Download citation
Download citation
link to html
In the title heteronuclear NiII–SmIII complex (systematic name: {6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]­diphenolato-1κ4O1,O1′,O6,O6′:2κ4O1,N,N′,O1′}(methanol-1κO)-μ-nitrato-1:2κ2O:O′-dinitrato-1κ4O,O′-nickel(II)samarium(III)), [NiSm(C18H18N2O4)(NO3)3(CH4O)], with the hexa­dentate Schiff base compartmental ligand N,N′-bis­(3-methoxy­salicyl­idene)ethyl­enediamine, the Ni and Sm atoms are triply bridged by two phenolate O atoms provided by the Schiff base ligand and one nitrate ion. The five-coordinate Ni atom is in a square-pyramidal geometry with the donor centers of two imine N atoms, two phenolate O atoms and one of the bridging nitrate O atoms. The SmIII center has a tenfold coordination environment of O atoms, involving the phenolate O atoms, two meth­oxy O atoms, one methanol O atom, and two O atoms from two nitrates and one from the bridging nitrate. Strong inter­molecular O—H...O and some weak C—H...O inter­actions generate a two-dimensional layer structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807037130/hg2269sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807037130/hg2269Isup2.hkl
Contains datablock I

CCDC reference: 1101490

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.037
  • wR factor = 0.124
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.91 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.47 PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 3.41 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for O9 - N5 .. 5.50 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N4 PLAT731_ALERT_1_C Bond Calc 0.89(5), Rep 0.89(2) ...... 2.50 su-Ra O14 -H14A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.89(5), Rep 0.89(2) ...... 2.50 su-Ra O14 -H14A 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 1.82(5), Rep 1.82(2) ...... 2.50 su-Ra H14A -O9 1.555 2.655
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.906 Tmax scaled 0.490 Tmin scaled 0.474 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Sm1 (3) 2.80 PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 1.91 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

The potential applications of trivalent lanthanide complexes as contrast agent for magnetic resonance imaging and stains for fluorescence imaging have prompted considerable interest in the preparation, magnetic and optical properties of 3 d-4f hetorometallic dinuclear complexes (Baggio et al., 2000; Caravan et al., 1999; Edder et al., 2000; Knoer et al., 2005). As part of our investigations into the structure and applications of 3 d-4f hetorometallic Schiff base complexes (Sui et al., 2006; Sui et al., 2007), we report here the synthesis and X-ray crystal structure analysis of the title complex, (I), a new NiII—SmIII complex with salen-type Schiff base N,N'-bis(3-ethoxysalicylidene) ethylenediamine (H2L).

Complex (I) crystallizes in the space group P21/n, with nickel and samarium triply bridged by two phenolate O atoms provided by a salen-type Schiff base ligand and one nitrate. The inner salen-type cavity is occupied by nickel(II), while saramium(III) is present in the open and larger portion of the dinucleating compartmental Schiff base ligand.

The SmIII center has a decacoordination environment of O atoms, involving the phenolate O atoms, two methoxy O atoms, one methanol O atom, two O atoms from two nitrates and one from the bridging nitrate. The five kinds of Sm—O bond distances are significantly different, the longest being the Sm—O(methoxy) separations and the shortest being the Sm—O(phenolate) and Sm—O8(bridging nitrate).

The NiII is in a square-pyramidal geometry and is five-coordinated by two imine N atoms, two phenolate O atoms and one of the bridging nitrate O atoms. The Ni atom is 0.5860 (2)Å below the mean N2O2 plane with an average deviation from the plane of 0.0961 (3) Å, which construct the bottom of square-pyramid. The Ni—O9 (bridging nitrate) separation is 2.003 (3)Å and the angles of this Ni—O vector with the Ni—N or Ni—O bonds lie between 103.3 (5)° and 115.6 (6)°, which suggesting that the NiII is in a slightly distorted square-pyramidal conformation.

Adjacent molecules are held together by strong interactions (O14—H14A···O9i=2.691 (4); symmetry codes:(i)3/2 - x, 1/2 + y, 1/2 - z) and weak interactions (C7—H7···O11ii=3.379 (5) and C5—H5···O5ii=3.432 (6); symmetry codes: (ii)1/2 + x, 1/2 - y, 1/2 + z). these link the molecules into a two-dimensional layer structure (Fig 2).

Related literature top

For related literature, see: Baggio et al. (2000); Caravan et al. (1999); Edder et al. (2000); Knoer et al. (2005); Sui et al. (2006, 2007).

Experimental top

H2L was prepared by the 2:1 condensation of 3-methoxysalicylaldehyde and ethylenediamine in methanol. Complex (I) was obtained by the treatment of nickel(II) acetate tetrahydrate (0.217 g, 1 mmol) with H2L(0.328 g, 1 mmol) in methanol solution (80 ml) under reflux for 3 h and then for another 3 h after the addition of samarium(III) nitrate hexahydrate (0.444 g, 1 mmol). The reaction mixture was cooled and the resulting precipitate was filtered off, washed with diethyl ether and dried in vacuo. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation at room temperature of a methanol solution. Analysis calculated for C19H22N5NiO14Sm: C 30.29, H 2.94, N 9.29, Ni 7.79, Sm 19.96%; found: C 30.01, H 2.98, N 9.40, Ni 7.78, Sm 19.68%. IR(KBr, cm-1): 1640(C=N), 1386,1490(nitrate).

Refinement top

The H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.97 (methylene) and 0.96 Å (methyl), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The methyl group of methanol was constrainted as idealized non-rotating CH3 group. The hydroxyl H atom, H14A, was located in a difference Fourier map and refined with the O14—H14A restrained to 0.9 Å.

Structure description top

The potential applications of trivalent lanthanide complexes as contrast agent for magnetic resonance imaging and stains for fluorescence imaging have prompted considerable interest in the preparation, magnetic and optical properties of 3 d-4f hetorometallic dinuclear complexes (Baggio et al., 2000; Caravan et al., 1999; Edder et al., 2000; Knoer et al., 2005). As part of our investigations into the structure and applications of 3 d-4f hetorometallic Schiff base complexes (Sui et al., 2006; Sui et al., 2007), we report here the synthesis and X-ray crystal structure analysis of the title complex, (I), a new NiII—SmIII complex with salen-type Schiff base N,N'-bis(3-ethoxysalicylidene) ethylenediamine (H2L).

Complex (I) crystallizes in the space group P21/n, with nickel and samarium triply bridged by two phenolate O atoms provided by a salen-type Schiff base ligand and one nitrate. The inner salen-type cavity is occupied by nickel(II), while saramium(III) is present in the open and larger portion of the dinucleating compartmental Schiff base ligand.

The SmIII center has a decacoordination environment of O atoms, involving the phenolate O atoms, two methoxy O atoms, one methanol O atom, two O atoms from two nitrates and one from the bridging nitrate. The five kinds of Sm—O bond distances are significantly different, the longest being the Sm—O(methoxy) separations and the shortest being the Sm—O(phenolate) and Sm—O8(bridging nitrate).

The NiII is in a square-pyramidal geometry and is five-coordinated by two imine N atoms, two phenolate O atoms and one of the bridging nitrate O atoms. The Ni atom is 0.5860 (2)Å below the mean N2O2 plane with an average deviation from the plane of 0.0961 (3) Å, which construct the bottom of square-pyramid. The Ni—O9 (bridging nitrate) separation is 2.003 (3)Å and the angles of this Ni—O vector with the Ni—N or Ni—O bonds lie between 103.3 (5)° and 115.6 (6)°, which suggesting that the NiII is in a slightly distorted square-pyramidal conformation.

Adjacent molecules are held together by strong interactions (O14—H14A···O9i=2.691 (4); symmetry codes:(i)3/2 - x, 1/2 + y, 1/2 - z) and weak interactions (C7—H7···O11ii=3.379 (5) and C5—H5···O5ii=3.432 (6); symmetry codes: (ii)1/2 + x, 1/2 - y, 1/2 + z). these link the molecules into a two-dimensional layer structure (Fig 2).

For related literature, see: Baggio et al. (2000); Caravan et al. (1999); Edder et al. (2000); Knoer et al. (2005); Sui et al. (2006, 2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: APEX2; software used to prepare material for publication: APEX2 and publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the c axis; hydrogen bonds are shown as dashed lines.
{6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- 1κ4O1,O1',O6,O6':2κ4O1,\<i>N,N',O1'}(methanol-1κO)-µ-nitrato-1:2κ2O:O'-δinitrato-1κ4O,O'-nickel(II)samarium(III) top
Crystal data top
[NiSm(C18H18N2O4)(NO3)3(CH4O)]F(000) = 1492
Mr = 753.48Dx = 1.883 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6618 reflections
a = 9.604 (2) Åθ = 1.8–28.3°
b = 13.805 (3) ŵ = 2.97 mm1
c = 20.049 (4) ÅT = 293 K
β = 91.617 (3)°Block, red
V = 2657.3 (10) Å30.25 × 0.24 × 0.24 mm
Z = 4
Data collection top
Bruker APEX II area-detector
diffractometer
6376 independent reflections
Radiation source: fine-focus sealed tube5577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.524, Tmax = 0.540k = 1818
19575 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0827P)2 + 6.7464P]
where P = (Fo2 + 2Fc2)/3
6376 reflections(Δ/σ)max = 0.001
367 parametersΔρmax = 2.54 e Å3
1 restraintΔρmin = 1.03 e Å3
Crystal data top
[NiSm(C18H18N2O4)(NO3)3(CH4O)]V = 2657.3 (10) Å3
Mr = 753.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.604 (2) ŵ = 2.97 mm1
b = 13.805 (3) ÅT = 293 K
c = 20.049 (4) Å0.25 × 0.24 × 0.24 mm
β = 91.617 (3)°
Data collection top
Bruker APEX II area-detector
diffractometer
6376 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5577 reflections with I > 2σ(I)
Tmin = 0.524, Tmax = 0.540Rint = 0.018
19575 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 2.54 e Å3
6376 reflectionsΔρmin = 1.03 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.72165 (2)0.221608 (16)0.113907 (10)0.02869 (9)
Ni10.68895 (5)0.12834 (4)0.27322 (2)0.02415 (12)
O10.8237 (3)0.2178 (2)0.22809 (14)0.0299 (6)
O50.7362 (4)0.1365 (3)0.00081 (16)0.0440 (8)
O20.5578 (3)0.1751 (2)0.19989 (15)0.0333 (6)
O30.9687 (3)0.3197 (3)0.14804 (15)0.0358 (7)
C10.9349 (4)0.2603 (3)0.2555 (2)0.0284 (8)
O60.9352 (3)0.1682 (3)0.04734 (18)0.0438 (8)
O40.4592 (3)0.1456 (3)0.08019 (17)0.0416 (8)
N20.5224 (5)0.1311 (3)0.3371 (2)0.0417 (9)
C60.9773 (5)0.2532 (4)0.3236 (2)0.0357 (9)
C110.3436 (5)0.1270 (3)0.2512 (3)0.0394 (10)
N40.8677 (5)0.1335 (4)0.0018 (2)0.0469 (10)
C31.1335 (5)0.3664 (4)0.2381 (3)0.0453 (12)
H31.18570.40400.20960.054*
C51.0959 (6)0.3041 (4)0.3469 (3)0.0482 (13)
H51.12250.30020.39180.058*
C21.0163 (4)0.3176 (3)0.2138 (2)0.0327 (9)
C70.9013 (6)0.1986 (4)0.3737 (2)0.0398 (11)
H70.93390.20200.41780.048*
C100.3940 (5)0.1308 (4)0.3192 (3)0.0437 (11)
H100.32850.13320.35250.052*
C120.2020 (5)0.1021 (4)0.2395 (3)0.0502 (14)
H120.14560.09190.27580.060*
C170.4074 (6)0.1210 (5)0.0148 (3)0.0565 (15)
H17A0.38560.05310.01310.085*
H17B0.47690.13530.01730.085*
H17C0.32490.15800.00450.085*
C41.1722 (6)0.3587 (4)0.3050 (3)0.0523 (14)
H41.25100.39100.32130.063*
C181.0641 (6)0.3586 (5)0.1011 (3)0.0491 (13)
H18A1.07140.42740.10710.074*
H18B1.03060.34490.05660.074*
H18C1.15400.32940.10830.074*
O70.9247 (6)0.0977 (6)0.0484 (3)0.103 (2)
O140.6425 (4)0.3820 (2)0.16112 (17)0.0381 (7)
O110.5703 (4)0.3179 (3)0.02337 (17)0.0428 (8)
O90.7472 (3)0.0033 (2)0.24259 (15)0.0364 (7)
O80.7648 (4)0.0492 (3)0.13872 (16)0.0432 (8)
O120.7876 (4)0.3554 (3)0.02657 (18)0.0457 (8)
N10.7946 (5)0.1470 (3)0.36130 (18)0.0399 (9)
N30.6690 (5)0.3680 (3)0.00024 (19)0.0399 (9)
N50.7780 (4)0.0145 (3)0.1815 (2)0.0425 (9)
C160.4261 (4)0.1447 (3)0.1950 (2)0.0322 (9)
C150.3665 (4)0.1312 (3)0.1316 (3)0.0364 (10)
C140.2282 (5)0.1055 (4)0.1216 (3)0.0472 (13)
H140.19090.09700.07870.057*
C130.1461 (5)0.0928 (4)0.1768 (4)0.0566 (16)
H130.05220.07770.17090.068*
C90.5660 (7)0.1387 (5)0.4080 (2)0.0524 (14)
H9A0.50530.09980.43500.063*
H9B0.55970.20550.42260.063*
C80.7147 (7)0.1033 (4)0.4163 (2)0.0510 (13)
H8A0.75400.12320.45920.061*
H8B0.71790.03320.41370.061*
C190.5000 (6)0.4105 (5)0.1618 (4)0.0596 (16)
H19A0.47320.43780.11930.071*
H19B0.48760.45780.19620.071*
H19C0.44310.35490.17040.071*
O130.6481 (6)0.4245 (4)0.0455 (2)0.0724 (14)
O100.8398 (7)0.1098 (4)0.1618 (3)0.0878 (17)
H14A0.692 (5)0.418 (4)0.190 (2)0.051 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.03071 (13)0.03499 (14)0.02022 (12)0.00078 (8)0.00193 (8)0.00131 (7)
Ni10.0302 (2)0.0283 (3)0.0140 (2)0.00120 (19)0.00213 (18)0.00104 (17)
O10.0287 (14)0.0416 (17)0.0191 (13)0.0049 (11)0.0057 (11)0.0014 (11)
O50.0440 (18)0.063 (2)0.0245 (15)0.0011 (16)0.0026 (13)0.0083 (15)
O20.0250 (13)0.0447 (18)0.0303 (15)0.0056 (13)0.0021 (11)0.0071 (13)
O30.0308 (14)0.0480 (19)0.0282 (15)0.0093 (14)0.0035 (12)0.0056 (13)
C10.0271 (18)0.034 (2)0.0237 (18)0.0030 (16)0.0047 (15)0.0061 (16)
O60.0338 (16)0.056 (2)0.0421 (19)0.0026 (15)0.0003 (14)0.0086 (16)
O40.0329 (15)0.058 (2)0.0328 (16)0.0091 (15)0.0084 (13)0.0064 (15)
N20.053 (2)0.046 (2)0.0271 (18)0.0022 (19)0.0142 (17)0.0003 (16)
C60.035 (2)0.048 (2)0.024 (2)0.004 (2)0.0086 (17)0.0068 (19)
C110.033 (2)0.033 (2)0.053 (3)0.0020 (18)0.015 (2)0.002 (2)
N40.050 (2)0.055 (3)0.036 (2)0.001 (2)0.0101 (19)0.0092 (19)
C30.037 (2)0.046 (3)0.053 (3)0.008 (2)0.007 (2)0.008 (2)
C50.046 (3)0.061 (3)0.037 (3)0.002 (3)0.018 (2)0.016 (2)
C20.032 (2)0.037 (2)0.029 (2)0.0011 (17)0.0048 (16)0.0045 (17)
C70.051 (3)0.050 (3)0.0179 (18)0.011 (2)0.0103 (18)0.0029 (18)
C100.044 (3)0.039 (3)0.050 (3)0.001 (2)0.025 (2)0.003 (2)
C120.032 (2)0.040 (3)0.080 (4)0.000 (2)0.025 (3)0.004 (3)
C170.054 (3)0.073 (4)0.042 (3)0.013 (3)0.017 (2)0.000 (3)
C40.043 (3)0.060 (3)0.052 (3)0.010 (2)0.016 (2)0.018 (3)
C180.044 (3)0.063 (3)0.040 (3)0.016 (2)0.003 (2)0.008 (2)
O70.083 (4)0.157 (6)0.069 (3)0.001 (4)0.033 (3)0.061 (4)
O140.0402 (17)0.0355 (17)0.0384 (17)0.0038 (14)0.0019 (14)0.0097 (14)
O110.0460 (18)0.049 (2)0.0326 (16)0.0007 (16)0.0131 (14)0.0041 (15)
O90.0513 (19)0.0316 (15)0.0264 (14)0.0037 (13)0.0031 (13)0.0027 (12)
O80.067 (2)0.0351 (17)0.0281 (15)0.0040 (16)0.0016 (15)0.0017 (13)
O120.0441 (18)0.052 (2)0.0405 (18)0.0019 (16)0.0026 (15)0.0127 (16)
N10.059 (3)0.043 (2)0.0177 (16)0.0049 (19)0.0009 (16)0.0040 (15)
N30.055 (2)0.039 (2)0.0259 (17)0.0008 (18)0.0054 (17)0.0031 (15)
N50.046 (2)0.039 (2)0.043 (2)0.0066 (18)0.0049 (18)0.0002 (18)
C160.0237 (18)0.030 (2)0.043 (2)0.0001 (15)0.0066 (17)0.0062 (18)
C150.0259 (19)0.035 (2)0.048 (3)0.0022 (16)0.0030 (18)0.0068 (19)
C140.027 (2)0.043 (3)0.071 (4)0.0040 (18)0.008 (2)0.004 (2)
C130.025 (2)0.045 (3)0.100 (5)0.004 (2)0.006 (3)0.005 (3)
C90.076 (4)0.057 (3)0.025 (2)0.007 (3)0.020 (2)0.004 (2)
C80.081 (4)0.051 (3)0.021 (2)0.003 (3)0.006 (2)0.008 (2)
C190.045 (3)0.066 (4)0.068 (4)0.018 (3)0.000 (3)0.015 (3)
O130.094 (3)0.070 (3)0.052 (2)0.006 (3)0.020 (2)0.035 (2)
O100.125 (5)0.061 (3)0.079 (4)0.012 (3)0.029 (3)0.001 (3)
Geometric parameters (Å, º) top
Sm1—O12.465 (3)C5—C41.358 (9)
Sm1—O22.452 (3)C5—H50.9300
Sm1—O32.801 (3)C7—N11.267 (7)
Sm1—O42.795 (3)C7—H70.9300
Sm1—O52.561 (3)C10—H100.9300
Sm1—O62.586 (3)C12—C131.359 (9)
Sm1—O82.465 (3)C12—H120.9300
Sm1—O112.651 (3)C17—H17A0.9600
Sm1—O122.635 (4)C17—H17B0.9600
Sm1—O142.533 (3)C17—H17C0.9600
Ni1—N12.028 (4)C4—H40.9300
Ni1—N22.078 (4)C18—H18A0.9600
Ni1—O12.021 (3)C18—H18B0.9600
Ni1—O22.015 (3)C18—H18C0.9600
Ni1—O92.003 (3)O14—C191.424 (6)
O1—C11.324 (5)O14—H14A0.89 (2)
O5—N41.266 (6)O11—N31.271 (6)
O2—C161.333 (5)O9—N51.277 (5)
O3—C21.383 (5)O8—N51.233 (5)
O3—C181.435 (6)O12—N31.254 (5)
C1—C21.405 (6)N1—C81.488 (6)
C1—C61.417 (6)N3—O131.216 (5)
O6—N41.259 (6)N5—O101.501 (7)
O4—C151.395 (6)C16—C151.392 (7)
O4—C171.431 (6)C15—C141.384 (6)
N2—C101.275 (7)C14—C131.388 (9)
N2—C91.474 (6)C14—H140.9300
C6—C51.407 (7)C13—H130.9300
C6—C71.468 (7)C9—C81.514 (9)
C11—C161.416 (6)C9—H9A0.9700
C11—C121.416 (7)C9—H9B0.9700
C11—C101.436 (8)C8—H8A0.9700
N4—O71.202 (6)C8—H8B0.9700
C3—C41.387 (8)C19—H19A0.9600
C3—C21.387 (6)C19—H19B0.9600
C3—H30.9300C19—H19C0.9600
O2—Sm1—O873.31 (11)O7—N4—O5121.5 (5)
O2—Sm1—O165.66 (10)O6—N4—O5116.6 (4)
O8—Sm1—O174.45 (11)C4—C3—C2119.7 (5)
O2—Sm1—O1476.16 (11)C4—C3—H3120.1
O8—Sm1—O14145.02 (11)C2—C3—H3120.1
O1—Sm1—O1477.71 (10)C4—C5—C6121.2 (5)
O2—Sm1—O5123.67 (11)C4—C5—H5119.4
O8—Sm1—O573.88 (12)C6—C5—H5119.4
O1—Sm1—O5141.46 (11)O3—C2—C3124.6 (4)
O14—Sm1—O5139.15 (12)O3—C2—C1113.8 (4)
O2—Sm1—O6145.31 (12)C3—C2—C1121.6 (4)
O8—Sm1—O672.39 (12)N1—C7—C6124.7 (4)
O1—Sm1—O699.96 (11)N1—C7—H7117.6
O14—Sm1—O6133.86 (12)C6—C7—H7117.6
O5—Sm1—O649.33 (11)N2—C10—C11124.4 (4)
O2—Sm1—O12145.26 (11)N2—C10—H10117.8
O8—Sm1—O12140.28 (12)C11—C10—H10117.8
O1—Sm1—O12122.36 (11)C13—C12—C11121.9 (5)
O14—Sm1—O1273.49 (12)C13—C12—H12119.1
O5—Sm1—O1273.34 (12)C11—C12—H12119.1
O6—Sm1—O1269.39 (12)O4—C17—H17A109.5
O2—Sm1—O11105.22 (11)O4—C17—H17B109.5
O8—Sm1—O11135.12 (12)H17A—C17—H17B109.5
O1—Sm1—O11147.40 (11)O4—C17—H17C109.5
O14—Sm1—O1169.69 (11)H17A—C17—H17C109.5
O5—Sm1—O1170.53 (12)H17B—C17—H17C109.5
O6—Sm1—O11102.54 (12)C5—C4—C3120.4 (5)
O12—Sm1—O1147.97 (11)C5—C4—H4119.8
O2—Sm1—O458.64 (10)C3—C4—H4119.8
O8—Sm1—O480.30 (12)O3—C18—H18A109.5
O1—Sm1—O4123.28 (10)O3—C18—H18B109.5
O14—Sm1—O498.07 (11)H18A—C18—H18B109.5
O5—Sm1—O471.65 (11)O3—C18—H18C109.5
O6—Sm1—O4119.41 (11)H18A—C18—H18C109.5
O12—Sm1—O4109.54 (11)H18B—C18—H18C109.5
O11—Sm1—O463.23 (11)C19—O14—Sm1122.9 (3)
O2—Sm1—O3120.73 (10)C19—O14—H14A110 (4)
O8—Sm1—O3106.34 (12)Sm1—O14—H14A125 (4)
O1—Sm1—O358.09 (9)N3—O11—Sm197.1 (3)
O14—Sm1—O375.35 (11)N5—O9—Ni1118.6 (3)
O5—Sm1—O3111.78 (11)N5—O8—Sm1147.5 (3)
O6—Sm1—O365.48 (11)N3—O12—Sm198.3 (3)
O12—Sm1—O366.76 (10)C7—N1—C8120.9 (4)
O11—Sm1—O3111.66 (10)C7—N1—Ni1128.6 (3)
O4—Sm1—O3173.05 (11)C8—N1—Ni1109.8 (3)
O9—Ni1—O2103.96 (13)O13—N3—O12122.3 (5)
O9—Ni1—O1103.26 (13)O13—N3—O11121.0 (5)
O2—Ni1—O182.67 (12)O12—N3—O11116.7 (4)
O9—Ni1—N1104.17 (15)O8—N5—O9124.0 (4)
O2—Ni1—N1151.86 (16)O8—N5—O10118.4 (4)
O1—Ni1—N190.09 (15)O9—N5—O10117.5 (4)
O9—Ni1—N2115.62 (15)O2—C16—C15118.3 (4)
O2—Ni1—N288.16 (15)O2—C16—C11123.1 (4)
O1—Ni1—N2141.12 (15)C15—C16—C11118.5 (4)
N1—Ni1—N280.53 (18)C14—C15—C16122.4 (5)
C1—O1—Ni1127.2 (3)C14—C15—O4124.0 (5)
C1—O1—Sm1132.1 (3)C16—C15—O4113.6 (4)
Ni1—O1—Sm1100.72 (12)C15—C14—C13118.7 (5)
N4—O5—Sm197.5 (3)C15—C14—H14120.6
C16—O2—Ni1121.7 (3)C13—C14—H14120.6
C16—O2—Sm1131.1 (3)C12—C13—C14120.5 (5)
Ni1—O2—Sm1101.33 (11)C12—C13—H13119.7
C2—O3—C18115.6 (4)C14—C13—H13119.7
C2—O3—Sm1118.5 (3)N2—C9—C8108.9 (4)
C18—O3—Sm1124.9 (3)N2—C9—H9A109.9
O1—C1—C2117.3 (4)C8—C9—H9A109.9
O1—C1—C6125.1 (4)N2—C9—H9B109.9
C2—C1—C6117.5 (4)C8—C9—H9B109.9
N4—O6—Sm196.5 (3)H9A—C9—H9B108.3
C15—O4—C17115.5 (4)N1—C8—C9107.0 (4)
C15—O4—Sm1117.7 (3)N1—C8—H8A110.3
C17—O4—Sm1126.8 (3)C9—C8—H8A110.3
C10—N2—C9121.2 (4)N1—C8—H8B110.3
C10—N2—Ni1125.6 (3)C9—C8—H8B110.3
C9—N2—Ni1113.1 (3)H8A—C8—H8B108.6
C5—C6—C1119.6 (5)O14—C19—H19A109.5
C5—C6—C7116.3 (4)O14—C19—H19B109.5
C1—C6—C7124.1 (4)H19A—C19—H19B109.5
C16—C11—C12117.9 (5)O14—C19—H19C109.5
C16—C11—C10124.6 (4)H19A—C19—H19C109.5
C12—C11—C10117.5 (5)H19B—C19—H19C109.5
O7—N4—O6121.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14A···O9i0.89 (2)1.82 (2)2.691 (4)166 (6)
C5—H5···O5ii0.932.573.432 (6)155
C7—H7···O11ii0.932.473.379 (5)164
C17—H17B···O50.962.513.186 (7)128
C18—H18B···O120.962.403.011 (7)121
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[NiSm(C18H18N2O4)(NO3)3(CH4O)]
Mr753.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.604 (2), 13.805 (3), 20.049 (4)
β (°) 91.617 (3)
V3)2657.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)2.97
Crystal size (mm)0.25 × 0.24 × 0.24
Data collection
DiffractometerBruker APEX II area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.524, 0.540
No. of measured, independent and
observed [I > 2σ(I)] reflections
19575, 6376, 5577
Rint0.018
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.124, 1.01
No. of reflections6376
No. of parameters367
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.54, 1.03

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), APEX2 and publCIF (Westrip, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14A···O9i0.89 (2)1.82 (2)2.691 (4)166 (6)
C5—H5···O5ii0.932.573.432 (6)154.5
C7—H7···O11ii0.932.473.379 (5)164.4
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds