Download citation
Download citation
link to html
The title compound, C20H30O6, is a semisynthetic derivative of a diterpene, 3-epicaryoptin, isolated from Clerodendron calamitosum. The two fused cyclo­hexane rings adopt chair conformations and the two fused five-membered rings adopt an envelope and a planar conformation. The O atoms of the hydr­oxy groups participate in hydrogen bonding and R21(6) and R22(4) ring motifs are formed in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807036434/hg2262sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807036434/hg2262Isup2.hkl
Contains datablock I

CCDC reference: 657874

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.051
  • wR factor = 0.148
  • Data-to-parameter ratio = 12.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT417_ALERT_2_B Short Inter D-H..H-D H6A .. H18 .. 1.43 Ang.
Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.55 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.37 Ratio PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.07 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5 PLAT410_ALERT_2_C Short Intra H...H Contact H6 .. H17A .. 1.98 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 30.00 From the CIF: _reflns_number_total 2972 Count of symmetry unique reflns 2978 Completeness (_total/calc) 99.80% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT791_ALERT_1_G Confirm the Absolute Configuration of C3 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C4 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C5 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C6 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C8 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C9 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C10 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C11 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C13 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C16 = . S
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 13 ALERT level G = General alerts; check 13 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The fused cyclo hexane rings A and B adopt chair conformations, as evident from the ring puckering parameters (Cremer & Pople, 1975) [QT =0.604 (3) Å, φ2 =-131.7(2.5)°, q2 =0.091 (3)Å for ring A; QT =0.544 (3) Å, φ2 =106.2(3.7)°, q2 =0.054 (3)Å for ring B]. Ring C adopts an envelope conformation [φ2=7.5 (5)°, q2 =0.385 (3) Å] with apex at C11 which lies 0.581 (3)Å from the plane of the remaining four atoms. Ring D exists in a planar conformation with a maximum deviation -0.025 (3)Å for atom C16 from the plane formed by other atoms. Rings A/B and C/D are trans and cis fused as seen from the endocyclic dihedral angles of the ring junction atoms. The orientation of hydroxyl group at C3, C7 and C18 are in +ac (C1—C2—C3—O3 = 173.8 (4) °), +sc(C4—C5—C6—O6 = 70.8 (3)°) and +sc(C6—C5—C18—O18 = 78.1 (4) °) respectively (Klyne & Prelog, 1960). The intact epoxide ring at C4 is in ap conformation with respect to ring A (C2—C3—C4—O4 is 159.5 (3)). The orientation of furofuran at C9 is in -sc conformation with respect to ring B (C8—C9—C11—C12 is -77.1 (4)))°.

The molecules (Fig.2) in the crystal lattice are linked by intermolecular O—H···O hydrogen bonds (Table 2). The hydroxyl oxygen O3 acts as donor for the epoxide oxygen O4 and the hydroxyl group O6 forming a bifurcated hydrogen bond which generates a ring motif R21(6) along 'c' axis. The tandem hydrogen bond configuration formed by the hydroxyl oxygen atoms, O6 and O18, act as hydrogen bond donors and acceptors, generating a ring motif R22(4) parallel to 'b' axis (Bernstein et al., 1995).

Related literature top

For related literature, see: Bernstein et al. (1995); Cremer & Pople (1975); De la Torre et al. (1994); Klyne & Prelog (1960); Rodriguez et al. (1994); Rogers et al. (1979).

Experimental top

3-Epicaryoptin (50 mg) in MeOH (15 ml) and water (20 ml) was treated with KOH (70 mg) and refluxed on a water bath for 20 min. The crystalline product was filtered and was subjected to column chromatography resulting in compound (I). Rhombohedral shaped crystals were obtained from a mixture of three solvents viz., carbon tetrachloride, chloroform and methanol in the ratio 2:1:1 at room temperature (293 K).

Refinement top

In the absence of suitable anomalous scatters, Friedel equivalents could not be used to determine the absolute structure. Therefore, 1990 Friedel equivalents were merged before the final refinement. The enantiomer employed in the refined model was chosen to agree with the accepted configuration of diterpenes (Rogers et al., 1979; Rodriguez et al., 1994; De la Torre et al., 1994). The C—H and CH2 atoms were constrained to an ideal geometry (C—H = 0.98, CH2 = 0.97, O—H = 0.82 A°) with Uiso(H) = 1.2Ueq(parent atom), but where allowed to rotate freely about the C—C and C—O bonds, respectively. The remaining CH3 and O—H hydrogen atoms were placed in geometrically idelaized positions (C—H = 0.97–0.98 Å) and constrained to ride on their parent atom with Uiso(H) = 1.5 Ueq(C).

Structure description top

The fused cyclo hexane rings A and B adopt chair conformations, as evident from the ring puckering parameters (Cremer & Pople, 1975) [QT =0.604 (3) Å, φ2 =-131.7(2.5)°, q2 =0.091 (3)Å for ring A; QT =0.544 (3) Å, φ2 =106.2(3.7)°, q2 =0.054 (3)Å for ring B]. Ring C adopts an envelope conformation [φ2=7.5 (5)°, q2 =0.385 (3) Å] with apex at C11 which lies 0.581 (3)Å from the plane of the remaining four atoms. Ring D exists in a planar conformation with a maximum deviation -0.025 (3)Å for atom C16 from the plane formed by other atoms. Rings A/B and C/D are trans and cis fused as seen from the endocyclic dihedral angles of the ring junction atoms. The orientation of hydroxyl group at C3, C7 and C18 are in +ac (C1—C2—C3—O3 = 173.8 (4) °), +sc(C4—C5—C6—O6 = 70.8 (3)°) and +sc(C6—C5—C18—O18 = 78.1 (4) °) respectively (Klyne & Prelog, 1960). The intact epoxide ring at C4 is in ap conformation with respect to ring A (C2—C3—C4—O4 is 159.5 (3)). The orientation of furofuran at C9 is in -sc conformation with respect to ring B (C8—C9—C11—C12 is -77.1 (4)))°.

The molecules (Fig.2) in the crystal lattice are linked by intermolecular O—H···O hydrogen bonds (Table 2). The hydroxyl oxygen O3 acts as donor for the epoxide oxygen O4 and the hydroxyl group O6 forming a bifurcated hydrogen bond which generates a ring motif R21(6) along 'c' axis. The tandem hydrogen bond configuration formed by the hydroxyl oxygen atoms, O6 and O18, act as hydrogen bond donors and acceptors, generating a ring motif R22(4) parallel to 'b' axis (Bernstein et al., 1995).

For related literature, see: Bernstein et al. (1995); Cremer & Pople (1975); De la Torre et al. (1994); Klyne & Prelog (1960); Rodriguez et al. (1994); Rogers et al. (1979).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 and PARST97 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Molecular structure of the compound with 30% probability displacement ellipsoids and atomic numbering scheme.
[Figure 2] Fig. 2. A view of the crystal packing of (I), showing ring motifs R21(6) and R22(4). The molecules labeled with (*, $, #) correspond to symmetry positions (x, y, z), (x - 1/2, -y + 3/2, -z + 2) (x, y - 1/2, z) respectively.
Desacetyl epicaryoptin top
Crystal data top
C20H30O6F(000) = 792
Mr = 366.44Dx = 1.379 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 6.643 (5) Åθ = 1.2–30.0°
b = 7.997 (3) ŵ = 0.10 mm1
c = 33.230 (8) ÅT = 293 K
V = 1765.3 (15) Å3Rhombohedral, colourless
Z = 40.27 × 0.25 × 0.21 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1723 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 30.0°, θmin = 1.2°
ω scansh = 09
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 011
Tmin = 0.973, Tmax = 0.979l = 146
3065 measured reflections3 standard reflections every 120 reflections
2972 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.077P)2]
where P = (Fo2 + 2Fc2)/3
2972 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C20H30O6V = 1765.3 (15) Å3
Mr = 366.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.643 (5) ŵ = 0.10 mm1
b = 7.997 (3) ÅT = 293 K
c = 33.230 (8) Å0.27 × 0.25 × 0.21 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1723 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.021
Tmin = 0.973, Tmax = 0.9793 standard reflections every 120 reflections
3065 measured reflections intensity decay: 2%
2972 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.03Δρmax = 0.43 e Å3
2972 reflectionsΔρmin = 0.35 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2940 (6)0.5989 (4)0.86301 (9)0.0307 (8)
H1A0.31830.61360.83440.037*
H1B0.18070.52340.86600.037*
C20.2405 (7)0.7668 (5)0.88147 (10)0.0418 (10)
H2A0.34360.84750.87440.050*
H2B0.11430.80520.87010.050*
C30.2208 (7)0.7607 (4)0.92697 (10)0.0394 (9)
H30.10360.69320.93450.047*
C40.4105 (6)0.6819 (4)0.94354 (8)0.0300 (8)
C50.4480 (5)0.5003 (4)0.92903 (8)0.0242 (7)
C60.6390 (6)0.4256 (4)0.94735 (9)0.0317 (8)
H60.74770.50770.94470.038*
C70.7023 (6)0.2675 (4)0.92603 (10)0.0358 (8)
H7A0.59650.18480.92890.043*
H7B0.82210.22370.93890.043*
C80.7456 (6)0.2928 (4)0.88144 (10)0.0339 (8)
H80.85310.37640.87950.041*
C90.5601 (5)0.3649 (4)0.85866 (8)0.0247 (7)
C100.4800 (5)0.5200 (4)0.88236 (8)0.0225 (7)
H100.58590.60450.87960.027*
C110.6397 (5)0.4177 (4)0.81656 (9)0.0277 (7)
H110.72460.32620.80670.033*
C120.7590 (6)0.5775 (4)0.81173 (9)0.0347 (8)
H12A0.89590.56410.82140.042*
H12B0.69580.66950.82590.042*
C130.7541 (5)0.6050 (4)0.76640 (9)0.0322 (8)
H130.75240.72400.75930.039*
C140.9089 (7)0.5105 (6)0.74327 (11)0.0449 (10)
H141.04690.52970.74420.054*
C150.8209 (7)0.3971 (6)0.72157 (11)0.0465 (11)
H150.89300.32420.70520.056*
C160.5590 (6)0.5156 (5)0.75390 (9)0.0325 (8)
H160.46290.59520.74240.039*
C170.5750 (7)0.7929 (5)0.95490 (11)0.0439 (10)
H17A0.71140.75100.95230.053*
H17B0.55920.91150.94960.053*
C180.2661 (6)0.3910 (4)0.94037 (9)0.0344 (8)
H18A0.15550.41480.92220.041*
H18B0.30170.27410.93740.041*
C190.3977 (6)0.2313 (4)0.85247 (10)0.0340 (8)
H19A0.34410.19830.87810.051*
H19B0.45560.13580.83930.051*
H19C0.29150.27600.83610.051*
C200.8302 (8)0.1290 (5)0.86471 (13)0.0572 (12)
H20A0.85940.14220.83660.086*
H20B0.73290.04140.86820.086*
H20C0.95150.10050.87890.086*
O30.1930 (6)0.9273 (3)0.93974 (8)0.0604 (10)
H3A0.16240.92830.96360.091*
O40.4475 (5)0.7183 (3)0.98515 (7)0.0432 (7)
O60.6073 (5)0.3942 (3)0.98937 (6)0.0491 (8)
H6A0.64890.30060.99500.074*
O110.4785 (4)0.4392 (3)0.78776 (6)0.0337 (6)
O160.6173 (4)0.3914 (3)0.72424 (7)0.0431 (7)
O180.2036 (5)0.4212 (3)0.98069 (7)0.0519 (8)
H180.11070.35800.98640.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
c10.0370 (19)0.0368 (17)0.0183 (14)0.0102 (18)0.0001 (14)0.0005 (14)
c20.062 (3)0.040 (2)0.0230 (15)0.025 (2)0.0049 (17)0.0028 (14)
c30.053 (2)0.0356 (18)0.0295 (17)0.013 (2)0.0040 (18)0.0012 (15)
c40.049 (2)0.0262 (15)0.0148 (13)0.0020 (17)0.0010 (15)0.0007 (12)
c50.0351 (18)0.0207 (13)0.0169 (12)0.0012 (16)0.0008 (13)0.0011 (11)
c60.043 (2)0.0298 (17)0.0227 (15)0.0002 (18)0.0055 (15)0.0030 (13)
c70.047 (2)0.0330 (17)0.0274 (16)0.0126 (19)0.0032 (17)0.0050 (14)
c80.038 (2)0.0328 (17)0.0305 (16)0.0051 (18)0.0044 (16)0.0039 (14)
c90.0312 (17)0.0234 (14)0.0196 (13)0.0018 (15)0.0024 (14)0.0012 (12)
c100.0292 (17)0.0232 (15)0.0150 (11)0.0001 (14)0.0001 (12)0.0011 (11)
c110.0305 (19)0.0312 (17)0.0214 (14)0.0001 (17)0.0043 (13)0.0014 (13)
c120.039 (2)0.0412 (19)0.0242 (15)0.009 (2)0.0024 (15)0.0012 (14)
c130.040 (2)0.0289 (16)0.0275 (15)0.0004 (18)0.0092 (15)0.0046 (14)
c140.043 (2)0.057 (3)0.0343 (17)0.000 (2)0.0099 (18)0.0025 (19)
c150.054 (3)0.055 (3)0.0300 (18)0.009 (2)0.0130 (18)0.0013 (19)
c160.040 (2)0.0360 (19)0.0214 (14)0.0018 (19)0.0030 (16)0.0033 (14)
c170.061 (3)0.0295 (18)0.041 (2)0.010 (2)0.000 (2)0.0037 (15)
c180.048 (2)0.0335 (17)0.0217 (14)0.004 (2)0.0034 (16)0.0009 (14)
c190.045 (2)0.0267 (16)0.0302 (16)0.0094 (17)0.0087 (16)0.0051 (13)
c200.072 (3)0.055 (3)0.045 (2)0.030 (3)0.006 (2)0.001 (2)
o30.110 (3)0.0377 (14)0.0333 (13)0.0339 (18)0.0031 (17)0.0041 (12)
o40.073 (2)0.0354 (14)0.0212 (11)0.0002 (16)0.0067 (13)0.0045 (10)
o60.088 (2)0.0416 (15)0.0182 (11)0.0190 (18)0.0095 (13)0.0028 (11)
o110.0348 (14)0.0452 (14)0.0210 (10)0.0094 (13)0.0006 (10)0.0038 (10)
o160.0570 (18)0.0453 (16)0.0269 (12)0.0074 (15)0.0028 (12)0.0075 (12)
o180.080 (2)0.0420 (16)0.0335 (13)0.0132 (17)0.0272 (14)0.0000 (12)
Geometric parameters (Å, º) top
C1—C21.519 (5)C11—C121.512 (5)
C1—C101.529 (5)C11—H110.9800
C1—H1A0.9700C12—C131.523 (4)
C1—H1B0.9700C12—H12A0.9700
C2—C31.518 (5)C12—H12B0.9700
C2—H2A0.9700C13—C141.490 (5)
C2—H2B0.9700C13—C161.538 (5)
C3—O31.410 (4)C13—H130.9800
C3—C41.513 (6)C14—C151.298 (6)
C3—H30.9800C14—H140.9300
C4—O41.434 (4)C15—O161.356 (5)
C4—C171.458 (5)C15—H150.9300
C4—C51.550 (5)C16—O111.387 (4)
C5—C61.529 (5)C16—O161.452 (4)
C5—C181.538 (5)C16—H160.9800
C5—C101.573 (4)C17—O41.444 (5)
C6—O61.434 (4)C17—H17A0.9700
C6—C71.509 (5)C17—H17B0.9700
C6—H60.9800C18—O181.423 (4)
C7—C81.523 (4)C18—H18A0.9700
C7—H7A0.9700C18—H18B0.9700
C7—H7B0.9700C19—H19A0.9600
C8—C201.530 (5)C19—H19B0.9600
C8—C91.557 (5)C19—H19C0.9600
C8—H80.9800C20—H20A0.9600
C9—C191.532 (5)C20—H20B0.9600
C9—C111.554 (4)C20—H20C0.9600
C9—C101.562 (4)O3—H3A0.8200
C10—H100.9800O6—H6A0.8200
C11—O111.447 (4)O18—H180.8200
C2—C1—C10112.6 (3)O11—C11—C12102.5 (3)
C2—C1—H1A109.1O11—C11—C9112.1 (3)
C10—C1—H1A109.1C12—C11—C9120.2 (3)
C2—C1—H1B109.1O11—C11—H11107.1
C10—C1—H1B109.1C12—C11—H11107.1
H1A—C1—H1B107.8C9—C11—H11107.1
C3—C2—C1113.2 (3)C11—C12—C13102.5 (3)
C3—C2—H2A108.9C11—C12—H12A111.3
C1—C2—H2A108.9C13—C12—H12A111.3
C3—C2—H2B108.9C11—C12—H12B111.3
C1—C2—H2B108.9C13—C12—H12B111.3
H2A—C2—H2B107.8H12A—C12—H12B109.2
O3—C3—C4113.1 (3)C14—C13—C12115.0 (3)
O3—C3—C2106.3 (3)C14—C13—C16101.9 (3)
C4—C3—C2107.7 (3)C12—C13—C16102.6 (3)
O3—C3—H3109.9C14—C13—H13112.2
C4—C3—H3109.9C12—C13—H13112.2
C2—C3—H3109.9C16—C13—H13112.2
O4—C4—C1759.9 (2)C15—C14—C13109.3 (4)
O4—C4—C3114.1 (3)C15—C14—H14125.4
C17—C4—C3117.7 (3)C13—C14—H14125.4
O4—C4—C5117.6 (3)C14—C15—O16115.9 (4)
C17—C4—C5122.1 (3)C14—C15—H15122.1
C3—C4—C5114.3 (3)O16—C15—H15122.1
C6—C5—C18109.4 (3)O11—C16—O16110.6 (3)
C6—C5—C4112.0 (3)O11—C16—C13108.1 (3)
C18—C5—C4109.3 (3)O16—C16—C13106.0 (3)
C6—C5—C10108.6 (3)O11—C16—H16110.6
C18—C5—C10113.9 (3)O16—C16—H16110.6
C4—C5—C10103.6 (2)C13—C16—H16110.6
O6—C6—C7110.6 (3)O4—C17—C459.3 (2)
O6—C6—C5109.5 (3)O4—C17—H17A117.8
C7—C6—C5111.8 (3)C4—C17—H17A117.8
O6—C6—H6108.3O4—C17—H17B117.8
C7—C6—H6108.3C4—C17—H17B117.8
C5—C6—H6108.3H17A—C17—H17B115.0
C6—C7—C8113.5 (3)O18—C18—C5111.3 (3)
C6—C7—H7A108.9O18—C18—H18A109.4
C8—C7—H7A108.9C5—C18—H18A109.4
C6—C7—H7B108.9O18—C18—H18B109.4
C8—C7—H7B108.9C5—C18—H18B109.4
H7A—C7—H7B107.7H18A—C18—H18B108.0
C7—C8—C20108.0 (3)C9—C19—H19A109.5
C7—C8—C9111.9 (3)C9—C19—H19B109.5
C20—C8—C9115.6 (3)H19A—C19—H19B109.5
C7—C8—H8107.0C9—C19—H19C109.5
C20—C8—H8107.0H19A—C19—H19C109.5
C9—C8—H8107.0H19B—C19—H19C109.5
C19—C9—C11108.0 (2)C8—C20—H20A109.5
C19—C9—C8111.4 (3)C8—C20—H20B109.5
C11—C9—C8105.6 (3)H20A—C20—H20B109.5
C19—C9—C10112.4 (3)C8—C20—H20C109.5
C11—C9—C10110.7 (2)H20A—C20—H20C109.5
C8—C9—C10108.6 (2)H20B—C20—H20C109.5
C1—C10—C9113.0 (2)C3—O3—H3A109.5
C1—C10—C5110.3 (3)C4—O4—C1760.9 (2)
C9—C10—C5117.6 (2)C6—O6—H6A109.5
C1—C10—H10104.9C16—O11—C11107.7 (3)
C9—C10—H10104.9C15—O16—C16106.7 (3)
C5—C10—H10104.9C18—O18—H18109.5
C10—C1—C2—C352.8 (5)C11—C9—C10—C5164.0 (3)
C1—C2—C3—O3173.8 (4)C8—C9—C10—C548.5 (4)
C1—C2—C3—C452.2 (5)C6—C5—C10—C1178.5 (3)
O3—C3—C4—O442.3 (4)C18—C5—C10—C159.4 (4)
C2—C3—C4—O4159.5 (3)C4—C5—C10—C159.2 (3)
O3—C3—C4—C1725.0 (4)C6—C5—C10—C950.0 (4)
C2—C3—C4—C1792.2 (4)C18—C5—C10—C972.2 (4)
O3—C3—C4—C5178.4 (3)C4—C5—C10—C9169.2 (3)
C2—C3—C4—C561.2 (4)C19—C9—C11—O1143.2 (3)
O4—C4—C5—C641.0 (4)C8—C9—C11—O11162.4 (3)
C17—C4—C5—C629.1 (4)C10—C9—C11—O1180.3 (3)
C3—C4—C5—C6178.8 (3)C19—C9—C11—C12163.7 (3)
O4—C4—C5—C1880.4 (4)C8—C9—C11—C1277.1 (4)
C17—C4—C5—C18150.5 (3)C10—C9—C11—C1240.2 (4)
C3—C4—C5—C1857.4 (3)O11—C11—C12—C1339.6 (3)
O4—C4—C5—C10157.9 (3)C9—C11—C12—C13164.7 (3)
C17—C4—C5—C1087.8 (3)C11—C12—C13—C1483.3 (4)
C3—C4—C5—C1064.3 (4)C11—C12—C13—C1626.4 (3)
C18—C5—C6—O650.6 (3)C12—C13—C14—C15111.9 (4)
C4—C5—C6—O670.8 (3)C16—C13—C14—C151.8 (4)
C10—C5—C6—O6175.4 (3)C13—C14—C15—O160.8 (5)
C18—C5—C6—C772.3 (3)C14—C13—C16—O11115.3 (3)
C4—C5—C6—C7166.3 (3)C12—C13—C16—O114.0 (4)
C10—C5—C6—C752.5 (4)C14—C13—C16—O163.4 (3)
O6—C6—C7—C8178.0 (3)C12—C13—C16—O16122.7 (3)
C5—C6—C7—C859.6 (4)C3—C4—C17—O4103.3 (3)
C6—C7—C8—C20173.7 (4)C5—C4—C17—O4105.5 (3)
C6—C7—C8—C958.0 (4)C6—C5—C18—O1877.7 (4)
C7—C8—C9—C1974.5 (4)C4—C5—C18—O1845.3 (4)
C20—C8—C9—C1949.6 (4)C10—C5—C18—O18160.6 (3)
C7—C8—C9—C11168.6 (3)C3—C4—O4—C17109.2 (3)
C20—C8—C9—C1167.3 (4)C5—C4—O4—C17112.9 (4)
C7—C8—C9—C1049.8 (4)O16—C16—O11—C1194.1 (3)
C20—C8—C9—C10173.9 (3)C13—C16—O11—C1121.6 (4)
C2—C1—C10—C9169.3 (3)C12—C11—O11—C1638.7 (3)
C2—C1—C10—C556.8 (4)C9—C11—O11—C16169.0 (3)
C19—C9—C10—C155.1 (3)C14—C15—O16—C163.1 (5)
C11—C9—C10—C165.7 (4)O11—C16—O16—C15113.0 (3)
C8—C9—C10—C1178.8 (3)C13—C16—O16—C154.0 (4)
C19—C9—C10—C575.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4i0.822.513.201 (4)142
O3—H3A···O6i0.822.142.813 (3)139
O6—H6A···O18ii0.821.982.786 (4)166
O18—H18···O6iii0.822.172.786 (4)132
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x+1/2, y+1/2, z+2; (iii) x1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC20H30O6
Mr366.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.643 (5), 7.997 (3), 33.230 (8)
V3)1765.3 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.27 × 0.25 × 0.21
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.973, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
3065, 2972, 1723
Rint0.021
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.148, 1.03
No. of reflections2972
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.35

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 and PARST97 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4i0.822.513.201 (4)142.4
O3—H3A···O6i0.822.142.813 (3)139.0
O6—H6A···O18ii0.821.982.786 (4)166.4
O18—H18···O6iii0.822.172.786 (4)131.8
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x+1/2, y+1/2, z+2; (iii) x1/2, y+1/2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds