Download citation
Download citation
link to html
Crystallization of nucleic acids remains a bottleneck to their structural characterization by X-ray crystallography. A new 96-well-format initial screen for nucleic acids, called HELIX, has been developed at UCL School of Pharmacy, London, on the basis of a detailed analysis of the crystallization conditions from 1450 nucleic acid structures deposited in the Protein Data Bank (PDB), combined with observations and experience acquired in the authors' nucleic acids crystallography laboratory during the crystallization of DNA/RNA quadruplexes and ligand complexes. Despite using traditional buffers, precipitants and salts, the resulting modular screen is designed to offer a variety of approaches to enhance successful crystallization of oligonucleotides with a diverse range of topologies, sequences and molecular weights. HELIX includes a set of 24 conditions divided into four sets that can be mixed (inter- and intra-set) to provide a customizable orthogonal screening tool for experienced users, termed VariX. Additionally, mindful of synchrotron anomalous data collection, cacodylate buffers are avoided in the formulations and an optimized cryocrystallization module is included. This article reviews the crystallization trends and data derived from the PDB and discusses the HELIX screen layout, formulation and results from in-house crystallization trials.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576714007407/he5642sup1.pdf
Supplementary material


Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds