Download citation
Download citation
link to html
H atoms play a central role in enzymatic mechanisms, but H-atom positions cannot generally be determined by X-ray crystallography. Neutron crystallography, on the other hand, can be used to determine H-atom positions but it is experimentally very challenging. Yeast inorganic pyrophosphatase (PPase) is an essential enzyme that has been studied extensively by X-ray crystallography, yet the details of the catalytic mechanism remain incompletely understood. The temperature instability of PPase crystals has in the past prevented the collection of a neutron diffraction data set. This paper reports how the crystal growth has been optimized in temperature-controlled conditions. To stabilize the crystals during neutron data collection a Peltier cooling device that minimizes the temperature gradient along the capillary has been developed. This device allowed the collection of a full neutron diffraction data set.

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds