Download citation
Download citation
link to html
The asymmetric unit of the title compound, C8H7Br3N2O3·0.25H2O, consists of two organic molecules, one water O atom and an attached H atom; the water O atom lies on a crystallographic twofold rotation axis. Inter­molecular N—H...O hydrogen-bond inter­actions link mol­ecules of the organic compound (the acetate), forming dimers. These dimers are linked by O(W)—H(W)...O and N—H...O(W) hydrogen bonds, generating a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807019289/hg2225sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807019289/hg2225Isup2.hkl
Contains datablock I

CCDC reference: 648076

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • Some non-H atoms missing
  • R factor = 0.043
  • wR factor = 0.099
  • Data-to-parameter ratio = 16.4

checkCIF/PLATON results

No syntax errors found



Alert level A ABSMU01_ALERT_1_A The ratio of given/expected absorption coefficient lies outside the range 0.90 <> 1.10 Calculated value of mu = 4.934 Value of mu given = 9.837 CHEMW01_ALERT_1_A The ratio of given/expected molecular weight as calculated from the _chemical_formula_sum lies outside the range 0.90 <> 1.10 Calculated formula weight = 263.5090 Formula weight given = 423.3900
Alert level B PLAT431_ALERT_2_B Short Inter HL..A Contact Br3 .. O5 .. 2.95 Ang.
Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.107 0.201 Tmin and Tmax expected: 0.044 0.094 RR = 1.142 Please check that your absorption correction is appropriate. CHEMW01_ALERT_1_C The difference between the given and expected weight for compound is greater 1 mass unit. Check that all hydrogen atoms have been taken into account. PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.25 Ratio PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.10 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.47 PLAT128_ALERT_4_C Non-standard setting of Space group P2/c .... P2/n PLAT202_ALERT_3_C Isotropic non-H Atoms in Anion/Solvent ......... 1 PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 10 PLAT431_ALERT_2_C Short Inter HL..A Contact Br5 .. O3 .. 3.16 Ang.
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C8 H7.5 Br1.5 N1 O1.625 Atom count from _chemical_formula_moiety:C8 H7.5 Br3 N2 O3.25 FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C8 H7.5 Br1.5 N1 O1.625 Atom count from the _atom_site data: C8 H7.5 Br3 N2 O3.25 ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.469 Tmax scaled 0.094 Tmin scaled 0.050 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G ALERT: Large difference may be due to a symmetry error - see SYMMG tests From the CIF: _cell_formula_units_Z 8 From the CIF: _chemical_formula_sum C8 H7.5 Br1.5 N1 O1.625 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 64.00 64.00 0.00 H 60.00 60.00 0.00 Br 12.00 24.00 -12.00 N 8.00 16.00 -8.00 O 13.00 26.00 -13.00 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
2 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 7 ALERT level G = General alerts; check 11 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyrrole derivatives are well known in many marine organisms (Faulkner, 2002), some show important bioactivities, such as antitumor activity (Banwell et al., 2006) and protein kinase inhibiting activity (Sosa et al., 2002). This is the reason why they have attracted our interest. This study follows our previous studies on 3-[(3,4,5-Tribromo-1H-pyrrol-2-ylcarbonyl)amino]propanoic acid (Zeng et al., 2006) and 3-Bromo-1-methyl-6,7-dihydropyrrolo[2,3-c]azepine-4,8(1H,5H)-dione (Zeng, 2006).

In the crystal structure, there are 8 molecules of Methyl [(3,4,5-tribromo-1H-pyrrole-2-carbonyl)amino]acetate and 2 crystal water molecules in each unit cell. Molecules of the acetate are linked through N—H···O H-bonds (Table 1) to form centrosymmetric dimers (Fig. 2) of graph-set motif R22(10) (Bernstein et al., 1995). These dimers are connected by O—H(W)···O and N—H···O(W) H-bond interactions, generating the three-dimensional network (Fig. 3). Bond lengths and angles are unexceptional.

Related literature top

For related literature, see: Banwell et al. (2006); Bernstein et al. (1995); Faulkner (2002); Sosa et al. (2002); Zeng (2006); Zeng, Li, Li & Liu (2006).

Experimental top

The hydrochloride of glycine methyl ester (0.63 g, 5 mmol) and 3,4,5-tribromo-2-trichloroacetylpyrrole (2.25 g, 5 mmol) were added to acetonitrile (12 ml), followed by the dropwise addition of triethylamine (1.4 ml). The mixture was stirred at room temperature for 16 h and then poured into water. After filtration, the precipitate was collected as a yellow solid. The impure product was dissolved in 95% EtOH at room temperature. Colourless monoclinic crystals suitable for X-ray analysis (m.p. 470 K, 87.6% yield) grew over a period of one week when the solution was exposed to the air. CH&N elemental analysis. Calc. for C8H7.5Br3N2O3.25: C 22.70, H 1.79, N 6.62%; found: C 22.65, H 1.83, N 6.68%.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. All H atoms except the H(W) were positioned geometrically [C—H = 0.97Å for CH2, 0.96Å for CH3, and N—H = 0.86 Å] and refined using a riding model, with Uiso = 1.2Ueq (1.5Ueq for the methyl group) of the parent atom. The H atoms attached to water O atoms in the difference Fourier maps were constrained to their parent O atoms with distance of O—H = 0.8498, and with Uiso = 1.5Ueq.

Structure description top

Pyrrole derivatives are well known in many marine organisms (Faulkner, 2002), some show important bioactivities, such as antitumor activity (Banwell et al., 2006) and protein kinase inhibiting activity (Sosa et al., 2002). This is the reason why they have attracted our interest. This study follows our previous studies on 3-[(3,4,5-Tribromo-1H-pyrrol-2-ylcarbonyl)amino]propanoic acid (Zeng et al., 2006) and 3-Bromo-1-methyl-6,7-dihydropyrrolo[2,3-c]azepine-4,8(1H,5H)-dione (Zeng, 2006).

In the crystal structure, there are 8 molecules of Methyl [(3,4,5-tribromo-1H-pyrrole-2-carbonyl)amino]acetate and 2 crystal water molecules in each unit cell. Molecules of the acetate are linked through N—H···O H-bonds (Table 1) to form centrosymmetric dimers (Fig. 2) of graph-set motif R22(10) (Bernstein et al., 1995). These dimers are connected by O—H(W)···O and N—H···O(W) H-bond interactions, generating the three-dimensional network (Fig. 3). Bond lengths and angles are unexceptional.

For related literature, see: Banwell et al. (2006); Bernstein et al. (1995); Faulkner (2002); Sosa et al. (2002); Zeng (2006); Zeng, Li, Li & Liu (2006).

Computing details top

Data collection: SMART (Bruker,1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Dimers & chain formed by hydrogen bonds (dashed lines).
[Figure 3] Fig. 3. Crystal packing of compound I and crystal water showing the three-dimensional network formed by hydrogen bonds (dashed lines).
(I) top
Crystal data top
C8H7Br3N2O3·0.25H2OF(000) = 1604
Mr = 423.39Dx = 2.287 Mg m3
Monoclinic, P2/nMelting point: 470 K
Hall symbol: -P 2yacMo Kα radiation, λ = 0.71073 Å
a = 15.9656 (19) ÅCell parameters from 2696 reflections
b = 9.7566 (12) Åθ = 2.6–22.7°
c = 16.1805 (19) ŵ = 9.84 mm1
β = 102.625 (2)°T = 293 K
V = 2459.5 (5) Å3Prism, colourless
Z = 80.41 × 0.29 × 0.24 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4828 independent reflections
Radiation source: fine-focus sealed tube2608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
φ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.107, Tmax = 0.201k = 1211
14610 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0272P)2 + 4.7343P]
where P = (Fo2 + 2Fc2)/3
4828 reflections(Δ/σ)max < 0.001
294 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
C8H7Br3N2O3·0.25H2OV = 2459.5 (5) Å3
Mr = 423.39Z = 8
Monoclinic, P2/nMo Kα radiation
a = 15.9656 (19) ŵ = 9.84 mm1
b = 9.7566 (12) ÅT = 293 K
c = 16.1805 (19) Å0.41 × 0.29 × 0.24 mm
β = 102.625 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4828 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2608 reflections with I > 2σ(I)
Tmin = 0.107, Tmax = 0.201Rint = 0.076
14610 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.01Δρmax = 0.76 e Å3
4828 reflectionsΔρmin = 0.73 e Å3
294 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br60.28459 (5)0.85330 (8)0.06071 (5)0.0418 (2)
Br40.14598 (5)0.44478 (9)0.19238 (5)0.0432 (2)
Br30.23755 (5)0.37740 (9)0.37613 (5)0.0495 (3)
Br50.32222 (5)0.68636 (9)0.12494 (5)0.0496 (3)
Br10.32381 (6)0.02225 (10)0.66869 (5)0.0600 (3)
Br20.16429 (6)0.26370 (10)0.55774 (7)0.0649 (3)
O60.0297 (3)0.6921 (5)0.3266 (3)0.0418 (13)
N10.3844 (4)0.0974 (6)0.5250 (4)0.0356 (16)
H10.42750.04290.53920.043*
C90.1664 (5)0.5607 (7)0.0988 (4)0.0316 (18)
N30.1121 (4)0.5678 (6)0.0457 (3)0.0328 (15)
H30.06650.51910.04990.039*
N20.4197 (4)0.2645 (6)0.3347 (4)0.0416 (17)
H20.37800.32230.32670.050*
O40.0220 (3)0.6163 (6)0.0733 (3)0.0484 (15)
C130.0894 (5)0.6823 (8)0.0805 (5)0.0301 (17)
C50.4292 (5)0.1736 (8)0.3990 (4)0.0361 (19)
O20.3963 (3)0.0869 (6)0.1948 (3)0.0492 (15)
C40.3680 (5)0.1792 (7)0.4544 (4)0.0291 (17)
O10.4869 (3)0.0887 (6)0.4100 (3)0.0503 (15)
C120.1402 (4)0.6641 (7)0.0160 (4)0.0285 (17)
O50.1188 (4)0.5676 (6)0.2663 (3)0.0551 (16)
O30.5235 (3)0.1515 (5)0.1720 (3)0.0519 (16)
C150.0769 (5)0.6658 (9)0.2688 (4)0.0358 (19)
C20.2633 (5)0.2076 (8)0.5261 (5)0.038 (2)
C110.2156 (4)0.7166 (7)0.0008 (4)0.0285 (17)
N40.1166 (4)0.7679 (6)0.1437 (4)0.0346 (15)
H40.16350.81310.14690.041*
C70.4587 (5)0.1569 (8)0.2114 (5)0.0325 (19)
C10.3226 (5)0.1157 (8)0.5684 (5)0.040 (2)
C100.2308 (4)0.6520 (7)0.0732 (4)0.0320 (18)
C160.0345 (6)0.5903 (9)0.3918 (5)0.060 (3)
H16A0.00800.52080.37290.089*
H16B0.02410.63270.44220.089*
H16C0.09050.54940.40390.089*
C30.2933 (5)0.2478 (7)0.4538 (5)0.0325 (18)
C80.5159 (6)0.0477 (9)0.1066 (5)0.066 (3)
H8A0.50810.04040.13030.100*
H8B0.56710.04680.08470.100*
H8C0.46740.06800.06170.100*
C140.0669 (5)0.7852 (7)0.2076 (4)0.0358 (19)
H14A0.00680.79490.18020.043*
H14B0.08480.86870.23900.043*
C60.4787 (5)0.2648 (8)0.2798 (5)0.040 (2)
H6A0.53620.24960.31330.048*
H6B0.47770.35430.25350.048*
O70.25000.9820 (8)0.25000.059 (2)*
H70.29331.01360.23370.37 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br60.0355 (5)0.0446 (5)0.0444 (5)0.0109 (4)0.0070 (4)0.0039 (4)
Br40.0459 (5)0.0500 (6)0.0341 (4)0.0044 (4)0.0096 (4)0.0073 (4)
Br30.0435 (5)0.0444 (5)0.0548 (6)0.0136 (4)0.0017 (4)0.0009 (4)
Br50.0408 (5)0.0637 (6)0.0507 (5)0.0116 (5)0.0236 (4)0.0056 (5)
Br10.0650 (6)0.0739 (7)0.0470 (5)0.0008 (5)0.0255 (5)0.0096 (5)
Br20.0386 (5)0.0773 (7)0.0843 (7)0.0076 (5)0.0258 (5)0.0145 (6)
O60.036 (3)0.052 (4)0.042 (3)0.004 (3)0.018 (3)0.000 (3)
N10.030 (4)0.042 (4)0.033 (4)0.015 (3)0.002 (3)0.006 (3)
C90.039 (5)0.030 (5)0.028 (4)0.004 (4)0.013 (4)0.001 (3)
N30.026 (3)0.036 (4)0.036 (4)0.007 (3)0.007 (3)0.003 (3)
N20.046 (4)0.041 (4)0.042 (4)0.014 (3)0.018 (3)0.003 (3)
O40.036 (3)0.063 (4)0.052 (3)0.021 (3)0.021 (3)0.019 (3)
C130.023 (4)0.033 (5)0.036 (4)0.001 (4)0.011 (4)0.000 (4)
C50.041 (5)0.040 (5)0.027 (4)0.001 (4)0.007 (4)0.002 (4)
O20.045 (4)0.043 (4)0.063 (4)0.011 (3)0.020 (3)0.002 (3)
C40.033 (4)0.023 (4)0.030 (4)0.004 (4)0.004 (4)0.003 (3)
O10.042 (3)0.061 (4)0.055 (4)0.030 (3)0.026 (3)0.018 (3)
C120.023 (4)0.031 (5)0.029 (4)0.002 (3)0.001 (3)0.002 (4)
O50.065 (4)0.052 (4)0.052 (4)0.027 (3)0.020 (3)0.007 (3)
O30.051 (4)0.057 (4)0.056 (4)0.021 (3)0.029 (3)0.019 (3)
C150.032 (5)0.049 (6)0.027 (4)0.001 (4)0.008 (4)0.006 (4)
C20.037 (5)0.034 (5)0.042 (5)0.001 (4)0.010 (4)0.021 (4)
C110.029 (4)0.031 (4)0.025 (4)0.010 (4)0.005 (3)0.003 (3)
N40.034 (4)0.036 (4)0.035 (4)0.014 (3)0.011 (3)0.013 (3)
C70.034 (5)0.031 (5)0.034 (5)0.003 (4)0.012 (4)0.010 (4)
C10.037 (5)0.047 (5)0.039 (5)0.001 (4)0.017 (4)0.007 (4)
C100.029 (4)0.040 (5)0.031 (4)0.005 (4)0.014 (4)0.003 (4)
C160.066 (6)0.081 (7)0.038 (5)0.008 (5)0.024 (5)0.005 (5)
C30.029 (4)0.025 (4)0.041 (5)0.005 (4)0.002 (4)0.007 (4)
C80.067 (6)0.084 (7)0.057 (6)0.020 (6)0.033 (5)0.033 (5)
C140.040 (5)0.037 (5)0.033 (4)0.002 (4)0.013 (4)0.011 (4)
C60.047 (5)0.038 (5)0.038 (5)0.002 (4)0.017 (4)0.004 (4)
Geometric parameters (Å, º) top
Br6—C111.872 (7)C4—C31.367 (9)
Br4—C91.861 (7)C12—C111.388 (9)
Br3—C31.866 (7)O5—C151.174 (8)
Br5—C101.865 (7)O3—C71.331 (8)
Br1—C11.857 (8)O3—C81.450 (8)
Br2—C21.847 (7)C15—C141.514 (10)
O6—C151.348 (8)C2—C11.373 (10)
O6—C161.439 (9)C2—C31.413 (10)
N1—C11.342 (8)C11—C101.398 (9)
N1—C41.371 (8)N4—C141.444 (8)
N1—H10.8600N4—H40.8600
C9—N31.349 (8)C7—C61.511 (10)
C9—C101.355 (9)C16—H16A0.9600
N3—C121.373 (8)C16—H16B0.9600
N3—H30.8600C16—H16C0.9600
N2—C51.350 (9)C8—H8A0.9600
N2—C61.429 (8)C8—H8B0.9600
N2—H20.8600C8—H8C0.9600
O4—C131.237 (8)C14—H14A0.9700
C13—N41.319 (8)C14—H14B0.9700
C13—C121.466 (9)C6—H6A0.9700
C5—O11.223 (8)C6—H6B0.9700
C5—C41.463 (9)O7—H70.8498
O2—C71.189 (8)
C15—O6—C16115.5 (6)C14—N4—H4120.4
C1—N1—C4109.3 (6)O2—C7—O3124.8 (7)
C1—N1—H1125.3O2—C7—C6126.7 (7)
C4—N1—H1125.3O3—C7—C6108.5 (6)
N3—C9—C10108.8 (6)N1—C1—C2109.4 (7)
N3—C9—Br4121.8 (6)N1—C1—Br1121.6 (6)
C10—C9—Br4129.4 (5)C2—C1—Br1129.1 (6)
C9—N3—C12110.2 (6)C9—C10—C11107.0 (6)
C9—N3—H3124.9C9—C10—Br5126.7 (5)
C12—N3—H3124.9C11—C10—Br5126.3 (6)
C5—N2—C6120.1 (6)O6—C16—H16A109.5
C5—N2—H2119.9O6—C16—H16B109.5
C6—N2—H2119.9H16A—C16—H16B109.5
O4—C13—N4122.4 (7)O6—C16—H16C109.5
O4—C13—C12118.4 (7)H16A—C16—H16C109.5
N4—C13—C12119.3 (6)H16B—C16—H16C109.5
O1—C5—N2120.7 (7)C4—C3—C2108.2 (7)
O1—C5—C4121.2 (7)C4—C3—Br3128.5 (6)
N2—C5—C4118.0 (7)C2—C3—Br3123.2 (6)
C3—C4—N1107.3 (6)O3—C8—H8A109.5
C3—C4—C5135.5 (7)O3—C8—H8B109.5
N1—C4—C5117.2 (6)H8A—C8—H8B109.5
N3—C12—C11105.6 (6)O3—C8—H8C109.5
N3—C12—C13117.2 (6)H8A—C8—H8C109.5
C11—C12—C13137.1 (7)H8B—C8—H8C109.5
C7—O3—C8115.3 (6)N4—C14—C15112.5 (6)
O5—C15—O6126.0 (7)N4—C14—H14A109.1
O5—C15—C14125.8 (7)C15—C14—H14A109.1
O6—C15—C14108.2 (7)N4—C14—H14B109.1
C1—C2—C3105.8 (6)C15—C14—H14B109.1
C1—C2—Br2126.4 (6)H14A—C14—H14B107.8
C3—C2—Br2127.8 (6)N2—C6—C7113.0 (6)
C12—C11—C10108.4 (6)N2—C6—H6A109.0
C12—C11—Br6126.4 (5)C7—C6—H6A109.0
C10—C11—Br6125.2 (5)N2—C6—H6B109.0
C13—N4—C14119.3 (6)C7—C6—H6B109.0
C13—N4—H4120.4H6A—C6—H6B107.8
C10—C9—N3—C120.1 (8)C4—N1—C1—Br1179.5 (5)
Br4—C9—N3—C12177.8 (5)C3—C2—C1—N11.2 (9)
C6—N2—C5—O11.7 (11)Br2—C2—C1—N1178.1 (5)
C6—N2—C5—C4178.8 (6)C3—C2—C1—Br1179.9 (6)
C1—N1—C4—C31.0 (8)Br2—C2—C1—Br10.8 (11)
C1—N1—C4—C5179.7 (6)N3—C9—C10—C110.6 (8)
O1—C5—C4—C3171.0 (8)Br4—C9—C10—C11178.1 (5)
N2—C5—C4—C38.5 (13)N3—C9—C10—Br5179.0 (5)
O1—C5—C4—N17.9 (11)Br4—C9—C10—Br51.5 (11)
N2—C5—C4—N1172.6 (6)C12—C11—C10—C90.9 (8)
C9—N3—C12—C110.5 (8)Br6—C11—C10—C9179.6 (5)
C9—N3—C12—C13178.5 (6)C12—C11—C10—Br5178.7 (5)
O4—C13—C12—N34.0 (10)Br6—C11—C10—Br50.0 (10)
N4—C13—C12—N3176.1 (6)N1—C4—C3—C20.3 (8)
O4—C13—C12—C11178.8 (8)C5—C4—C3—C2179.3 (8)
N4—C13—C12—C111.1 (13)N1—C4—C3—Br3178.5 (5)
C16—O6—C15—O51.9 (11)C5—C4—C3—Br32.5 (13)
C16—O6—C15—C14177.9 (6)C1—C2—C3—C40.5 (8)
N3—C12—C11—C100.8 (8)Br2—C2—C3—C4178.8 (5)
C13—C12—C11—C10178.2 (8)C1—C2—C3—Br3177.8 (5)
N3—C12—C11—Br6179.5 (5)Br2—C2—C3—Br32.9 (10)
C13—C12—C11—Br63.1 (13)C13—N4—C14—C1575.8 (8)
O4—C13—N4—C140.5 (11)O5—C15—C14—N40.9 (11)
C12—C13—N4—C14179.6 (6)O6—C15—C14—N4178.9 (6)
C8—O3—C7—O22.3 (11)C5—N2—C6—C781.4 (9)
C8—O3—C7—C6177.3 (6)O2—C7—C6—N28.7 (11)
C4—N1—C1—C21.4 (9)O3—C7—C6—N2170.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O70.862.533.202 (8)136
O7—H7···O2i0.852.022.866 (6)180
N3—H3···O4ii0.861.912.756 (8)167
N1—H1···O1iii0.861.922.772 (8)168
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H7Br3N2O3·0.25H2O
Mr423.39
Crystal system, space groupMonoclinic, P2/n
Temperature (K)293
a, b, c (Å)15.9656 (19), 9.7566 (12), 16.1805 (19)
β (°) 102.625 (2)
V3)2459.5 (5)
Z8
Radiation typeMo Kα
µ (mm1)9.84
Crystal size (mm)0.41 × 0.29 × 0.24
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.107, 0.201
No. of measured, independent and
observed [I > 2σ(I)] reflections
14610, 4828, 2608
Rint0.076
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.099, 1.01
No. of reflections4828
No. of parameters294
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.73

Computer programs: SMART (Bruker,1999), SAINT-Plus (Bruker, 1999), SAINT-Plus, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O70.862.533.202 (8)135.7
O7—H7···O2i0.852.022.866 (6)179.5
N3—H3···O4ii0.861.912.756 (8)167.1
N1—H1···O1iii0.861.922.772 (8)168.2
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds