Download citation
Download citation
link to html
A heteronuclear CuII–SmIII complex (systematic name: {6,6′-di­eth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]­diphenol­ato-1κ4O1,O1′,O6,O6′:2κ4O1,N,N′,O1′}trinitrato-1κ6O,O′- samarium(III)copper(II)), [CuSm(C20H22N2O4)(NO3)3], with the hexa­dentate Schiff base compartmental ligand N,N′-bis­(3-ethoxy­salicyl­idene)ethyl­ene-1,2-diamine, has been synthesized and structurally characterized. The Cu and Sm atoms are doubly bridged by two phenolate O atoms provided by the Schiff base ligand. The coordination of the Cu atom is square planar, formed by two imine N and two phenolate O atoms. The SmIII atom has a decacoordination environment, formed by the phenolate O atoms, two ethoxy O atoms and two O atoms each from the three nitrates. No classical inter­molecular hydrogen bonds are found. Some weak C—H...O and O...Cu inter­actions [O...Cu = 3.167 (4) Å] generate a two-dimensional zigzag sheet.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030905/hg2240sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030905/hg2240Isup2.hkl
Contains datablock I

CCDC reference: 654836

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.022
  • wR factor = 0.048
  • Data-to-parameter ratio = 17.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.66 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for O8 - N4 .. 5.22 su PLAT230_ALERT_2_C Hirshfeld Test Diff for O11 - N5 .. 5.12 su PLAT230_ALERT_2_C Hirshfeld Test Diff for O12 - N5 .. 6.06 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Sm1 - O8 .. 7.55 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Sm1 - O11 .. 8.27 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Sm1 - O12 .. 6.60 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O9 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O11 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Sm1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N4
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.35 From the CIF: _reflns_number_total 6184 Count of symmetry unique reflns 3563 Completeness (_total/calc) 173.56% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2621 Fraction of Friedel pairs measured 0.736 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Sm1 (3) 3.68 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (3) 2.65
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 11 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check
checkCIF publication errors
Alert level A PUBL023_ALERT_1_A There is a mismatched ^ on line 142 1\k^2^O^1^,O^1'^,O^6^,O^6'^:2\k^2^O^1^,N,N',O^1'^}trinitrato-1\k^O,O'- If you require a ^ then it should be escaped with a \, i.e. \^ Otherwise there must be a matching closing ~, e.g. ^12^C PUBL023_ALERT_1_A There is a mismatched ^ on line 324 1\k^2^O^1^,O^1'^,O^6^,O^6'^:2\k^2^O^1^,N,N',O^1'^}trinitrato-1\k^O,O'- If you require a ^ then it should be escaped with a \, i.e. \^ Otherwise there must be a matching closing ~, e.g. ^12^C
2 ALERT level A = Data missing that is essential or data in wrong format 0 ALERT level G = General alerts. Data that may be required is missing

Comment top

The potential applications of trivalent lanthanide complexes as contrast agent for magnetic resonance imaging and stains for fluorescence imaging have prompted considerable interest in the preparation, magnetic and optical properties of 3 d-4f hetorometallic dinuclear complexes (Baggio et al., 2000; Caravan et al., 1999; Edder et al., 2000). Recently, some 3 d-4f hetorometallic Schiff base complexes have been synthesized, such as CuII—GdIII, NiII—GdIII and ZnII—HoIII heterodinuclear complexes (Brewer et al., 2001; Mohanta et al., 2002; Wong et al., 2002), which exhibits novel magnetic and luminescent properties, however, there are relatively few studies on CuII—SmIII dinuclear complexes. As part of our investigations into the structure and applications of 3 d-4f hetorometallic Schiff base complexes, we report here the synthesis and X-ray crystal structure analysis of the title complex, (I), a new CuII—SmIII complex with salen-type Schiff base N,N'-bis(3-ethoxysalicylidene) ethylene-1,2-diamine(H2L).

Complex (I) crystallizes in the space group P212121, with copper and samarium doubly bridged by two phenolate O atoms provided by a salen-type Schiff base ligand. The inner salen-type cavity is occupied by copper(II), while samarium(III) is present in the open and larger portion of the dinucleating compartmental Schiff base ligand. The dihedral angles between the mean planes of Cu1/O1/O2 and Sm1/O1/O2 is 3.7 (2)° suggesting that the bridging moiety is almost planar; the deviation of atoms from the least squares Cu1/O1/O2/Sm1 plane being 0.0315 (2)Å for Cu, 0.0218 (2)Å for Sm, -0.0263 (4)Å for O1 and -0.0270 (3)Å for O2.

The samarium(III) center in (I) has a decacoordination environment of O atoms. In addition to the phenolate ligands, two ethoxy O atoms coordinate to this metal center, two O atoms from each of the three nitrates chelate to samarium to complete the decacoordination. The three kinds of Sm—O bond distances are significantly different, the shortest being the Sm—O(phenolate) and longest being the Sm—O(methoxy) separations.

The coordination of copper(II) is square planar. The donor centers are alternatively above and below the mean N2O2 plane with an average deviation from the plane of 0.0844 (2) Å, while Cu1 is just 0.0407 (2)Å below this square plane.

Adjacent molecules are held together by weak interactions (O10···Cu1=3.167 (4) Å, C7—H7···O7i and C9—H9···O7ii; symmetry codes:(i)-x + 1, y - 1/2, 1/2 - z; (ii)x - 1, Y, Z). these link the molecules into a two-dimensional zugzag sheet(Fig 2).

Related literature top

For related literature, see: Baggio et al. (2000); Brewer et al. (2001); Caravan et al. (1999); Edder et al. (2000); Mohanta et al. (2002); Wong et al. (2002).

Experimental top

H2L was prepared by the 2:1 condensation of 3-ethoxysalicylaldehyde and ethylenediamine in methanol. Complex (I) was obtained by the treatment of copper(II) acetate monohydrate (0.168 g, 1 mmol) with H2L(0.356 g, 1 mmol) in methanol solution (50 ml) under reflux for 3 h and then for another 3 h after the addition of samarium(III) nitrate hexahydrate (0.444 g, 1 mmol). The reaction mixture was cooled and the resulting precipitate was filtered off, washed with diethyl ether and dried in vacuo. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation at room temperature of a methanol solution. Analysis calculated for C20H22CuN5O13Sm: C 31.85, H 2.94, Cu 8.42, N 9.28, Sm 19.93%; found: C 31.80, H 2.91, Cu 8.45, N 9.33, Sm 19.95%. IR(KBr, cm-1): 1640(C=N), 1384,1491(nitrate).

Refinement top

The H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.97 (methylene) and 0.96 Å (methyl), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structure description top

The potential applications of trivalent lanthanide complexes as contrast agent for magnetic resonance imaging and stains for fluorescence imaging have prompted considerable interest in the preparation, magnetic and optical properties of 3 d-4f hetorometallic dinuclear complexes (Baggio et al., 2000; Caravan et al., 1999; Edder et al., 2000). Recently, some 3 d-4f hetorometallic Schiff base complexes have been synthesized, such as CuII—GdIII, NiII—GdIII and ZnII—HoIII heterodinuclear complexes (Brewer et al., 2001; Mohanta et al., 2002; Wong et al., 2002), which exhibits novel magnetic and luminescent properties, however, there are relatively few studies on CuII—SmIII dinuclear complexes. As part of our investigations into the structure and applications of 3 d-4f hetorometallic Schiff base complexes, we report here the synthesis and X-ray crystal structure analysis of the title complex, (I), a new CuII—SmIII complex with salen-type Schiff base N,N'-bis(3-ethoxysalicylidene) ethylene-1,2-diamine(H2L).

Complex (I) crystallizes in the space group P212121, with copper and samarium doubly bridged by two phenolate O atoms provided by a salen-type Schiff base ligand. The inner salen-type cavity is occupied by copper(II), while samarium(III) is present in the open and larger portion of the dinucleating compartmental Schiff base ligand. The dihedral angles between the mean planes of Cu1/O1/O2 and Sm1/O1/O2 is 3.7 (2)° suggesting that the bridging moiety is almost planar; the deviation of atoms from the least squares Cu1/O1/O2/Sm1 plane being 0.0315 (2)Å for Cu, 0.0218 (2)Å for Sm, -0.0263 (4)Å for O1 and -0.0270 (3)Å for O2.

The samarium(III) center in (I) has a decacoordination environment of O atoms. In addition to the phenolate ligands, two ethoxy O atoms coordinate to this metal center, two O atoms from each of the three nitrates chelate to samarium to complete the decacoordination. The three kinds of Sm—O bond distances are significantly different, the shortest being the Sm—O(phenolate) and longest being the Sm—O(methoxy) separations.

The coordination of copper(II) is square planar. The donor centers are alternatively above and below the mean N2O2 plane with an average deviation from the plane of 0.0844 (2) Å, while Cu1 is just 0.0407 (2)Å below this square plane.

Adjacent molecules are held together by weak interactions (O10···Cu1=3.167 (4) Å, C7—H7···O7i and C9—H9···O7ii; symmetry codes:(i)-x + 1, y - 1/2, 1/2 - z; (ii)x - 1, Y, Z). these link the molecules into a two-dimensional zugzag sheet(Fig 2).

For related literature, see: Baggio et al. (2000); Brewer et al. (2001); Caravan et al. (1999); Edder et al. (2000); Mohanta et al. (2002); Wong et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: APEX2; program(s) used to refine structure: APEX2; molecular graphics: APEX2; software used to prepare material for publication: APEX2.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. All the H atoms on carbon have been omitted for clarity.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the b axis; hydrogen bonds are shown as dashed lines.
{6,6'-diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- 1κ4O1,O1',O6,O6':2κ4O1,N,N',O1'}trinitrato-1κ6O,O'- samarium(III)copper(II) top
Crystal data top
[CuSm(C20H22N2O4)(NO3)3]F(000) = 1488
Mr = 754.32Dx = 1.986 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 19177 reflections
a = 8.6208 (8) Åθ = 1.8–28.4°
b = 13.8333 (13) ŵ = 3.23 mm1
c = 21.151 (2) ÅT = 293 K
V = 2522.4 (4) Å3Block, red
Z = 40.28 × 0.17 × 0.15 mm
Data collection top
Bruker APEX II area-detector
diffractometer
6184 independent reflections
Radiation source: fine-focus sealed tube5236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 0 pixels mm-1θmax = 28.4°, θmin = 1.8°
φ and ω scansh = 1110
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1818
Tmin = 0.533, Tmax = 0.622l = 2827
19177 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.019P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
6184 reflectionsΔρmax = 0.35 e Å3
363 parametersΔρmin = 0.65 e Å3
0 restraintsAbsolute structure: Flack (1983), 2621 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (9)
Crystal data top
[CuSm(C20H22N2O4)(NO3)3]V = 2522.4 (4) Å3
Mr = 754.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.6208 (8) ŵ = 3.23 mm1
b = 13.8333 (13) ÅT = 293 K
c = 21.151 (2) Å0.28 × 0.17 × 0.15 mm
Data collection top
Bruker APEX II area-detector
diffractometer
6184 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5236 reflections with I > 2σ(I)
Tmin = 0.533, Tmax = 0.622Rint = 0.024
19177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.048Δρmax = 0.35 e Å3
S = 1.00Δρmin = 0.65 e Å3
6184 reflectionsAbsolute structure: Flack (1983), 2621 Friedel pairs
363 parametersAbsolute structure parameter: 0.013 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.758979 (15)1.000545 (10)0.097186 (6)0.03280 (4)
Cu10.43532 (4)0.94387 (2)0.183302 (17)0.03690 (9)
N50.6347 (4)0.9937 (2)0.03107 (12)0.0513 (7)
O10.5890 (3)0.87546 (13)0.13701 (10)0.0395 (5)
N10.3237 (3)0.83138 (18)0.20885 (12)0.0377 (6)
O30.8146 (2)0.81613 (14)0.06966 (10)0.0396 (5)
O110.5526 (3)0.97137 (18)0.01551 (11)0.0590 (7)
O130.5818 (4)0.9988 (2)0.08480 (11)0.0792 (8)
C10.5900 (4)0.78076 (19)0.12685 (13)0.0312 (7)
C20.7140 (4)0.74466 (19)0.09014 (13)0.0346 (7)
C50.4912 (4)0.6173 (2)0.13322 (15)0.0469 (8)
H50.41630.57390.14720.056*
C70.3536 (4)0.7445 (2)0.19117 (15)0.0406 (8)
H70.28840.69580.20580.049*
O120.7763 (3)1.00950 (19)0.01877 (10)0.0540 (6)
C40.6083 (4)0.5856 (2)0.09699 (16)0.0524 (9)
H40.61230.52060.08590.063*
C60.4800 (4)0.7162 (2)0.15052 (13)0.0354 (7)
O20.5405 (2)1.05638 (13)0.15454 (9)0.0351 (4)
N20.3009 (3)1.01365 (18)0.23861 (11)0.0393 (6)
O40.6581 (2)1.17546 (13)0.07559 (9)0.0373 (5)
O60.8625 (3)1.11130 (16)0.18137 (11)0.0500 (6)
O50.8189 (3)0.96652 (18)0.21287 (11)0.0532 (7)
O81.0395 (3)0.96285 (16)0.11271 (12)0.0546 (6)
N30.8613 (3)1.0503 (3)0.22574 (14)0.0490 (7)
C190.9510 (4)0.7847 (2)0.03452 (14)0.0437 (8)
H19A0.99350.83920.01150.052*
H19B0.92040.73610.00390.052*
C30.7241 (4)0.6480 (2)0.07552 (14)0.0434 (8)
H30.80680.62460.05180.052*
O91.0010 (3)1.0865 (2)0.05411 (13)0.0689 (8)
C160.4796 (4)1.14461 (18)0.15585 (13)0.0328 (6)
C80.1878 (4)0.8545 (2)0.24860 (15)0.0474 (8)
H8A0.16910.80300.27870.057*
H8B0.09600.86210.22250.057*
C150.5414 (4)1.21220 (19)0.11348 (13)0.0338 (7)
C100.2786 (4)1.1052 (2)0.23833 (14)0.0389 (7)
H100.20831.13070.26720.047*
O101.2361 (3)1.0403 (3)0.07445 (15)0.0932 (9)
C170.7306 (4)1.2406 (2)0.02956 (13)0.0444 (8)
H17A0.65071.27900.00930.053*
H17B0.78131.20240.00290.053*
O70.9014 (4)1.0745 (2)0.27940 (12)0.0809 (10)
N41.0959 (4)1.0303 (2)0.07988 (14)0.0534 (8)
C110.3562 (4)1.1717 (2)0.19575 (15)0.0378 (8)
C90.2234 (4)0.9478 (2)0.28284 (14)0.0448 (7)
H9A0.12820.97680.29820.054*
H9B0.29020.93510.31880.054*
C140.4830 (4)1.3055 (2)0.11118 (16)0.0420 (8)
H140.52381.35000.08280.050*
C120.3022 (4)1.2679 (2)0.19381 (17)0.0471 (9)
H120.22471.28790.22140.057*
C201.0732 (5)0.7438 (3)0.07655 (17)0.0574 (9)
H20A1.10800.79260.10550.086*
H20B1.15910.72210.05140.086*
H20C1.03140.69020.09980.086*
C130.3639 (4)1.3319 (2)0.15125 (16)0.0520 (9)
H130.32471.39450.14930.062*
C180.8475 (4)1.3070 (2)0.05914 (18)0.0570 (10)
H18A0.79531.35250.08610.085*
H18B0.90231.34130.02660.085*
H18C0.91971.26990.08370.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.03259 (8)0.02752 (6)0.03830 (7)0.00114 (9)0.00422 (6)0.00242 (7)
Cu10.0367 (2)0.02826 (16)0.04569 (19)0.00167 (15)0.01072 (18)0.00384 (17)
N50.068 (2)0.0352 (14)0.0505 (16)0.0006 (17)0.0011 (14)0.0049 (16)
O10.0424 (14)0.0231 (9)0.0531 (13)0.0029 (9)0.0163 (10)0.0000 (9)
N10.0363 (16)0.0367 (13)0.0402 (14)0.0025 (11)0.0021 (12)0.0097 (12)
O30.0372 (13)0.0316 (11)0.0500 (12)0.0013 (9)0.0097 (10)0.0024 (9)
O110.0513 (15)0.0772 (19)0.0486 (13)0.0061 (13)0.0037 (12)0.0006 (12)
O130.114 (2)0.0737 (16)0.0498 (14)0.015 (2)0.0223 (14)0.0004 (16)
C10.0333 (18)0.0248 (13)0.0355 (14)0.0010 (12)0.0027 (14)0.0015 (12)
C20.0403 (18)0.0270 (13)0.0364 (15)0.0011 (12)0.0034 (13)0.0012 (11)
C50.058 (2)0.0247 (14)0.058 (2)0.0105 (14)0.0036 (17)0.0042 (14)
C70.0361 (19)0.0393 (16)0.0465 (19)0.0103 (14)0.0042 (16)0.0121 (15)
O120.0528 (15)0.0618 (15)0.0474 (11)0.0086 (15)0.0062 (10)0.0008 (11)
C40.069 (3)0.0239 (15)0.064 (2)0.0013 (14)0.009 (2)0.0038 (15)
C60.0396 (19)0.0280 (14)0.0385 (15)0.0044 (12)0.0048 (14)0.0058 (13)
O20.0336 (12)0.0252 (9)0.0465 (11)0.0024 (9)0.0098 (9)0.0029 (9)
N20.0368 (13)0.0419 (15)0.0392 (13)0.0022 (11)0.0071 (10)0.0057 (12)
O40.0419 (13)0.0281 (10)0.0420 (11)0.0008 (9)0.0055 (10)0.0070 (9)
O60.0565 (16)0.0441 (12)0.0495 (13)0.0017 (11)0.0047 (12)0.0042 (12)
O50.0574 (17)0.0570 (15)0.0453 (13)0.0029 (12)0.0021 (12)0.0139 (11)
O80.0418 (14)0.0462 (12)0.0758 (16)0.0018 (11)0.0056 (13)0.0054 (12)
N30.0388 (17)0.0639 (19)0.0442 (17)0.0188 (16)0.0005 (13)0.0085 (17)
C190.0402 (19)0.0439 (17)0.0470 (18)0.0045 (15)0.0123 (16)0.0056 (14)
C30.054 (2)0.0312 (14)0.0452 (16)0.0062 (15)0.0021 (16)0.0058 (13)
O90.0485 (17)0.086 (2)0.0719 (17)0.0149 (14)0.0014 (14)0.0335 (16)
C160.0353 (18)0.0260 (13)0.0370 (14)0.0005 (11)0.0053 (13)0.0009 (12)
C80.042 (2)0.054 (2)0.0462 (19)0.0054 (15)0.0103 (16)0.0144 (16)
C150.0345 (18)0.0275 (13)0.0394 (16)0.0012 (12)0.0053 (14)0.0015 (12)
C100.0344 (18)0.0436 (16)0.0386 (15)0.0075 (14)0.0046 (14)0.0011 (14)
O100.0393 (17)0.135 (3)0.106 (2)0.0233 (18)0.0062 (16)0.003 (2)
C170.057 (2)0.0361 (15)0.0403 (16)0.0041 (16)0.0092 (17)0.0076 (12)
O70.083 (2)0.113 (2)0.0464 (14)0.0462 (19)0.0178 (14)0.0234 (15)
N40.0389 (18)0.065 (2)0.0563 (17)0.0093 (14)0.0061 (14)0.0100 (14)
C110.0376 (19)0.0331 (14)0.0428 (19)0.0037 (13)0.0008 (15)0.0004 (14)
C90.040 (2)0.0484 (17)0.0458 (16)0.0021 (15)0.0091 (15)0.0137 (15)
C140.0426 (19)0.0270 (14)0.057 (2)0.0006 (12)0.0032 (16)0.0086 (14)
C120.042 (2)0.0357 (16)0.064 (2)0.0088 (14)0.0041 (17)0.0084 (16)
C200.052 (2)0.052 (2)0.069 (2)0.0130 (18)0.005 (2)0.0070 (18)
C130.058 (2)0.0279 (15)0.070 (2)0.0138 (15)0.0001 (19)0.0014 (16)
C180.059 (2)0.0439 (19)0.068 (2)0.0123 (17)0.0199 (19)0.0001 (18)
Geometric parameters (Å, º) top
Sm1—O12.4189 (19)O4—C171.467 (3)
Sm1—O22.3697 (19)O6—N31.262 (4)
Sm1—O32.6602 (19)O5—N31.245 (4)
Sm1—O42.6115 (19)O8—N41.261 (4)
Sm1—O52.545 (2)N3—O71.233 (3)
Sm1—O62.513 (2)C19—C201.490 (5)
Sm1—O82.495 (2)C19—H19A0.9700
Sm1—O92.569 (2)C19—H19B0.9700
Sm1—O112.513 (2)C3—H30.9300
Sm1—O122.460 (2)O9—N41.254 (4)
Cu1—O11.900 (2)C16—C151.400 (4)
Cu1—O21.901 (2)C16—C111.409 (4)
Cu1—N11.908 (3)C8—C91.511 (5)
Cu1—N21.909 (2)C8—H8A0.9700
N5—O131.227 (3)C8—H8B0.9700
N5—O111.252 (3)C15—C141.386 (4)
N5—O121.267 (3)C10—C111.450 (4)
O1—C11.328 (3)C10—H100.9300
N1—C71.285 (4)O10—N41.222 (4)
N1—C81.478 (4)C17—C181.500 (5)
O3—C21.385 (3)C17—H17A0.9700
O3—C191.458 (4)C17—H17B0.9700
C1—C61.395 (4)C11—C121.411 (4)
C1—C21.412 (4)C9—H9A0.9700
C2—C31.376 (4)C9—H9B0.9700
C5—C41.341 (5)C14—C131.381 (5)
C5—C61.420 (4)C14—H140.9300
C5—H50.9300C12—C131.370 (5)
C7—C61.442 (4)C12—H120.9300
C7—H70.9300C20—H20A0.9600
C4—C31.396 (5)C20—H20B0.9600
C4—H40.9300C20—H20C0.9600
O2—C161.329 (3)C13—H130.9300
N2—C101.282 (4)C18—H18A0.9600
N2—C91.467 (4)C18—H18B0.9600
O4—C151.383 (4)C18—H18C0.9600
O1—Sm1—O359.96 (6)C1—C6—C7123.6 (3)
O1—Sm1—O4121.46 (6)C5—C6—C7117.8 (3)
O1—Sm1—O569.87 (8)C16—O2—Cu1123.83 (18)
O1—Sm1—O6113.86 (7)C16—O2—Sm1128.61 (17)
O1—Sm1—O8113.06 (8)Cu1—O2—Sm1106.02 (8)
O1—Sm1—O9161.23 (8)C10—N2—C9123.3 (3)
O1—Sm1—O1172.27 (8)C10—N2—Cu1126.0 (2)
O1—Sm1—O12114.83 (8)C9—N2—Cu1110.7 (2)
O2—Sm1—O164.75 (6)C15—O4—C17118.0 (2)
O2—Sm1—O3124.60 (6)C15—O4—Sm1118.78 (15)
O2—Sm1—O461.50 (6)C17—O4—Sm1122.91 (17)
O2—Sm1—O574.31 (8)N3—O6—Sm196.66 (18)
O2—Sm1—O673.79 (7)N3—O5—Sm195.60 (18)
O2—Sm1—O8140.44 (7)N4—O8—Sm198.4 (2)
O2—Sm1—O9132.55 (9)O7—N3—O5122.5 (3)
O2—Sm1—O1180.88 (8)O7—N3—O6120.0 (3)
O2—Sm1—O12122.83 (7)O5—N3—O6117.5 (3)
O4—Sm1—O3155.54 (7)O3—C19—C20112.3 (3)
O5—Sm1—O389.80 (7)O3—C19—H19A109.1
O5—Sm1—O4114.03 (7)C20—C19—H19A109.1
O5—Sm1—O9105.17 (9)O3—C19—H19B109.1
O6—Sm1—O3132.51 (7)C20—C19—H19B109.1
O6—Sm1—O471.18 (7)H19A—C19—H19B107.9
O6—Sm1—O550.15 (8)C2—C3—C4118.8 (3)
O6—Sm1—O971.36 (9)C2—C3—H3120.6
O8—Sm1—O369.74 (7)C4—C3—H3120.6
O8—Sm1—O4122.64 (7)N4—O9—Sm195.08 (19)
O8—Sm1—O568.78 (8)O2—C16—C15116.7 (3)
O8—Sm1—O671.94 (8)O2—C16—C11123.7 (3)
O8—Sm1—O949.93 (8)C15—C16—C11119.5 (2)
O8—Sm1—O11138.00 (8)N1—C8—C9107.2 (3)
O9—Sm1—O3102.71 (8)N1—C8—H8A110.3
O9—Sm1—O477.26 (8)C9—C8—H8A110.3
O11—Sm1—O379.81 (7)N1—C8—H8B110.3
O11—Sm1—O478.04 (7)C9—C8—H8B110.3
O11—Sm1—O5140.82 (8)H8A—C8—H8B108.5
O11—Sm1—O6146.79 (8)O4—C15—C14125.9 (3)
O11—Sm1—O9113.94 (8)O4—C15—C16113.7 (2)
O12—Sm1—O379.58 (7)C14—C15—C16120.4 (3)
O12—Sm1—O478.42 (7)N2—C10—C11124.1 (3)
O12—Sm1—O5162.85 (8)N2—C10—H10118.0
O12—Sm1—O6130.86 (8)C11—C10—H10118.0
O12—Sm1—O894.75 (8)O4—C17—C18112.7 (3)
O12—Sm1—O964.78 (9)O4—C17—H17A109.1
O12—Sm1—O1150.63 (8)C18—C17—H17A109.1
O1—Cu1—O284.85 (8)O4—C17—H17B109.1
O1—Cu1—N195.24 (10)C18—C17—H17B109.1
O1—Cu1—N2172.36 (10)H17A—C17—H17B107.8
O2—Cu1—N1177.37 (10)O10—N4—O9122.3 (3)
O2—Cu1—N294.10 (9)O10—N4—O8121.1 (4)
N1—Cu1—N286.15 (11)O9—N4—O8116.5 (3)
O13—N5—O11122.2 (3)C16—C11—C12118.9 (3)
O13—N5—O12122.6 (3)C16—C11—C10123.5 (3)
O11—N5—O12115.2 (3)C12—C11—C10117.6 (3)
C1—O1—Cu1125.42 (19)N2—C9—C8108.5 (2)
C1—O1—Sm1130.21 (18)N2—C9—H9A110.0
Cu1—O1—Sm1104.22 (8)C8—C9—H9A110.0
C7—N1—C8121.8 (3)N2—C9—H9B110.0
C7—N1—Cu1125.4 (2)C8—C9—H9B110.0
C8—N1—Cu1112.6 (2)H9A—C9—H9B108.4
C2—O3—C19116.9 (2)C13—C14—C15119.7 (3)
C2—O3—Sm1120.22 (16)C13—C14—H14120.1
C19—O3—Sm1122.91 (16)C15—C14—H14120.1
N5—O11—Sm195.79 (19)C13—C12—C11120.0 (3)
O1—C1—C6124.7 (3)C13—C12—H12120.0
O1—C1—C2116.3 (3)C11—C12—H12120.0
C6—C1—C2119.0 (2)C19—C20—H20A109.5
C3—C2—O3125.7 (3)C19—C20—H20B109.5
C3—C2—C1121.0 (3)H20A—C20—H20B109.5
O3—C2—C1113.2 (2)C19—C20—H20C109.5
C4—C5—C6120.9 (3)H20A—C20—H20C109.5
C4—C5—H5119.6H20B—C20—H20C109.5
C6—C5—H5119.6C12—C13—C14121.4 (3)
N1—C7—C6125.4 (3)C12—C13—H13119.3
N1—C7—H7117.3C14—C13—H13119.3
C6—C7—H7117.3C17—C18—H18A109.5
N5—O12—Sm197.91 (17)C17—C18—H18B109.5
C5—C4—C3121.5 (3)H18A—C18—H18B109.5
C5—C4—H4119.3C17—C18—H18C109.5
C3—C4—H4119.3H18A—C18—H18C109.5
C1—C6—C5118.6 (3)H18B—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O80.962.433.139 (4)130
C9—H9A···O7i0.972.413.284 (4)150
C7—H7···O7ii0.932.363.279 (4)167
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CuSm(C20H22N2O4)(NO3)3]
Mr754.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.6208 (8), 13.8333 (13), 21.151 (2)
V3)2522.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.23
Crystal size (mm)0.28 × 0.17 × 0.15
Data collection
DiffractometerBruker APEX II area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.533, 0.622
No. of measured, independent and
observed [I > 2σ(I)] reflections
19177, 6184, 5236
Rint0.024
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.048, 1.00
No. of reflections6184
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.65
Absolute structureFlack (1983), 2621 Friedel pairs
Absolute structure parameter0.013 (9)

Computer programs: APEX2 (Bruker, 2004), APEX2.

Selected geometric parameters (Å, º) top
Sm1—O12.4189 (19)Sm1—O92.569 (2)
Sm1—O22.3697 (19)Sm1—O112.513 (2)
Sm1—O32.6602 (19)Sm1—O122.460 (2)
Sm1—O42.6115 (19)Cu1—O11.900 (2)
Sm1—O52.545 (2)Cu1—O21.901 (2)
Sm1—O62.513 (2)Cu1—N11.908 (3)
Sm1—O82.495 (2)Cu1—N21.909 (2)
O1—Sm1—O359.96 (6)O8—Sm1—O4122.64 (7)
O1—Sm1—O4121.46 (6)O8—Sm1—O568.78 (8)
O1—Sm1—O569.87 (8)O8—Sm1—O671.94 (8)
O1—Sm1—O6113.86 (7)O8—Sm1—O949.93 (8)
O1—Sm1—O8113.06 (8)O8—Sm1—O11138.00 (8)
O1—Sm1—O9161.23 (8)O9—Sm1—O3102.71 (8)
O1—Sm1—O1172.27 (8)O9—Sm1—O477.26 (8)
O1—Sm1—O12114.83 (8)O11—Sm1—O379.81 (7)
O2—Sm1—O164.75 (6)O11—Sm1—O478.04 (7)
O2—Sm1—O3124.60 (6)O11—Sm1—O5140.82 (8)
O2—Sm1—O461.50 (6)O11—Sm1—O6146.79 (8)
O2—Sm1—O574.31 (8)O11—Sm1—O9113.94 (8)
O2—Sm1—O673.79 (7)O12—Sm1—O379.58 (7)
O2—Sm1—O8140.44 (7)O12—Sm1—O478.42 (7)
O2—Sm1—O9132.55 (9)O12—Sm1—O5162.85 (8)
O2—Sm1—O1180.88 (8)O12—Sm1—O6130.86 (8)
O2—Sm1—O12122.83 (7)O12—Sm1—O894.75 (8)
O4—Sm1—O3155.54 (7)O12—Sm1—O964.78 (9)
O5—Sm1—O389.80 (7)O12—Sm1—O1150.63 (8)
O5—Sm1—O4114.03 (7)O1—Cu1—O284.85 (8)
O5—Sm1—O9105.17 (9)O1—Cu1—N195.24 (10)
O6—Sm1—O3132.51 (7)O1—Cu1—N2172.36 (10)
O6—Sm1—O471.18 (7)O2—Cu1—N1177.37 (10)
O6—Sm1—O550.15 (8)O2—Cu1—N294.10 (9)
O6—Sm1—O971.36 (9)N1—Cu1—N286.15 (11)
O8—Sm1—O369.74 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O80.962.433.139 (4)130.3
C9—H9A···O7i0.972.413.284 (4)149.7
C7—H7···O7ii0.932.363.279 (4)167.4
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds