research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, structure and Hirshfeld surface analysis of 1,3-bis­­[(1-octyl-1H-1,2,3-triazol-4-yl)meth­yl]-1H-benzo[d]imidazol-2(3H)-one

crossmark logo

aLaboratory of Heterocyclic Organic Chemistry, Medicines Science Research Center, Pharmacochemistry Competence Center, Mohammed V University in Rabat, Faculté des Sciences, Av. Ibn Battouta, BP 1014, Rabat, Morocco, bLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP 1014 RP, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, dScience and Technology of Lille USR 3290, Villeneuve d'ascq cedex, France, eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and fLaboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
*Correspondence e-mail: n.sebbar@uiz.ac.ma

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 31 October 2023; accepted 14 November 2023; online 21 November 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The title mol­ecule, C29H44N8O, adopts a conformation resembling a two-bladed fan with the octyl chains largely in fully extended conformations. In the crystal, C—H⋯O hydrogen bonds form chains of mol­ecules extending along the b-axis direction, which are linked by weak C—H⋯N hydrogen bonds and C—H⋯π inter­actions to generate a three-dimensional network. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (68.3%), H⋯N/N⋯H (15.7%) and H⋯C/C⋯H (10.4%) inter­actions.

1. Chemical context

Benzimidazolone derivatives display diverse pharmacological and biological properties including anti­viral (Ferro et al., 2017[Ferro, S., Buemi, M. R., De Luca, L., Agharbaoui, F. E., Pannecouque, C. & Monforte, A. M. (2017). Bioorg. Med. Chem. 25, 3861-3870.]), anti­bacterial (Saber et al., 2020[Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y. F., Urrutigoîty, M. & Essassi, E. M. (2020). J. Mol. Struct. 1200, 127174.]; Menteşe et al., 2021[Menteşe, E., Güven, O., Çalışkan, N. & Baltaş, N. (2021). J. Heterocycl. Chem. 58, 1259-1267.]), anti­cancer (Guillon et al., 2022[Guillon, J., Savrimoutou, S., Albenque-Rubio, S., Pinaud, N., Moreau, S. & Desplat, V. (2022). Molbank, M1333.]), anti-Alzheimer's (Mo et al., 2020[Mo, J., Chen, T., Yang, H., Guo, Y., Li, Q., Qiao, Y., Lin, H., Feng, F., Liu, W., Chen, Y., Liu, Z. & Sun, H. (2020). J. Enzyme Inhib. Med. Chem. 35, 330-343.]), anti­fungal (Ibrahim et al., 2021[Ibrahim, S., Ghabi, A., Amiri, N., Mtiraoui, H., Hajji, M., Bel-Hadj-Tahar, R. & Msaddek, M. (2021). Monatsh. Chem. 152, 523-535.]), and anti­oxidant (Ibrahim et al., 2021[Ibrahim, S., Ghabi, A., Amiri, N., Mtiraoui, H., Hajji, M., Bel-Hadj-Tahar, R. & Msaddek, M. (2021). Monatsh. Chem. 152, 523-535.]) activities. In our ongoing research in this area, we are synthesizing compounds that combine the 1,2,3-triazole motif with benzimidazol-2-one derivatives. In this report, we present the synthesis and structure of the title compound, C29H44N8O, which was obtained using click chemistry, specifically the copper-catalysed azide–alkyne cyclo­addition (CuAAC) method. Additionally, we describe the Hirshfeld surface analysis and calculations on crystal voids and inter­molecular inter­action energies and energy frameworks.

[Scheme 1]

2. Structural commentary

The title mol­ecule adopts a conformation similar to a two-bladed fan in which the octyltriazolylmethyl substituents extend in opposite directions from the benzimidazolone core (Fig. 1[link]). The C1–C7/N1/N2 benzimidazole moiety is planar to within 0.0155 (13) Å (r.m.s. deviation = 0.007 Å) and the mean planes of the C9/C10/N3–N5 and C20/C21/N6–N8 rings are inclined to the above plane by 75.72 (6) and 83.07 (6)°, respectively: the dihedral angle between the pendant heterocyclic rings is 7.37 (11)°. Both octyl chains have a modest kink near the triazole ring as indicated by the C11—C12—C13—C14 and C22—C23—C24—C25 torsion angles of 169.67 (17) and 168.59 (16)°, respectively. Otherwise, both are in fully extended conformations with the remaining torsion angles differing by no more than about 4° from ±180° (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with 50% probability ellipsoids.

3. Supra­molecular features

In the crystal, C2—H2⋯O1 and C19—H19A⋯O1 hydrogen bonds (Table 1[link]) form chains of mol­ecules extending along the b-axis direction (Fig. 2[link]). The chains are cross-linked by weak C10—H10⋯N5 and C21—H21⋯N8 hydrogen bonds and by C22—H22ACg2 inter­actions (Table 1[link]) into a three-dimensional network (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N3–N5/C9/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.59 3.502 (2) 162
C10—H10⋯N5ii 0.95 2.44 3.317 (2) 153
C19—H19A⋯O1i 0.99 2.43 3.334 (2) 152
C21—H21⋯N8iii 0.95 2.62 3.372 (2) 137
C22—H22ACg2iv 0.99 2.89 3.664 (2) 135
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [x-1, y, z]; (iii) [x+1, y, z]; (iv) [-x+2, y-{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
A portion of one chain of mol­ecules viewed along the a-axis direction with C—H⋯O hydrogen bonds depicted by dashed lines and non-inter­acting hydrogen atoms omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction with C—H⋯O and C—H⋯N hydrogen bonds depicted, respectively, by black and light-blue dashed lines. The C—H⋯π(ring) inter­actions are depicted by dark-green dashed lines and non-inter­acting hydrogen atoms omitted for clarity.

4. Hirshfeld surface analysis and computational chemistry

In order to further visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis was carried out by using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]), as shown in Fig. 4[link]. The overall two-dimensional fingerprint plot, Fig. 5[link]a, and those delineated into H⋯H, H⋯N/N⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯N/N⋯C and N⋯N (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) are illustrated in Fig. 5[link]bg respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H, contributing 68.3% to the overall crystal packing, which is reflected in Fig. 7b as widely scattered points of high density, due to the large hydrogen content of the mol­ecule, with the tip at de = di = 1.12 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯N/N⋯H contacts (15.7% contribution to the HS; Fig. 5[link]c) is viewed as pair of spikes with the tips at de + di = 2.30 Å. In the presence of C—H⋯π inter­actions, the H⋯C/C⋯H contacts, contributing 10.4% to the overall crystal packing, are reflected in Fig. 5[link]d with the tips at de + di = 2.69 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (4.8% contribution to the HS; Fig. 5[link]e) is viewed as pair of spikes with the tips at de + di = 2.32 Å. Finally, the C⋯N/N⋯C (Fig. 5[link]f) and N⋯N (Fig. 5[link]g) contacts, with 0.4% and 0.2% contributions, respectively, to the HS, have very low distributions of points.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.24 to 1.57 a.u.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯N/N⋯H, (d) H⋯C/C⋯H, (e) H⋯O/O⋯H, (f) C⋯N/N⋯C and (g) N⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

A void analysis was performed by summing the electron densities of the spherically symmetric atoms contained in the asymmetric unit (Turner et al., 2011[Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804-1813.]). The void surface is defined as an isosurface of the procrystal electron density and is calculated for the whole unit cell where the void surface meets the boundary of the unit cell and capping faces are generated to create an enclosed volume. The volume of the crystal voids (supplementary Fig. S1) and the percentage of free space in the unit cell are calculated to be 198.6 and 13.4 Å3, respectively.

The inter­molecular inter­action energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange–repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). Energy frameworks were constructed for Eele (red cylinders), Edis (green cylinders) and Etot (blue cylinders) (supplementary Fig. 2a and 2b). These data indicate that dispersion energy is the most important contributor to the cohesion of the crystal structure of the title compound. The theoretical optimization of the title structure in the gas phase was conducted by density functional theory (DFT), using the standard B3LYP functional and 6-311 G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]). The energy band gap [ΔE = ELUMOEHOMO] of the mol­ecule is 5.04 eV, and the frontier mol­ecular orbitals, EHOMO and ELUMO have relative energies of −5.72 and 0.68 eV, respectively (supplementary Tables 1 and 2 and supplementary Fig. S3).

5. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.42, last update February 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures similar to the title mol­ecule gave hits for compound I with R1 = H, R2 = –CH2C6H5 and R3 = –OCH3 (CSD refcode HIJXAC; El Bakri et al., 2018[El Bakri, Y., Lai, C. H., Sebhaoui, J., Ali, A. B., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018). DATACC, 17, 472-482.]), II with R1 = –C6H9, R2 = –C6H5 and R3 = –H (PAZFOO; Adardour et al., 2017[Adardour, M., Loughzail, M., Dahaoui, S., Baouid, A. & Berraho, M. (2017). IUCrData, 2, x170907.]), III with R1 = –C(CH3)=CH2, R2 = –C10H22 and R3 = –H (ETAJOB; Saber et al., 2021[Saber, A., Anouar, E. H., Sebbar, G., Ibrahimi, B. E., Srhir, M., Hökelek, T., Mague, J. T., Ghayati, L. E., Sebbar, N. K. & Essassi, E. M. (2021). J. Mol. Struct. 1242, 130719.]) and IV with R1 = –CH2C6H5, R2 = –C12H26 and R3 = –H (ETAKAO; Saber et al., 2021[Saber, A., Anouar, E. H., Sebbar, G., Ibrahimi, B. E., Srhir, M., Hökelek, T., Mague, J. T., Ghayati, L. E., Sebbar, N. K. & Essassi, E. M. (2021). J. Mol. Struct. 1242, 130719.]).

[Scheme 2]

6. Synthesis and crystallization

To a solution of 1.64 mmol of 1,3-di(prop-2-yn­yl)-1H-benzimidazol-2-one and 2 mmol of 1-azido­octane in 15 ml of ethanol were added 1.15 mmol of CuSO4 and 2.62 mmol of sodium ascorbate dissolved in 10 ml of distilled water. The reaction mixture was stirred for 10 h at room temperature and monitored by TLC. After filtration and concentration of the solution under reduced pressure, the residue obtained was chromatographed on a silica gel column using ethyl acetate/hexane (3/1) as eluent. Colourless plates of the title compound in 73% yield were recrystallized from ethanol solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned with idealized geometry (C—H = 0.95–0.99 Å) and refined isotropically with Uiso(H) = 1.2–1.5Ueq(C) using a riding model.

Table 2
Experimental details

Crystal data
Chemical formula C29H44N8O
Mr 520.72
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c (Å) 5.5229 (2), 11.9579 (5), 22.5767 (9)
β (°) 94.962 (1)
V3) 1485.43 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.43 × 0.24 × 0.04
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.97, 1.00
No. of measured, independent and observed [I > 2σ(I)] reflections 44175, 7403, 6607
Rint 0.040
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.05
No. of reflections 7403
No. of parameters 346
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.15
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.2 (13)
Computer programs: APEX3 and SAINT (Bruker, 2020[Bruker (2020). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

1,3-Bis[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-1H-benzo[d]imidazol-2(3H)-one top
Crystal data top
C29H44N8OF(000) = 564
Mr = 520.72Dx = 1.164 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.5229 (2) ÅCell parameters from 9942 reflections
b = 11.9579 (5) Åθ = 2.5–28.3°
c = 22.5767 (9) ŵ = 0.07 mm1
β = 94.962 (1)°T = 150 K
V = 1485.43 (10) Å3Plate, colourless
Z = 20.43 × 0.24 × 0.04 mm
Data collection top
Bruker D8 QUEST PHOTON 3
diffractometer
7403 independent reflections
Radiation source: fine-focus sealed tube6607 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 7.3910 pixels mm-1θmax = 28.3°, θmin = 1.8°
φ and ω scansh = 77
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 1515
Tmin = 0.97, Tmax = 1.00l = 3030
44175 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.1166P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
7403 reflectionsΔρmax = 0.21 e Å3
346 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Refined as an inversion twin
Primary atom site location: dualAbsolute structure parameter: 0.2 (13)
Special details top

Experimental. The diffraction data were obtained from 7 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 25 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5165 (2)0.45034 (11)0.46448 (6)0.0329 (3)
N10.8422 (3)0.38162 (12)0.41592 (6)0.0266 (3)
N20.6546 (3)0.26610 (12)0.47315 (6)0.0256 (3)
N30.7105 (3)0.48912 (14)0.23204 (7)0.0308 (3)
N40.9528 (3)0.49012 (15)0.23032 (7)0.0357 (4)
N51.0483 (3)0.48764 (14)0.28579 (7)0.0343 (4)
N60.7789 (3)0.26119 (13)0.66306 (6)0.0276 (3)
N70.5441 (3)0.25415 (17)0.67279 (7)0.0402 (4)
N80.4205 (3)0.24210 (16)0.62051 (7)0.0377 (4)
C10.8325 (3)0.20418 (14)0.44791 (8)0.0261 (4)
C20.8978 (4)0.09248 (15)0.45373 (9)0.0316 (4)
H20.8167020.0428290.4782480.038*
C31.0882 (4)0.05678 (16)0.42184 (9)0.0358 (4)
H31.1380810.0192050.4246770.043*
C41.2070 (4)0.12896 (17)0.38608 (9)0.0363 (4)
H41.3370970.1014650.3652940.044*
C51.1398 (3)0.24138 (16)0.37988 (8)0.0308 (4)
H51.2195700.2908100.3549690.037*
C60.9523 (3)0.27692 (14)0.41167 (7)0.0256 (3)
C70.6557 (3)0.37503 (15)0.45279 (7)0.0255 (3)
C80.9182 (3)0.48505 (15)0.38886 (8)0.0286 (4)
H8A1.0947560.4956170.3989730.034*
H8B0.8327860.5486750.4058540.034*
C90.8673 (3)0.48614 (15)0.32269 (8)0.0269 (3)
C100.6497 (3)0.48710 (16)0.28838 (8)0.0304 (4)
H100.4909160.4864840.3015680.037*
C110.5501 (4)0.49558 (17)0.17728 (9)0.0363 (4)
H11A0.4241180.4367620.1778000.044*
H11B0.6455780.4810450.1429500.044*
C120.4278 (3)0.60839 (16)0.16948 (8)0.0316 (4)
H12A0.5538630.6668460.1675620.038*
H12B0.3375330.6240780.2045770.038*
C130.2529 (4)0.61468 (16)0.11355 (8)0.0325 (4)
H13A0.3471800.6129770.0782100.039*
H13B0.1457290.5481910.1118350.039*
C140.0970 (4)0.71974 (16)0.11140 (9)0.0325 (4)
H14A0.2053070.7858130.1146170.039*
H14B0.0004820.7200370.1463720.039*
C150.0758 (4)0.73133 (16)0.05545 (9)0.0340 (4)
H15A0.0207070.7369670.0205920.041*
H15B0.1768240.6630280.0505630.041*
C160.2417 (4)0.83263 (17)0.05645 (9)0.0346 (4)
H16A0.1400550.9007970.0609590.042*
H16B0.3358430.8273410.0917260.042*
C170.4187 (4)0.84527 (18)0.00121 (9)0.0418 (5)
H17A0.3251700.8553050.0338900.050*
H17B0.5147930.7756590.0046780.050*
C180.5909 (4)0.9431 (2)0.00497 (10)0.0454 (5)
H18A0.6972350.9482120.0319970.068*
H18B0.4971321.0123800.0108530.068*
H18C0.6898280.9319930.0384980.068*
C190.4857 (3)0.22611 (15)0.51395 (8)0.0288 (4)
H19A0.4533760.1457360.5062730.035*
H19B0.3298890.2667390.5063280.035*
C200.5775 (3)0.24109 (14)0.57782 (8)0.0257 (3)
C210.8082 (3)0.25252 (15)0.60465 (7)0.0259 (3)
H210.9561790.2540090.5861360.031*
C220.9617 (3)0.28057 (16)0.71286 (8)0.0312 (4)
H22A1.0961780.2264240.7106190.037*
H22B0.8876470.2672850.7506390.037*
C231.0639 (3)0.39888 (15)0.71301 (8)0.0298 (4)
H23A1.1467480.4111570.6763810.036*
H23B0.9293140.4534730.7133530.036*
C241.2429 (4)0.41756 (16)0.76706 (8)0.0312 (4)
H24A1.3563720.3533770.7710950.037*
H24B1.1523690.4195530.8030240.037*
C251.3899 (4)0.52512 (16)0.76421 (9)0.0335 (4)
H25A1.4782460.5241280.7278870.040*
H25B1.2773150.5896980.7613150.040*
C261.5718 (4)0.54024 (17)0.81829 (9)0.0356 (4)
H26A1.6778940.4734520.8221440.043*
H26B1.4815230.5441200.8542570.043*
C271.7314 (4)0.64393 (17)0.81632 (9)0.0374 (4)
H27A1.8199550.6412690.7800500.045*
H27B1.6266180.7112280.8137560.045*
C281.9139 (4)0.65407 (19)0.87038 (10)0.0439 (5)
H28A1.8248310.6570640.9065550.053*
H28B2.0172590.5862940.8730720.053*
C292.0762 (4)0.7564 (2)0.86910 (11)0.0512 (6)
H29A2.1921240.7567530.9045000.077*
H29B1.9761500.8241160.8686070.077*
H29C2.1649450.7542890.8333620.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0295 (7)0.0286 (6)0.0409 (8)0.0049 (5)0.0046 (6)0.0024 (6)
N10.0274 (7)0.0221 (7)0.0306 (8)0.0014 (6)0.0041 (6)0.0023 (6)
N20.0252 (7)0.0233 (7)0.0284 (7)0.0016 (6)0.0024 (6)0.0016 (6)
N30.0276 (7)0.0312 (8)0.0334 (8)0.0053 (7)0.0012 (6)0.0029 (7)
N40.0281 (8)0.0429 (9)0.0365 (9)0.0031 (7)0.0058 (7)0.0046 (8)
N50.0268 (7)0.0394 (9)0.0372 (9)0.0005 (7)0.0053 (7)0.0046 (7)
N60.0252 (7)0.0291 (7)0.0283 (7)0.0042 (6)0.0013 (6)0.0016 (6)
N70.0272 (8)0.0605 (11)0.0331 (8)0.0084 (8)0.0041 (7)0.0057 (8)
N80.0254 (8)0.0553 (11)0.0326 (8)0.0058 (7)0.0043 (6)0.0065 (8)
C10.0250 (8)0.0263 (8)0.0263 (9)0.0005 (7)0.0020 (7)0.0012 (7)
C20.0370 (10)0.0240 (8)0.0325 (10)0.0010 (8)0.0052 (8)0.0006 (7)
C30.0426 (11)0.0261 (9)0.0370 (11)0.0072 (8)0.0061 (9)0.0065 (8)
C40.0349 (10)0.0392 (11)0.0339 (10)0.0089 (8)0.0013 (8)0.0104 (8)
C50.0301 (9)0.0338 (10)0.0283 (9)0.0017 (7)0.0019 (7)0.0022 (7)
C60.0249 (8)0.0248 (8)0.0264 (8)0.0015 (7)0.0024 (7)0.0015 (7)
C70.0234 (8)0.0256 (8)0.0271 (8)0.0011 (7)0.0011 (7)0.0019 (7)
C80.0283 (8)0.0243 (8)0.0327 (9)0.0028 (7)0.0002 (7)0.0021 (7)
C90.0230 (8)0.0234 (7)0.0344 (9)0.0002 (7)0.0038 (7)0.0051 (7)
C100.0250 (8)0.0331 (9)0.0335 (9)0.0020 (8)0.0043 (7)0.0038 (8)
C110.0380 (10)0.0366 (10)0.0332 (10)0.0079 (9)0.0042 (8)0.0013 (8)
C120.0292 (9)0.0325 (9)0.0326 (9)0.0031 (7)0.0005 (8)0.0033 (7)
C130.0330 (10)0.0329 (10)0.0312 (9)0.0038 (7)0.0002 (8)0.0001 (7)
C140.0315 (9)0.0312 (9)0.0341 (10)0.0027 (8)0.0015 (8)0.0008 (7)
C150.0346 (10)0.0339 (10)0.0326 (10)0.0034 (8)0.0019 (8)0.0010 (7)
C160.0337 (10)0.0334 (9)0.0359 (10)0.0026 (8)0.0018 (8)0.0016 (8)
C170.0437 (12)0.0425 (12)0.0377 (11)0.0081 (9)0.0052 (9)0.0032 (9)
C180.0457 (12)0.0443 (12)0.0452 (13)0.0109 (10)0.0005 (10)0.0095 (10)
C190.0255 (8)0.0317 (9)0.0291 (9)0.0070 (7)0.0012 (7)0.0016 (7)
C200.0244 (8)0.0231 (8)0.0299 (9)0.0015 (6)0.0033 (7)0.0001 (6)
C210.0236 (8)0.0261 (8)0.0283 (8)0.0012 (7)0.0034 (7)0.0004 (7)
C220.0321 (9)0.0331 (9)0.0272 (9)0.0068 (8)0.0046 (7)0.0003 (7)
C230.0301 (9)0.0294 (9)0.0291 (9)0.0031 (7)0.0019 (7)0.0011 (7)
C240.0326 (10)0.0310 (9)0.0295 (9)0.0050 (7)0.0010 (8)0.0016 (7)
C250.0317 (10)0.0313 (9)0.0367 (11)0.0065 (8)0.0014 (8)0.0010 (8)
C260.0342 (10)0.0336 (10)0.0381 (11)0.0068 (8)0.0023 (9)0.0014 (8)
C270.0338 (10)0.0333 (10)0.0443 (11)0.0068 (8)0.0022 (9)0.0027 (9)
C280.0423 (12)0.0397 (11)0.0480 (12)0.0102 (10)0.0053 (10)0.0034 (9)
C290.0436 (12)0.0427 (12)0.0649 (15)0.0125 (10)0.0094 (11)0.0077 (11)
Geometric parameters (Å, º) top
O1—C71.227 (2)C14—H14B0.9900
N1—C71.382 (2)C15—C161.520 (3)
N1—C61.399 (2)C15—H15A0.9900
N1—C81.457 (2)C15—H15B0.9900
N2—C71.381 (2)C16—C171.524 (3)
N2—C11.391 (2)C16—H16A0.9900
N2—C191.448 (2)C16—H16B0.9900
N3—N41.342 (2)C17—C181.515 (3)
N3—C101.344 (2)C17—H17A0.9900
N3—C111.459 (2)C17—H17B0.9900
N4—N51.317 (2)C18—H18A0.9800
N5—C91.356 (2)C18—H18B0.9800
N6—N71.337 (2)C18—H18C0.9800
N6—C211.346 (2)C19—C201.498 (2)
N6—C221.463 (2)C19—H19A0.9900
N7—N81.319 (2)C19—H19B0.9900
N8—C201.351 (2)C20—C211.369 (2)
C1—C21.387 (2)C21—H210.9500
C1—C61.399 (2)C22—C231.523 (3)
C2—C31.392 (3)C22—H22A0.9900
C2—H20.9500C22—H22B0.9900
C3—C41.385 (3)C23—C241.519 (2)
C3—H30.9500C23—H23A0.9900
C4—C51.399 (3)C23—H23B0.9900
C4—H40.9500C24—C251.525 (3)
C5—C61.377 (3)C24—H24A0.9900
C5—H50.9500C24—H24B0.9900
C8—C91.496 (3)C25—C261.523 (3)
C8—H8A0.9900C25—H25A0.9900
C8—H8B0.9900C25—H25B0.9900
C9—C101.373 (2)C26—C271.524 (3)
C10—H100.9500C26—H26A0.9900
C11—C121.512 (3)C26—H26B0.9900
C11—H11A0.9900C27—C281.519 (3)
C11—H11B0.9900C27—H27A0.9900
C12—C131.524 (3)C27—H27B0.9900
C12—H12A0.9900C28—C291.518 (3)
C12—H12B0.9900C28—H28A0.9900
C13—C141.522 (3)C28—H28B0.9900
C13—H13A0.9900C29—H29A0.9800
C13—H13B0.9900C29—H29B0.9800
C14—C151.522 (2)C29—H29C0.9800
C14—H14A0.9900
C7—N1—C6109.97 (14)C15—C16—C17114.31 (17)
C7—N1—C8123.91 (14)C15—C16—H16A108.7
C6—N1—C8126.02 (14)C17—C16—H16A108.7
C7—N2—C1110.01 (14)C15—C16—H16B108.7
C7—N2—C19122.99 (15)C17—C16—H16B108.7
C1—N2—C19126.99 (15)H16A—C16—H16B107.6
N4—N3—C10111.05 (15)C18—C17—C16113.09 (17)
N4—N3—C11120.59 (15)C18—C17—H17A109.0
C10—N3—C11128.28 (15)C16—C17—H17A109.0
N5—N4—N3106.89 (14)C18—C17—H17B109.0
N4—N5—C9109.21 (15)C16—C17—H17B109.0
N7—N6—C21110.88 (14)H17A—C17—H17B107.8
N7—N6—C22119.89 (14)C17—C18—H18A109.5
C21—N6—C22129.19 (15)C17—C18—H18B109.5
N8—N7—N6107.11 (15)H18A—C18—H18B109.5
N7—N8—C20108.94 (15)C17—C18—H18C109.5
C2—C1—N2131.37 (18)H18A—C18—H18C109.5
C2—C1—C6121.48 (17)H18B—C18—H18C109.5
N2—C1—C6107.15 (15)N2—C19—C20112.93 (14)
C1—C2—C3116.63 (18)N2—C19—H19A109.0
C1—C2—H2121.7C20—C19—H19A109.0
C3—C2—H2121.7N2—C19—H19B109.0
C4—C3—C2121.84 (17)C20—C19—H19B109.0
C4—C3—H3119.1H19A—C19—H19B107.8
C2—C3—H3119.1N8—C20—C21108.28 (16)
C3—C4—C5121.48 (18)N8—C20—C19120.19 (15)
C3—C4—H4119.3C21—C20—C19131.51 (16)
C5—C4—H4119.3N6—C21—C20104.79 (15)
C6—C5—C4116.72 (18)N6—C21—H21127.6
C6—C5—H5121.6C20—C21—H21127.6
C4—C5—H5121.6N6—C22—C23112.32 (14)
C5—C6—N1131.52 (16)N6—C22—H22A109.1
C5—C6—C1121.85 (16)C23—C22—H22A109.1
N1—C6—C1106.63 (15)N6—C22—H22B109.1
O1—C7—N2126.84 (16)C23—C22—H22B109.1
O1—C7—N1126.95 (16)H22A—C22—H22B107.9
N2—C7—N1106.20 (14)C24—C23—C22110.72 (15)
N1—C8—C9112.95 (15)C24—C23—H23A109.5
N1—C8—H8A109.0C22—C23—H23A109.5
C9—C8—H8A109.0C24—C23—H23B109.5
N1—C8—H8B109.0C22—C23—H23B109.5
C9—C8—H8B109.0H23A—C23—H23B108.1
H8A—C8—H8B107.8C23—C24—C25113.69 (15)
N5—C9—C10108.03 (16)C23—C24—H24A108.8
N5—C9—C8121.92 (16)C25—C24—H24A108.8
C10—C9—C8130.05 (16)C23—C24—H24B108.8
N3—C10—C9104.82 (15)C25—C24—H24B108.8
N3—C10—H10127.6H24A—C24—H24B107.7
C9—C10—H10127.6C26—C25—C24112.51 (16)
N3—C11—C12112.22 (15)C26—C25—H25A109.1
N3—C11—H11A109.2C24—C25—H25A109.1
C12—C11—H11A109.2C26—C25—H25B109.1
N3—C11—H11B109.2C24—C25—H25B109.1
C12—C11—H11B109.2H25A—C25—H25B107.8
H11A—C11—H11B107.9C25—C26—C27114.60 (17)
C11—C12—C13112.66 (15)C25—C26—H26A108.6
C11—C12—H12A109.1C27—C26—H26A108.6
C13—C12—H12A109.1C25—C26—H26B108.6
C11—C12—H12B109.1C27—C26—H26B108.6
C13—C12—H12B109.1H26A—C26—H26B107.6
H12A—C12—H12B107.8C28—C27—C26112.76 (17)
C14—C13—C12112.57 (15)C28—C27—H27A109.0
C14—C13—H13A109.1C26—C27—H27A109.0
C12—C13—H13A109.1C28—C27—H27B109.0
C14—C13—H13B109.1C26—C27—H27B109.0
C12—C13—H13B109.1H27A—C27—H27B107.8
H13A—C13—H13B107.8C29—C28—C27113.62 (19)
C13—C14—C15114.46 (15)C29—C28—H28A108.8
C13—C14—H14A108.6C27—C28—H28A108.8
C15—C14—H14A108.6C29—C28—H28B108.8
C13—C14—H14B108.6C27—C28—H28B108.8
C15—C14—H14B108.6H28A—C28—H28B107.7
H14A—C14—H14B107.6C28—C29—H29A109.5
C16—C15—C14113.30 (16)C28—C29—H29B109.5
C16—C15—H15A108.9H29A—C29—H29B109.5
C14—C15—H15A108.9C28—C29—H29C109.5
C16—C15—H15B108.9H29A—C29—H29C109.5
C14—C15—H15B108.9H29B—C29—H29C109.5
H15A—C15—H15B107.7
C10—N3—N4—N50.6 (2)N4—N5—C9—C100.3 (2)
C11—N3—N4—N5177.67 (15)N4—N5—C9—C8179.02 (16)
N3—N4—N5—C90.6 (2)N1—C8—C9—N5113.96 (19)
C21—N6—N7—N80.7 (2)N1—C8—C9—C1066.8 (2)
C22—N6—N7—N8177.02 (16)N4—N3—C10—C90.4 (2)
N6—N7—N8—C200.2 (2)C11—N3—C10—C9177.17 (17)
C7—N2—C1—C2178.80 (18)N5—C9—C10—N30.0 (2)
C19—N2—C1—C20.0 (3)C8—C9—C10—N3179.31 (18)
C7—N2—C1—C61.31 (19)N4—N3—C11—C12107.0 (2)
C19—N2—C1—C6179.84 (15)C10—N3—C11—C1269.6 (2)
N2—C1—C2—C3179.77 (18)N3—C11—C12—C13177.95 (16)
C6—C1—C2—C30.1 (3)C11—C12—C13—C14169.67 (17)
C1—C2—C3—C40.0 (3)C12—C13—C14—C15178.35 (16)
C2—C3—C4—C50.5 (3)C13—C14—C15—C16175.90 (17)
C3—C4—C5—C60.9 (3)C14—C15—C16—C17179.27 (17)
C4—C5—C6—N1179.66 (17)C15—C16—C17—C18176.78 (18)
C4—C5—C6—C10.7 (3)C7—N2—C19—C2088.9 (2)
C7—N1—C6—C5178.61 (18)C1—N2—C19—C2092.4 (2)
C8—N1—C6—C54.8 (3)N7—N8—C20—C210.3 (2)
C7—N1—C6—C11.08 (18)N7—N8—C20—C19178.80 (16)
C8—N1—C6—C1175.52 (16)N2—C19—C20—N8159.08 (17)
C2—C1—C6—C50.2 (3)N2—C19—C20—C2122.8 (3)
N2—C1—C6—C5179.86 (15)N7—N6—C21—C200.8 (2)
C2—C1—C6—N1179.96 (16)C22—N6—C21—C20176.61 (16)
N2—C1—C6—N10.14 (18)N8—C20—C21—N60.6 (2)
C1—N2—C7—O1177.12 (17)C19—C20—C21—N6178.96 (17)
C19—N2—C7—O11.8 (3)N7—N6—C22—C23106.9 (2)
C1—N2—C7—N11.95 (18)C21—N6—C22—C2370.3 (2)
C19—N2—C7—N1179.15 (14)N6—C22—C23—C24177.04 (15)
C6—N1—C7—O1177.20 (17)C22—C23—C24—C25168.59 (16)
C8—N1—C7—O16.1 (3)C23—C24—C25—C26178.67 (17)
C6—N1—C7—N21.86 (18)C24—C25—C26—C27177.38 (17)
C8—N1—C7—N2174.83 (15)C25—C26—C27—C28178.60 (18)
C7—N1—C8—C9113.03 (18)C26—C27—C28—C29179.6 (2)
C6—N1—C8—C970.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N3–N5/C9/C10 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.593.502 (2)162
C10—H10···N5ii0.952.443.317 (2)153
C19—H19A···O1i0.992.433.334 (2)152
C21—H21···N8iii0.952.623.372 (2)137
C22—H22A···Cg2iv0.992.893.664 (2)135
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+2, y1/2, z+1.
Comparison of the selected (X-ray and DFT) geometric data (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
O1—C71.227 (2)1.2256
N1—C71.382 (2)1.3862
N1—C61.399 (2)1.3954
N1—C81.457 (2)1.4529
N2—C71.381 (2)1.3838
N2—C11.391 (2)1.3957
N3—N41.342 (2)1.3447
N4—N51.317 (2)1.3118
N4—N3—C10111.05 (15)111.56
N4—N3—C11120.59 (15)120.32
C10—N3—C11128.28 (15)128.09
N5—N4—N3106.89 (14)106.96
N4—N5—C9109.21 (15)109.85
Calculated energies. top
Molecular Energy (a.u.) (eV)Compound (I)
Total Energy TE (eV)–44752.35
EHOMO (eV)–5.72
ELUMO (eV)–0.68
Gap ΔE (eV)5.04
Dipole moment µ (Debye)3.96
Ionisation potential I (eV)5.72
Electron affinity A0.68
Electronegativity χ3.202
Hardness η2.19
Softness σ0.19
Electrophilicity index ω2,03

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAdardour, M., Loughzail, M., Dahaoui, S., Baouid, A. & Berraho, M. (2017). IUCrData, 2, x170907.  Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2020). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationEl Bakri, Y., Lai, C. H., Sebhaoui, J., Ali, A. B., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018). DATACC, 17, 472–482.  Google Scholar
First citationFerro, S., Buemi, M. R., De Luca, L., Agharbaoui, F. E., Pannecouque, C. & Monforte, A. M. (2017). Bioorg. Med. Chem. 25, 3861–3870.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuillon, J., Savrimoutou, S., Albenque-Rubio, S., Pinaud, N., Moreau, S. & Desplat, V. (2022). Molbank, M1333.  CSD CrossRef Google Scholar
First citationIbrahim, S., Ghabi, A., Amiri, N., Mtiraoui, H., Hajji, M., Bel-Hadj-Tahar, R. & Msaddek, M. (2021). Monatsh. Chem. 152, 523–535.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMenteşe, E., Güven, O., Çalışkan, N. & Baltaş, N. (2021). J. Heterocycl. Chem. 58, 1259–1267.  Google Scholar
First citationMo, J., Chen, T., Yang, H., Guo, Y., Li, Q., Qiao, Y., Lin, H., Feng, F., Liu, W., Chen, Y., Liu, Z. & Sun, H. (2020). J. Enzyme Inhib. Med. Chem. 35, 330–343.  CrossRef CAS Google Scholar
First citationSaber, A., Anouar, E. H., Sebbar, G., Ibrahimi, B. E., Srhir, M., Hökelek, T., Mague, J. T., Ghayati, L. E., Sebbar, N. K. & Essassi, E. M. (2021). J. Mol. Struct. 1242, 130719.  CSD CrossRef Google Scholar
First citationSaber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y. F., Urrutigoîty, M. & Essassi, E. M. (2020). J. Mol. Struct. 1200, 127174.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds