Download citation
Download citation
link to html
In the title heteronuclear ZnII–PrIII complex (systematic name: {6,6′-dieth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methylidyne)]diphenolato-1κ4O1,O1′,O6,O6′:2κ4O1,N,N′,O1′}trinitrato-1κ6O,O′-praseodymium(III)zinc(II)), [PrZn(C20H22N2O4)(NO3)3], with the hexadentate Schiff base compartmental ligand N,N′-bis(3-ethoxysalicylidene)ethylenediamine (H22L), the ZnII and PrIII atoms are doubly bridged by two phenolate O atoms provided by the Schiff base ligand. The coordination of the ZnII atom is approximately square planar, involving the two imine N atoms and the two phenolate O atoms. The PrIII centre has a deca­coordination environment of O atoms, formed by the phenolate ligands, the two eth­oxy O atoms and two O atoms from each of the three nitrates. Some weak C—H...O and O...Zn [3.159 (4) Å] inter­actions generate a two-dimensional zigzag sheet.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807032540/hg2254sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807032540/hg2254Isup2.hkl
Contains datablock I

CCDC reference: 1293589

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.027
  • wR factor = 0.061
  • Data-to-parameter ratio = 16.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.75 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for O5 - N3 .. 5.26 su PLAT230_ALERT_2_C Hirshfeld Test Diff for O9 - N4 .. 5.53 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Pr1 - O5 .. 6.53 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Pr1 - O9 .. 6.08 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Pr1 - O11 .. 5.62 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O8 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O12 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Pr1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N4
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.23 From the CIF: _reflns_number_total 6058 Count of symmetry unique reflns 3531 Completeness (_total/calc) 171.57% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2527 Fraction of Friedel pairs measured 0.716 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Pr1 (3) 3.80 PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn1 (2) 2.35
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 10 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

The potential applications of trivalent lanthanide complexes as contrast agent for magnetic resonance imaging and stains for fluorescence imaging have prompted considerable interest in the preparation, magnetic and optical properties of 3 d–4f hetorometallic dinuclear complexes (Baggio et al., 2000; Caravan et al., 1999; Edder et al., 2000; Knoer et al., 2005). As part of our investigations into the structure and applications of 3 d-4f hetorometallic Schiff base complexes (Sui et al., 2006), we report here the synthesis and X-ray crystal structure analysis of the title complex, (I), a new ZnII–PrIII complex with salen-type Schiff base N,N'-bis(3-ethoxysalicylidene) ethylenediamine(H2L).

Complex (I) crystallizes in the space group P212121, with zinc and praseodymium doubly bridged by two phenolate O atoms provided by a salen-type Schiff base ligand. The inner salen-type cavity is occupied by zinc(II), while praseodymium(III) is present in the open and larger portion of the dinucleating compartmental Schiff base ligand. The dihedral angles between the mean planes of Zn1/O1/O2 and Pr1/O1/O2 is 3.45 (15)° suggesting that the bridging moiety is almost planar; the deviation of atoms from the least squares Zn1/O1/O2/Pr1 plane being 0.0293 (3)Å for Zn, 0.0199 (3)Å for Pr, -0.0244 (4)Å for O1 and -0.0248 (4)Å for O2.

The praseodymium(III) center in (I) has a decacoordination environment of O atoms. In addition to the phenolate ligands, two ethoxy O atoms coordinate to this metal center, two O atoms from each of the three nitrates chelate to praseodymium to complete the decacoordination. The three kinds of Pr—O bond distances are significantly different, the shortest being the Pr—O(phenolate) and longest being the Pr—O(ethoxy) separations.

The coordination of zinc(II) is approximately square planar. The donor centers are alternatively above and below the mean N2O2 plane with an average deviation from the plane of 0.0901 (3) Å, while Zn1 is 0.0437 (3)Å below this square plane.

Adjacent molecules are held together by weak interactions (O10···Zn1 = 3.159 (5) Å, C7—H7···O7i = 3.276 (5), C9—H9A···O7ii = 3.266 (5) and C17—H17A···O8iii = 3.528 (5); symmetry codes: (i) 1 - x, y - 1/2, 1/2 - z; (ii) x - 1, y, z; (iii) x - 1/2, 5/2 - y, z.) these link the molecules into a two-dimensional zigzag sheet (Fig. 2).

Related literature top

For related literature, see: Baggio et al. (2000); Caravan et al. (1999); Edder et al. (2000); Knoer et al. (2005); Sui et al. (2006).

Experimental top

H2L was prepared by the 2:1 condensation of 3-ethoxysalicylaldehyde and ethylenediamine in methanol. Complex (I) was obtained by the treatment of zinc(II) acetate dihydrate (0.188 g, 1 mmol) with H2L(0.356 g, 1 mmol) in methanol solution (100 ml) under reflux for 3 h and then for another 3 h after the addition of praseodymium(III) nitrate hexahydrate (0.435 g, 1 mmol). The reaction mixture was cooled and the resulting precipitate was filtered off, washed with diethyl ether and dried in vacuo. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation at room temperature of a methanol solution. Analysis calculated for C20H22N5O13PrZn: C 32.17, H 2.97, N 9.38, Pr 18.87, Zn 8.76%; found: C 32.28, H 2.95, N 9.31, Pr 19.05, Zn 8.78%. IR (KBr, cm-1): 1643 (C=N), 1385, 1491 (nitrate).

Refinement top

The H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.97 (methylene) and 0.96 Å (methyl), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structure description top

The potential applications of trivalent lanthanide complexes as contrast agent for magnetic resonance imaging and stains for fluorescence imaging have prompted considerable interest in the preparation, magnetic and optical properties of 3 d–4f hetorometallic dinuclear complexes (Baggio et al., 2000; Caravan et al., 1999; Edder et al., 2000; Knoer et al., 2005). As part of our investigations into the structure and applications of 3 d-4f hetorometallic Schiff base complexes (Sui et al., 2006), we report here the synthesis and X-ray crystal structure analysis of the title complex, (I), a new ZnII–PrIII complex with salen-type Schiff base N,N'-bis(3-ethoxysalicylidene) ethylenediamine(H2L).

Complex (I) crystallizes in the space group P212121, with zinc and praseodymium doubly bridged by two phenolate O atoms provided by a salen-type Schiff base ligand. The inner salen-type cavity is occupied by zinc(II), while praseodymium(III) is present in the open and larger portion of the dinucleating compartmental Schiff base ligand. The dihedral angles between the mean planes of Zn1/O1/O2 and Pr1/O1/O2 is 3.45 (15)° suggesting that the bridging moiety is almost planar; the deviation of atoms from the least squares Zn1/O1/O2/Pr1 plane being 0.0293 (3)Å for Zn, 0.0199 (3)Å for Pr, -0.0244 (4)Å for O1 and -0.0248 (4)Å for O2.

The praseodymium(III) center in (I) has a decacoordination environment of O atoms. In addition to the phenolate ligands, two ethoxy O atoms coordinate to this metal center, two O atoms from each of the three nitrates chelate to praseodymium to complete the decacoordination. The three kinds of Pr—O bond distances are significantly different, the shortest being the Pr—O(phenolate) and longest being the Pr—O(ethoxy) separations.

The coordination of zinc(II) is approximately square planar. The donor centers are alternatively above and below the mean N2O2 plane with an average deviation from the plane of 0.0901 (3) Å, while Zn1 is 0.0437 (3)Å below this square plane.

Adjacent molecules are held together by weak interactions (O10···Zn1 = 3.159 (5) Å, C7—H7···O7i = 3.276 (5), C9—H9A···O7ii = 3.266 (5) and C17—H17A···O8iii = 3.528 (5); symmetry codes: (i) 1 - x, y - 1/2, 1/2 - z; (ii) x - 1, y, z; (iii) x - 1/2, 5/2 - y, z.) these link the molecules into a two-dimensional zigzag sheet (Fig. 2).

For related literature, see: Baggio et al. (2000); Caravan et al. (1999); Edder et al. (2000); Knoer et al. (2005); Sui et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: APEX2; software used to prepare material for publication: APEX2 and publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. All the H atoms on carbon have been omitted for clarity.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the b axis; hydrogen bonds are shown as dashed lines.
{6,6'-diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato-\1κ4O1,O1',O6,O6':2κ4O1,\<i>N,N',O1'}trinitrato-1κ6O,O'-πraseodymium(III)zinc(II)) top
Crystal data top
[PrZn(C20H22N2O4)(NO3)3]F(000) = 1480
Mr = 746.71Dx = 1.960 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 19198 reflections
a = 8.6317 (7) Åθ = 1.9–28.2°
b = 13.8782 (11) ŵ = 2.93 mm1
c = 21.1267 (16) ÅT = 293 K
V = 2530.8 (3) Å3Block, yellow
Z = 40.21 × 0.15 × 0.13 mm
Data collection top
Bruker APEXII area-detector
diffractometer
6058 independent reflections
Radiation source: fine-focus sealed tube4803 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 0 pixels mm-1θmax = 28.2°, θmin = 1.9°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1817
Tmin = 0.605, Tmax = 0.683l = 2728
19198 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0273P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
6058 reflectionsΔρmax = 0.50 e Å3
363 parametersΔρmin = 0.62 e Å3
0 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.021 (12)
Crystal data top
[PrZn(C20H22N2O4)(NO3)3]V = 2530.8 (3) Å3
Mr = 746.71Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.6317 (7) ŵ = 2.93 mm1
b = 13.8782 (11) ÅT = 293 K
c = 21.1267 (16) Å0.21 × 0.15 × 0.13 mm
Data collection top
Bruker APEXII area-detector
diffractometer
6058 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4803 reflections with I > 2σ(I)
Tmin = 0.605, Tmax = 0.683Rint = 0.031
19198 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.061Δρmax = 0.50 e Å3
S = 1.01Δρmin = 0.62 e Å3
6058 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
363 parametersAbsolute structure parameter: 0.021 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O70.9052 (4)1.0762 (3)0.27853 (15)0.0806 (12)
O101.2389 (4)1.0397 (3)0.07303 (19)0.0945 (13)
O130.5733 (4)1.0012 (3)0.08812 (14)0.0756 (9)
O10.5859 (3)0.87492 (16)0.13666 (12)0.0373 (6)
Pr10.758724 (19)0.999692 (14)0.094892 (8)0.03144 (5)
Zn10.43316 (5)0.94378 (3)0.18296 (2)0.03984 (11)
O20.5377 (3)1.05631 (17)0.15394 (11)0.0344 (6)
C160.4779 (4)1.1447 (2)0.15604 (17)0.0324 (8)
N20.3000 (3)1.0138 (2)0.23919 (15)0.0399 (8)
C20.7087 (4)0.7432 (2)0.08988 (17)0.0328 (8)
N10.3204 (4)0.8318 (2)0.20905 (16)0.0372 (8)
O30.8110 (3)0.81322 (18)0.06945 (13)0.0377 (6)
C10.5866 (4)0.7798 (2)0.12626 (18)0.0326 (8)
C150.5382 (4)1.2125 (2)0.11381 (18)0.0333 (9)
O40.6539 (3)1.17627 (17)0.07518 (12)0.0365 (6)
C100.2792 (4)1.1050 (3)0.23906 (18)0.0389 (9)
H100.21041.13050.26860.047*
C110.3548 (5)1.1715 (3)0.19636 (19)0.0381 (10)
C60.4752 (4)0.7162 (3)0.15047 (18)0.0362 (9)
C80.1862 (5)0.8551 (3)0.2493 (2)0.0450 (10)
H8A0.16780.80360.27940.054*
H8B0.09410.86300.22350.054*
C70.3493 (4)0.7452 (3)0.1915 (2)0.0402 (10)
H70.28370.69710.20630.048*
C90.2226 (4)0.9483 (3)0.28391 (18)0.0432 (9)
H9A0.12780.97740.29950.052*
H9B0.28970.93550.31980.052*
O110.7691 (3)1.0125 (2)0.02391 (13)0.0544 (7)
N50.6277 (4)0.9941 (3)0.03462 (16)0.0501 (8)
O60.8208 (4)0.9677 (2)0.21236 (15)0.0540 (9)
O50.8639 (3)1.1122 (2)0.18006 (15)0.0514 (7)
O81.0052 (4)1.0817 (3)0.04956 (16)0.0674 (10)
O91.0450 (3)0.9619 (2)0.11152 (15)0.0542 (8)
O120.5486 (3)0.9684 (2)0.01210 (14)0.0600 (9)
N30.8645 (4)1.0526 (3)0.22519 (19)0.0494 (9)
N41.1002 (4)1.0277 (3)0.07785 (18)0.0536 (11)
C30.7170 (5)0.6468 (3)0.07493 (19)0.0439 (10)
H30.79850.62340.05060.053*
C170.7260 (5)1.2413 (3)0.02942 (18)0.0425 (9)
H17A0.64641.28070.00990.051*
H17B0.77481.20350.00360.051*
C190.9463 (4)0.7813 (3)0.03462 (19)0.0441 (10)
H19A0.98880.83510.01100.053*
H19B0.91580.73210.00450.053*
C40.6018 (5)0.5849 (3)0.0968 (2)0.0499 (11)
H40.60480.52000.08590.060*
C50.4870 (5)0.6179 (3)0.1333 (2)0.0448 (10)
H50.41250.57490.14780.054*
C201.0685 (5)0.7415 (3)0.0778 (2)0.0585 (12)
H20A1.09600.78920.10870.088*
H20B1.15840.72440.05350.088*
H20C1.02920.68520.09890.088*
C140.4813 (4)1.3053 (3)0.1114 (2)0.0417 (10)
H140.52161.34970.08290.050*
C120.3023 (5)1.2676 (3)0.1951 (2)0.0468 (11)
H120.22621.28760.22330.056*
C130.3623 (5)1.3311 (3)0.1527 (2)0.0507 (11)
H130.32291.39350.15120.061*
C180.8445 (5)1.3056 (3)0.0590 (2)0.0572 (13)
H18A0.79411.35030.08700.086*
H18B0.89841.34050.02650.086*
H18C0.91701.26730.08260.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.086 (3)0.112 (3)0.0432 (18)0.047 (2)0.0212 (19)0.025 (2)
O100.0346 (17)0.142 (4)0.107 (3)0.021 (2)0.0064 (19)0.004 (3)
O130.103 (2)0.074 (2)0.0496 (18)0.005 (2)0.0228 (18)0.000 (2)
O10.0430 (15)0.0200 (12)0.0490 (16)0.0035 (11)0.0155 (13)0.0011 (11)
Pr10.03149 (9)0.02595 (9)0.03689 (9)0.00118 (11)0.00386 (8)0.00233 (10)
Zn10.0393 (2)0.0319 (2)0.0484 (2)0.00127 (19)0.0103 (2)0.0038 (2)
O20.0319 (13)0.0252 (12)0.0461 (14)0.0024 (11)0.0110 (12)0.0032 (12)
C160.035 (2)0.0256 (18)0.037 (2)0.0001 (14)0.0055 (17)0.0018 (16)
N20.0380 (15)0.046 (2)0.0360 (17)0.0022 (14)0.0057 (13)0.0045 (16)
C20.0385 (19)0.0280 (18)0.0318 (19)0.0010 (13)0.0040 (17)0.0032 (16)
N10.0367 (18)0.0365 (19)0.0385 (19)0.0051 (14)0.0046 (15)0.0092 (15)
O30.0353 (13)0.0325 (14)0.0455 (16)0.0012 (11)0.0085 (12)0.0013 (12)
C10.035 (2)0.0272 (19)0.035 (2)0.0006 (15)0.0058 (18)0.0001 (16)
C150.032 (2)0.0285 (19)0.040 (2)0.0009 (14)0.0042 (17)0.0023 (16)
O40.0435 (15)0.0250 (13)0.0411 (16)0.0022 (11)0.0063 (12)0.0077 (11)
C100.037 (2)0.040 (2)0.040 (2)0.0069 (17)0.0043 (18)0.0001 (18)
C110.036 (2)0.037 (2)0.042 (3)0.0026 (16)0.0013 (19)0.0026 (18)
C60.044 (2)0.0284 (19)0.036 (2)0.0056 (15)0.0051 (18)0.0051 (17)
C80.036 (2)0.054 (3)0.045 (2)0.0030 (18)0.0102 (19)0.012 (2)
C70.038 (2)0.035 (2)0.047 (3)0.0098 (16)0.003 (2)0.0125 (19)
C90.042 (2)0.044 (2)0.043 (2)0.0011 (18)0.0110 (19)0.0094 (19)
O110.0550 (17)0.062 (2)0.0461 (15)0.0113 (17)0.0047 (13)0.0002 (14)
N50.065 (2)0.0392 (18)0.046 (2)0.001 (2)0.0037 (18)0.011 (2)
O60.059 (2)0.056 (2)0.0468 (18)0.0084 (15)0.0059 (15)0.0152 (15)
O50.0562 (18)0.0475 (17)0.0505 (18)0.0016 (14)0.0056 (16)0.0008 (16)
O80.0447 (18)0.086 (3)0.072 (2)0.0162 (16)0.0007 (17)0.033 (2)
O90.0414 (16)0.0446 (16)0.077 (2)0.0007 (13)0.0054 (16)0.0056 (15)
O120.0477 (16)0.084 (3)0.0482 (17)0.0121 (15)0.0016 (15)0.0030 (16)
N30.0357 (19)0.064 (3)0.049 (2)0.0208 (19)0.0028 (17)0.010 (2)
N40.038 (2)0.069 (3)0.054 (2)0.0086 (17)0.0078 (18)0.0151 (19)
C30.058 (3)0.031 (2)0.044 (2)0.0052 (18)0.001 (2)0.0029 (17)
C170.054 (2)0.0320 (19)0.041 (2)0.0025 (17)0.009 (2)0.0081 (16)
C190.039 (2)0.041 (2)0.052 (3)0.0045 (17)0.008 (2)0.004 (2)
C40.065 (3)0.028 (2)0.057 (3)0.0013 (17)0.006 (2)0.001 (2)
C50.057 (3)0.024 (2)0.053 (2)0.0102 (17)0.003 (2)0.0066 (18)
C200.050 (3)0.050 (3)0.075 (3)0.012 (2)0.004 (3)0.008 (2)
C140.043 (2)0.035 (2)0.048 (2)0.0004 (16)0.004 (2)0.0052 (19)
C120.046 (2)0.037 (2)0.058 (3)0.0104 (17)0.007 (2)0.006 (2)
C130.059 (3)0.027 (2)0.066 (3)0.0111 (18)0.002 (2)0.001 (2)
C180.063 (3)0.040 (3)0.069 (3)0.011 (2)0.020 (2)0.003 (2)
Geometric parameters (Å, º) top
O7—N31.225 (5)C6—C51.417 (5)
O10—N41.213 (4)C6—C71.447 (6)
O13—N51.228 (4)C8—C91.519 (6)
O1—C11.339 (4)C8—H8A0.9700
O1—Zn11.900 (2)C8—H8B0.9700
O1—Pr12.450 (2)C7—H70.9300
Pr1—O22.411 (2)C9—H9A0.9700
Pr1—O112.518 (3)C9—H9B0.9700
Pr1—O52.549 (3)O11—N51.267 (4)
Pr1—O92.550 (3)N5—O121.252 (4)
Pr1—O122.557 (3)O6—N31.266 (5)
Pr1—O62.578 (3)O5—N31.262 (5)
Pr1—O82.596 (3)O8—N41.262 (4)
Pr1—O42.645 (2)O9—N41.252 (4)
Pr1—O32.681 (2)C3—C41.394 (6)
Zn1—O21.905 (2)C3—H30.9300
Zn1—N11.915 (3)C17—C181.494 (6)
Zn1—N21.917 (3)C17—H17A0.9700
O2—C161.332 (4)C17—H17B0.9700
C16—C151.397 (5)C19—C201.500 (6)
C16—C111.411 (5)C19—H19A0.9700
N2—C101.279 (5)C19—H19B0.9700
N2—C91.471 (5)C4—C51.335 (5)
C2—C31.376 (5)C4—H40.9300
C2—O31.383 (4)C5—H50.9300
C2—C11.400 (5)C20—H20A0.9600
N1—C71.282 (5)C20—H20B0.9600
N1—C81.473 (5)C20—H20C0.9600
O3—C191.449 (4)C14—C131.394 (6)
C1—C61.401 (5)C14—H140.9300
C15—C141.379 (5)C12—C131.360 (6)
C15—O41.384 (4)C12—H120.9300
O4—C171.462 (4)C13—H130.9300
C10—C111.446 (5)C18—H18A0.9600
C10—H100.9300C18—H18B0.9600
C11—C121.409 (5)C18—H18C0.9600
C1—O1—Zn1125.7 (2)N2—C10—C11124.7 (4)
C1—O1—Pr1129.5 (2)N2—C10—H10117.6
Zn1—O1—Pr1104.62 (9)C11—C10—H10117.6
O2—Pr1—O164.04 (8)C12—C11—C16118.7 (4)
O2—Pr1—O11121.38 (9)C12—C11—C10118.1 (4)
O1—Pr1—O11115.51 (9)C16—C11—C10123.3 (3)
O2—Pr1—O573.57 (9)C1—C6—C5117.6 (4)
O1—Pr1—O5113.29 (9)C1—C6—C7124.0 (3)
O11—Pr1—O5130.36 (10)C5—C6—C7118.4 (3)
O2—Pr1—O9139.68 (9)N1—C8—C9107.6 (3)
O1—Pr1—O9113.26 (9)N1—C8—H8A110.2
O11—Pr1—O996.75 (10)C9—C8—H8A110.2
O5—Pr1—O971.56 (9)N1—C8—H8B110.2
O2—Pr1—O1281.25 (9)C9—C8—H8B110.2
O1—Pr1—O1272.21 (10)H8A—C8—H8B108.5
O11—Pr1—O1249.85 (9)N1—C7—C6125.5 (4)
O5—Pr1—O12147.08 (10)N1—C7—H7117.3
O9—Pr1—O12138.30 (10)C6—C7—H7117.3
O2—Pr1—O673.90 (9)N2—C9—C8108.1 (3)
O1—Pr1—O670.01 (10)N2—C9—H9A110.1
O11—Pr1—O6164.72 (10)C8—C9—H9A110.1
O5—Pr1—O649.60 (10)N2—C9—H9B110.1
O9—Pr1—O668.31 (10)C8—C9—H9B110.1
O12—Pr1—O6140.99 (10)H9A—C9—H9B108.4
O2—Pr1—O8134.14 (11)N5—O11—Pr197.5 (2)
O1—Pr1—O8160.35 (10)O13—N5—O12122.7 (4)
O11—Pr1—O864.67 (10)O13—N5—O11121.1 (4)
O5—Pr1—O872.54 (11)O12—N5—O11116.2 (3)
O9—Pr1—O849.23 (10)N3—O6—Pr196.2 (2)
O12—Pr1—O8113.79 (10)N3—O5—Pr197.7 (2)
O6—Pr1—O8105.08 (11)N4—O8—Pr195.6 (2)
O2—Pr1—O460.58 (8)N4—O9—Pr198.1 (2)
O1—Pr1—O4120.21 (8)N5—O12—Pr196.0 (2)
O11—Pr1—O477.86 (9)O7—N3—O5121.4 (4)
O5—Pr1—O470.47 (9)O7—N3—O6122.1 (5)
O9—Pr1—O4122.93 (8)O5—N3—O6116.5 (4)
O12—Pr1—O478.87 (9)O10—N4—O9121.6 (4)
O6—Pr1—O4112.47 (9)O10—N4—O8121.3 (4)
O8—Pr1—O479.40 (10)O9—N4—O8117.1 (3)
O2—Pr1—O3123.47 (8)C2—C3—C4119.1 (4)
O1—Pr1—O359.51 (7)C2—C3—H3120.5
O11—Pr1—O382.10 (9)C4—C3—H3120.5
O5—Pr1—O3132.26 (9)O4—C17—C18112.5 (3)
O9—Pr1—O370.49 (8)O4—C17—H17A109.1
O12—Pr1—O379.54 (9)C18—C17—H17A109.1
O6—Pr1—O389.53 (9)O4—C17—H17B109.1
O8—Pr1—O3102.19 (10)C18—C17—H17B109.1
O4—Pr1—O3156.94 (9)H17A—C17—H17B107.8
O1—Zn1—O285.30 (10)O3—C19—C20111.7 (3)
O1—Zn1—N195.31 (12)O3—C19—H19A109.3
O2—Zn1—N1177.18 (13)C20—C19—H19A109.3
O1—Zn1—N2171.90 (13)O3—C19—H19B109.3
O2—Zn1—N293.89 (12)C20—C19—H19B109.3
N1—Zn1—N285.89 (15)H19A—C19—H19B107.9
C16—O2—Zn1124.1 (2)C5—C4—C3120.6 (4)
C16—O2—Pr1128.6 (2)C5—C4—H4119.7
Zn1—O2—Pr1105.91 (10)C3—C4—H4119.7
O2—C16—C15117.0 (3)C4—C5—C6122.1 (4)
O2—C16—C11123.6 (3)C4—C5—H5118.9
C15—C16—C11119.3 (3)C6—C5—H5118.9
C10—N2—C9123.3 (3)C19—C20—H20A109.5
C10—N2—Zn1125.8 (3)C19—C20—H20B109.5
C9—N2—Zn1110.9 (3)H20A—C20—H20B109.5
C3—C2—O3125.3 (3)C19—C20—H20C109.5
C3—C2—C1121.2 (3)H20A—C20—H20C109.5
O3—C2—C1113.4 (3)H20B—C20—H20C109.5
C7—N1—C8121.7 (3)C15—C14—C13118.7 (4)
C7—N1—Zn1125.4 (3)C15—C14—H14120.7
C8—N1—Zn1112.8 (3)C13—C14—H14120.7
C2—O3—C19117.3 (3)C13—C12—C11120.3 (4)
C2—O3—Pr1120.5 (2)C13—C12—H12119.9
C19—O3—Pr1122.2 (2)C11—C12—H12119.9
O1—C1—C2116.8 (3)C12—C13—C14121.7 (4)
O1—C1—C6123.9 (3)C12—C13—H13119.2
C2—C1—C6119.3 (3)C14—C13—H13119.2
C14—C15—O4125.1 (3)C17—C18—H18A109.5
C14—C15—C16121.3 (3)C17—C18—H18B109.5
O4—C15—C16113.7 (3)H18A—C18—H18B109.5
C15—O4—C17118.2 (3)C17—C18—H18C109.5
C15—O4—Pr1119.4 (2)H18A—C18—H18C109.5
C17—O4—Pr1122.0 (2)H18B—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O90.962.443.148 (5)131
C17—H17A···O8i0.972.593.528 (5)163
C9—H9A···O7ii0.972.403.266 (5)148
C7—H7···O7iii0.932.363.276 (5)168
Symmetry codes: (i) x1/2, y+5/2, z; (ii) x1, y, z; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[PrZn(C20H22N2O4)(NO3)3]
Mr746.71
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.6317 (7), 13.8782 (11), 21.1267 (16)
V3)2530.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.93
Crystal size (mm)0.21 × 0.15 × 0.13
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.605, 0.683
No. of measured, independent and
observed [I > 2σ(I)] reflections
19198, 6058, 4803
Rint0.031
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.061, 1.01
No. of reflections6058
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.62
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.021 (12)

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), APEX2 and publCIF (Westrip, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O90.962.443.148 (5)130.6
C17—H17A···O8i0.972.593.528 (5)162.7
C9—H9A···O7ii0.972.403.266 (5)148.3
C7—H7···O7iii0.932.363.276 (5)167.6
Symmetry codes: (i) x1/2, y+5/2, z; (ii) x1, y, z; (iii) x+1, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds