4—C3—Br1119.6 (3)H16A—C16—H16B108.1
C5—C4—C8116.7 (4)C12—C17—C16111.1 (3)
C5—C4—C3125.7 (4)C12—C17—H17A109.4
C8—C4—C3117.6 (3)C16—C17—H17A109.4
C6—C5—C4120.4 (4)C12—C17—H17B109.4
C6—C5—H5119.8C16—C17—H17B109.4
C4—C5—H5119.8H17A—C17—H17B108.0
C5—C6—C7118.5 (4)N2—C18—C23112.3 (3)
C5—C6—H6120.8N2—C18—C19113.3 (3)
C7—C6—H6120.8C23—C18—C19111.8 (3)
N1—C7—C6124.7 (4)N2—C18—H18106.2
N1—C7—H7117.7C23—C18—H18106.2
C6—C7—H7117.7C19—C18—H18106.2
N1—C8—C4123.0 (3)C18—C19—C20110.0 (3)
N1—C8—C9117.0 (3)C18—C19—H19A109.7
C4—C8—C9120.0 (3)C20—C19—H19A109.7
O1—C9—C1120.4 (3)C18—C19—H19B109.7
O1—C9—C8120.2 (3)C20—C19—H19B109.7
C1—C9—C8119.3 (3)H19A—C19—H19B108.2
O1—C10—C11107.5 (3)C21—C20—C19111.6 (3)
O1—C10—H10A110.2C21—C20—H20A109.3
C11—C10—H10A110.2C19—C20—H20A109.3
O1—C10—H10B110.2C21—C20—H20B109.3
C11—C10—H10B110.2C19—C20—H20B109.3
H10A—C10—H10B108.5H20A—C20—H20B108.0
O2—C11—N2123.5 (3)C22—C21—C20111.5 (3)
O2—C11—C10118.3 (3)C22—C21—H21A109.3
N2—C11—C10118.2 (3)C20—C21—H21A109.3
N2—C12—C17112.2 (3)C22—C21—H21B109.3
N2—C12—C13112.3 (3)C20—C21—H21B109.3
C17—C12—C13111.1 (3)H21A—C21—H21B108.0
N2—C12—H12A106.9C21—C22—C23111.6 (3)
C17—C12—H12A106.9C21—C22—H22A109.3
C13—C12—H12A106.9C23—C22—H22A109.3
C14—C13—C12111.0 (3)C21—C22—H22B109.3
C14—C13—H13A109.4C23—C22—H22B109.3
C12—C13—H13A109.4H22A—C22—H22B108.0
C14—C13—H13B109.4C18—C23—C22110.7 (3)
C12—C13—H13B109.4C18—C23—H23A109.5
H13A—C13—H13B108.0C22—C23—H23A109.5
C13—C14—C15111.7 (3)C18—C23—H23B109.5
C13—C14—H14A109.3C22—C23—H23B109.5
C15—C14—H14A109.3H23A—C23—H23B108.1
C13—C14—H14B109.3
C9—C1—C2—C30.6 (6)C12—N2—C11—O2176.4 (3)
Br2—C1—C2—C3179.3 (3)C18—N2—C11—O25.9 (5)
C1—C2—C3—C40.2 (6)C12—N2—C11—C105.4 (5)
C1—C2—C3—Br1178.6 (3)C18—N2—C11—C10172.4 (3)
C2—C3—C4—C5179.3 (4)O1—C10—C11—O2101.8 (3)
Br1—C3—C4—C51.9 (5)O1—C10—C11—N279.8 (4)
C2—C3—C4—C80.7 (6)C11—N2—C12—C17122.6 (3)
Br1—C3—C4—C8179.5 (3)C18—N2—C12—C1759.6 (4)
C8—C4—C5—C60.5 (6)C11—N2—C12—C13111.4 (3)
C3—C4—C5—C6179.2 (4)C18—N2—C12—C1366.4 (4)
C4—C5—C6—C70.5 (6)N2—C12—C13—C14178.8 (3)
C8—N1—C7—C60.6 (6)C17—C12—C13—C1454.6 (4)
C5—C6—C7—N10.1 (7)C12—C13—C14—C1554.8 (4)
C7—N1—C8—C40.5 (5)C13—C14—C15—C1656.1 (4)
C7—N1—C8—C9179.5 (3)C14—C15—C16—C1756.8 (4)
C5—C4—C8—N10.0 (5)N2—C12—C17—C16177.4 (3)
C3—C4—C8—N1178.8 (3)C13—C12—C17—C1656.0 (4)
C5—C4—C8—C9179.9 (3)C15—C16—C17—C1257.1 (4)
C3—C4—C8—C91.1 (5)C11—N2—C18—C2361.3 (4)
C10—O1—C9—C1103.1 (3)C12—N2—C18—C23116.6 (3)
C10—O1—C9—C880.8 (4)C11—N2—C18—C1966.6 (4)
C2—C1—C9—O1176.0 (3)C12—N2—C18—C19115.5 (3)
Br2—C1—C9—O14.1 (4)N2—C18—C19—C20175.9 (3)
C2—C1—C9—C80.1 (5)C23—C18—C19—C2055.9 (4)
Br2—C1—C9—C8179.8 (3)C18—C19—C20—C2155.4 (4)
N1—C8—C9—O13.0 (5)C19—C20—C21—C2255.6 (4)
C4—C8—C9—O1177.0 (3)C20—C21—C22—C2355.1 (5)
N1—C8—C9—C1179.2 (3)N2—C18—C23—C22175.4 (3)
C4—C8—C9—C10.8 (5)C19—C18—C23—C2255.9 (4)
C9—O1—C10—C11170.7 (3)C21—C22—C23—C1855.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.493.420 (5)173
C10—H10B···O2ii0.972.473.409 (4)162
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H28Br2N2O2
Mr524.29
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.9579 (19), 10.811 (2), 11.294 (2)
α, β, γ (°)72.064 (3), 86.885 (4), 81.366 (3)
V3)1143.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.57
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.482, 0.566
No. of measured, independent and
observed [I > 2σ(I)] reflections
6611, 4612, 3053
Rint0.024
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.107, 1.00
No. of reflections4612
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.68

Computer programs: SMART (Bruker 2001), SAINT (Bruker 2001), SHELXTL (Sheldrick, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.493.420 (5)173.1
C10—H10B···O2ii0.972.473.409 (4)161.5
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds