research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-eth­­oxy-1-ethyl-6-nitro­quinoxalin-2(1H)-one

crossmark logo

aLaboratory of Applied Organic Chemistry, Faculty of Science and Technology, Sidi Mohammed Ben Abdullah University, Route d'Immouzzer, BP 2202, Fez, Morocco, bLaboratory of Heterocyclic Organic Chemistry, Medicines Science Research Center, Pharmacochemistry Competence Center, Mohammed V University in Rabat, Faculty of Sciences, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and eLaboratory of Organic and physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
*Correspondence e-mail: yousra.seqqat@usmba.ac.ma

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 28 July 2023; accepted 1 September 2023; online 8 September 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The asymmetric unit of the title compound, C12H13N3O4, consists of two mol­ecules differing to a small degree in their conformations. In the crystal, layers of mol­ecules are connected by weak C—H⋯O hydrogen bonds and slipped π-stacking inter­actions. These layers lie parallel to (10[\overline{1}]) and are stacked along the normal to that plane. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing arise from H⋯H (43.5%) and H⋯O/O⋯H (30.8%) contacts. The density functional theory (DFT) optimized structure of the title compound at the B3LYP/ 6–311 G(d,p) level agrees well with the experimentally determined mol­ecular structure in the solid state.

1. Chemical context

Quinoxaline derivatives made up of a fused benzene ring and pyrazine ring constitute an important class of heterocyclic compounds which, even when part of a complex mol­ecule, possess a wide spectrum of biological activities (Abad et al., 2020[Abad, N., Ramli, Y., Ettahiri, W., Ferfra, S. & Essassi, E. M. (2020). J. Mar. Chim. Heterocycl, 19, 1-62.]). Quinoxaline derivatives have been synthesized by several methods (Chen et al., 2021[Chen, L., Hu, J. & Sun, H. S. (2021). IUCrData, 6, x210018.]; Ramli et al., 2010[Ramli, Y., Moussaif, A., Zouihri, H., Lazar, S. & Essassi, E. M. (2010). Acta Cryst. E66, o1922.]) and possess inter­esting properties such as anti-bacterial (Ammar et al., 2020[Ammar, Y. A., Farag, A. A., Ali, A. M., Hessein, S. A., Askar, A. A., Fayed, E. A., Elsisi, D. M. & Ragab, A. (2020). Bioorg. Chem. 99, 103841.]), anti-inflammatory (Meka & Chintakunta, 2023[Meka, G. & Chintakunta, R. (2023). Results Chem. 5, 100783.]), anti­cancer (Jain et al., 2019[Jain, S., Chandra, V., Kumar, J. P., Pathak, K., Pathak, D. & Vaidya, A. (2019). Arabian J. Chem. 12, 4920-4946.]) and kinase inhibition (Oyallon et al., 2018[Oyallon, B., Brachet-Botineau, M., Logé, C., Bonnet, P., Souab, M., Robert, T., Ruchaud, S., Bach, S., Berthelot, P., Gouilleux, F., Viaud-Massuard, M. C. & Denevault-Sabourin, C. (2018). Eur. J. Med. Chem. 154, 101-109.]). They have also been studied as fungicides, herbicides and insecticides (Pathakumari et al., 2020[Pathakumari, B., Liang, G. & Liu, W. (2020). Biomed. Pharmacother. 130, 110550.]).

[Scheme 1]

In a continuation of our ongoing research in this area (Abad et al., 2020[Abad, N., Ramli, Y., Ettahiri, W., Ferfra, S. & Essassi, E. M. (2020). J. Mar. Chim. Heterocycl, 19, 1-62.]), we have synthesized the title compound (I)[link] by reacting ethyl bromide with 6-nitro-1,4-di­hydro­quinoxaline-2,3-dione and potassium carbonate in the presence of tetra-n-butyl ammonium bromide as catalyst. We report herein the synthesis, crystal structure and Hirshfeld surface analysis and the density functional theory (DFT) computational calculations carried out at the B3LYP/6–311G(d,p) level for comparing with the experimentally determined mol­ecular structure in the solid state of the title compound.

2. Structural commentary

The asymmetric unit of (I)[link] consists of two independent mol­ecules containing C1 and C13 differing to small degrees in conformation (Fig. 1[link]). The most notable difference is a disorder of the C21/C22 ethyl group attached to N4 in one mol­ecule while in the other mol­ecule, there is no disorder. In one mol­ecule, the dihedral angle between the mean planes of the C1–C6 and the C1/C6/N1/C7/C8/N2 rings is 4.69 (4)° while in the second mol­ecule the corresponding angle between the C13–C18 and C13/C18/N4/C19/C20/N5 rings is 3.17 (5)°. In addition, the heterocyclic ring in the C1 mol­ecule deviates more from planarity than does that in the C13 mol­ecule (r.m.s. deviation of the fitted atoms = 0.034 Å for the former and 0.017 Å for the latter).

[Figure 1]
Figure 1
The asymmetric unit with labelling scheme and 50% probability ellipsoids. Only the major component of the disordered ethyl group is shown and the C—H⋯O hydrogen bond is depicted by a dashed line.

3. Supra­molecular features

In the crystal, C11—H11A⋯O1 hydrogen bonds (Table 1[link]) form chains of the C1 mol­ecules extending parallel to (10[\overline{1}]) while C16—H16⋯O5 hydrogen bonds (Table 1[link]) form parallel chains from the C13 mol­ecule (Fig. 2[link]). The chains are cross-linked by C22—H22A⋯O1 hydrogen bonds (Table 1[link]) and slipped π-stacking inter­actions between C1–C6 rings related by the symmetry operation x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}] [centroid–centroid separation = 3.7558 (9) Å, dihedral angle = 8.65 (8)°, slippage = 1.15 Å] into layers lying parallel to (10[\overline{1}]) (Fig. 2[link]). The layers stack along the normal to (10[\overline{1}]) with unexceptional van der Waals contacts (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O3i 0.98 2.59 3.250 (2) 125
C16—H16⋯O5ii 0.94 2.58 3.2624 (19) 130
C22—H22A⋯O1 0.97 2.55 3.487 (4) 162
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Portions of the chains formed by mol­ecules containing C1 (top) and C13 (bottom) viewed along the c-axis direction with C—H⋯O hydrogen bonds and slipped π-stacking inter­actions depicted, respectively, by black and orange dashed lines. Non-inter­acting hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction with C—H⋯O hydrogen bonds and slipped π-stacking inter­actions depicted, respectively, by black and orange dashed lines. Non-inter­acting hydrogen atoms are omitted for clarity.

4. Hirshfeld surface analysis and DFT calculations

To further visualize the inter­molecular inter­actions in the crystal of (I)[link], a Hirshfeld surface (HS) analysis was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The Hirshfeld surface plotted over dnorm is shown in Fig. 4[link]. The overall two-dimensional fingerprint plot, Fig. 5[link]a, and those delineated into H⋯H, H⋯O/O⋯H, C⋯C, C⋯N/N⋯C, H⋯C/C⋯H, H⋯N/N⋯H, O⋯O, N⋯O/O⋯N, C⋯O/O⋯C and N⋯N contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 5[link]bk, respectively, together with their relative contributions to the Hirshfeld surface. The most important contact type is H⋯H, contributing 43.5% to the overall crystal packing, which is reflected in Fig. 5[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule, with the tip at de = di = 0.83 Å. The pair of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 5[link]c; 30.8% contribution to the HS) has an almost symmetric distribution of points with the tips at de + di = 2.46 Å. The C⋯C contacts (Fig. 5[link]d), appearing as a bullet-shaped distribution of points, make a contribution of 7.3% to the HS with the tip at de = di = 1.65 Å. The tiny wing pair of C⋯N/N⋯C contacts (Fig. 5[link]e) with a 4.8% contribution to the HS are viewed at de + di = 3.42 Å. In the absence of C—H⋯π inter­actions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts with the tips at de + di = 2.83 Å, Fig. 5[link]f, make a 4.6% contribution to the HS. The spikes of H⋯N/N⋯H contacts (Fig. 5[link]g) with 3.0% contribution to the HS are viewed at de + di = 2.66 Å. The O⋯O contacts (Fig. 5[link]h) with an arrow-shaped distribution of points with the tip at de = di = 1.57 Å make a contribution of 2.3% to the HS. The tiny spikes of N⋯O/O⋯N contacts (Fig. 5[link]i) with 1.7% contribution to the HS are viewed at de + di = 3.43 Å. Finally, the C⋯O/O⋯C (Fig. 5[link]j) and N⋯N (Fig. 5[link]k) contacts contribute 1.4% and 0.6%, respectively, to the HS.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound, plotted over dnorm in the range −0.45 to 1.40 a.u.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) C⋯C,(e) C⋯N/N⋯C, (f) H⋯C/C⋯H, (g) H⋯N/N⋯H, (h) O⋯O, (i) N⋯O/O⋯N, (j) C⋯O/O⋯C and (k) N⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The optimized structure of (I)[link] in the gas phase was generated via a density functional theory (DFT) calculation using the standard B3LYP functional and 6-311 G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09. Table S1 shows that the theoretically calculated geometric parameters are in good agreement with the corresponding ones obtained from the X–ray analysis. The frontier orbitals (HOMO and LUMO) of (I)[link] are depicted in Fig. S1. The electron density of the HOMO is mostly distributed in the quinoline moiety, while that of the LUMO is mostly distributed over the phenyl ring. The HOMO–LUMO energy gap is 4.39 eV.

5. Database survey

A survey of the Cambridge Structural Database (CSD) (Version 5.42, last update February 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using search fragment II yielded 25 hits.

[Scheme 2]

Of these hits, those most similar to the title mol­ecule have the formula III with R = Me and R′ = CH2CO2H (CSD refcode DEZJAW; Missioui et al., 2018[Missioui, M., El Fal, M., Taoufik, J., Essassi, E. M., Mague, J. T. & Ramli, Y. (2018). IUCrData, 3, x180882.]), benzyl (DUSHUV; Ramli et al., 2010[Ramli, Y., Moussaif, A., Zouihri, H., Lazar, S. & Essassi, E. M. (2010). Acta Cryst. E66, o1922.]), with R = CF3 and R′ = i-Bu (DUBPUO; Wei et al., 2019[Wei, Z., Qi, S., Xu, Y., Liu, H., Wu, J., Li, H., Xia, C. & Duan, G. (2019). Adv. Synth. Catal. 361, 5490-5498.]) and with R = Ph and R′ = CH2(cyclo-CHCH2O) benzyl (PUGGII; Benzeid et al., 2009[Benzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2685.]). In the majority of hits, the di­hydro­quinoxaline ring is essentially planar with the dihedral angle between the constituent rings being less than 1° or having the nitro­gen atom bearing the exocyclic substituent less than 0.03 Å from the mean plane of the remaining nine atoms.

6. Synthesis and crystallization

To a solution of 6-nitro-1,4-di­hydro­quinoxaline-2,3-dione (2 mmol), potassium carbonate (4 mmol) and tetra-n-butyl­ammonium­bromide (0.2 mmol) in di­methyl­formamide (DMF) (20 ml) were added ethyl bromide (4 mmol), and the mixture was then left to stir for 12 h at room temperature. Following salt filtration, the solution was evaporated at a low pressure, and the resulting residue was dissolved in di­chloro­methane. The organic phase was then dried over Na2SO4 and concentrated. The resulting mixture was chromatographed using a silica gel column with hexa­ne/ethyl­acetate as the eluent (4/1). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (C—H = 0.94–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C12H13N3O4
Mr 263.25
Crystal system, space group Monoclinic, P21/n
Temperature (K) 240
a, b, c (Å) 14.4848 (3), 12.5663 (2), 15.2708 (3)
β (°) 116.424 (1)
V3) 2489.20 (8)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.91
Crystal size (mm) 0.25 × 0.16 × 0.09
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 3 CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.81, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 66682, 5082, 4257
Rint 0.031
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 1.04
No. of reflections 5082
No. of parameters 355
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.24
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

3-Ethoxy-1-ethyl-6-nitroquinoxalin-2(1H)-one top
Crystal data top
C12H13N3O4F(000) = 1104
Mr = 263.25Dx = 1.405 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 14.4848 (3) ÅCell parameters from 9131 reflections
b = 12.5663 (2) Åθ = 3.6–74.5°
c = 15.2708 (3) ŵ = 0.91 mm1
β = 116.424 (1)°T = 240 K
V = 2489.20 (8) Å3Plate, colourless
Z = 80.25 × 0.16 × 0.09 mm
Data collection top
Bruker D8 VENTURE PHOTON 3 CPAD
diffractometer
5082 independent reflections
Radiation source: INCOATEC IµS micro–focus source4257 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 7.3910 pixels mm-1θmax = 74.6°, θmin = 3.5°
φ and ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1515
Tmin = 0.81, Tmax = 0.93l = 1919
66682 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.623P]
where P = (Fo2 + 2Fc2)/3
5082 reflections(Δ/σ)max < 0.001
355 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.24 e Å3
Special details top

Experimental. The diffraction data were obtained from 18 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was θ-dependent and ranged from 5 to 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The C21-C22 ethyl group is disordered over two resolved sites in a 0.584 (3)/0.416 (3) ratio and the two components were refined with restraints that their geometries be comparable

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.58896 (9)0.18517 (10)0.72886 (8)0.0684 (3)
O20.56752 (8)0.02104 (9)0.75322 (7)0.0577 (3)
O30.19338 (10)0.15645 (11)0.26502 (10)0.0782 (4)
O40.14323 (14)0.01613 (14)0.17867 (10)0.1109 (6)
N10.44938 (10)0.18526 (10)0.57903 (9)0.0511 (3)
N20.44267 (8)0.03747 (10)0.59520 (8)0.0467 (3)
N30.19358 (11)0.06088 (12)0.25626 (10)0.0642 (4)
C10.38082 (10)0.01493 (11)0.50836 (9)0.0426 (3)
C20.31774 (10)0.04604 (11)0.42806 (10)0.0464 (3)
H20.3172390.1205870.4328850.056*
C30.25591 (10)0.00398 (12)0.34124 (10)0.0492 (3)
C40.25135 (11)0.11315 (13)0.33181 (11)0.0541 (3)
H40.2064290.1452740.2724250.065*
C50.31383 (12)0.17440 (12)0.41099 (11)0.0539 (3)
H50.3115840.2489700.4055760.065*
C60.38049 (10)0.12651 (11)0.49926 (10)0.0450 (3)
C70.52019 (11)0.13682 (13)0.66320 (10)0.0517 (3)
C80.50543 (10)0.02007 (12)0.66644 (10)0.0473 (3)
C90.45860 (15)0.30158 (13)0.57188 (13)0.0666 (4)
H9A0.4881410.3326440.6375980.080*
H9B0.3898830.3322890.5343640.080*
C100.52561 (17)0.32914 (14)0.52314 (14)0.0766 (5)
H10A0.4971120.2974610.4584850.115*
H10B0.5946510.3019140.5619570.115*
H10C0.5283190.4058430.5175080.115*
C110.56054 (13)0.13524 (13)0.76522 (11)0.0605 (4)
H11A0.5793460.1743110.7199640.073*
H11B0.4901080.1550180.7520610.073*
C120.63413 (19)0.16070 (19)0.86897 (13)0.0921 (7)
H12A0.6326030.2365540.8800350.138*
H12B0.6141220.1221580.9128690.138*
H12C0.7032980.1398770.8811650.138*
O50.41594 (10)0.27601 (10)0.77918 (9)0.0750 (4)
O60.41831 (8)0.47798 (9)0.73392 (7)0.0588 (3)
O70.78801 (11)0.68361 (11)1.19824 (10)0.0799 (4)
O80.85032 (11)0.55613 (13)1.30161 (9)0.0905 (5)
N40.54742 (11)0.29975 (11)0.93216 (11)0.0677 (4)
N50.54324 (8)0.51731 (9)0.88781 (8)0.0468 (3)
N60.79426 (10)0.58951 (13)1.21966 (10)0.0627 (4)
C130.60770 (10)0.47806 (11)0.98025 (9)0.0438 (3)
C140.66831 (10)0.54983 (11)1.05191 (10)0.0461 (3)
H140.6651030.6229191.0377180.055*
C150.73319 (10)0.51310 (12)1.14396 (10)0.0498 (3)
C160.74255 (12)0.40606 (14)1.16725 (11)0.0578 (4)
H160.7895130.3826911.2298240.069*
C170.68202 (12)0.33456 (13)1.09731 (12)0.0621 (4)
H170.6868870.2616281.1123910.075*
C180.61299 (11)0.36931 (12)1.00359 (11)0.0518 (3)
C190.47782 (11)0.33450 (13)0.84112 (11)0.0564 (4)
C200.48407 (10)0.45019 (12)0.82464 (10)0.0483 (3)
C210.5397 (4)0.1885 (2)0.9655 (3)0.0725 (10)0.584 (3)
H21A0.5451040.1906281.0317820.087*0.584 (3)
H21B0.4728380.1573860.9218770.087*0.584 (3)
C220.6251 (3)0.1219 (3)0.9644 (3)0.0948 (10)0.584 (3)
H22A0.6215540.1233230.8994170.142*0.584 (3)
H22B0.6179650.0492160.9817550.142*0.584 (3)
H22C0.6909940.1502271.0111300.142*0.584 (3)
C21A0.5585 (6)0.1809 (2)0.9319 (4)0.0725 (10)0.416 (3)
H21C0.5345300.1525730.8656010.087*0.416 (3)
H21D0.6296010.1579390.9725570.087*0.416 (3)
C22A0.4881 (5)0.1506 (4)0.9761 (4)0.0948 (10)0.416 (3)
H22D0.4183250.1728930.9330200.142*0.416 (3)
H22E0.5107620.1854041.0390320.142*0.416 (3)
H22F0.4897360.0741010.9848640.142*0.416 (3)
C230.41646 (13)0.58928 (14)0.70810 (11)0.0630 (4)
H23A0.4816970.6095610.7078990.076*
H23B0.4055510.6345210.7549410.076*
C240.32870 (16)0.60100 (19)0.60766 (13)0.0839 (6)
H24A0.3244610.6743670.5864530.126*
H24B0.2647400.5811560.6092300.126*
H24C0.3402190.5550570.5624290.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0666 (7)0.0702 (7)0.0516 (6)0.0133 (6)0.0110 (5)0.0110 (5)
O20.0527 (6)0.0681 (7)0.0402 (5)0.0037 (5)0.0097 (4)0.0060 (5)
O30.0808 (8)0.0657 (8)0.0680 (8)0.0162 (6)0.0149 (6)0.0151 (6)
O40.1185 (12)0.0978 (11)0.0523 (7)0.0217 (9)0.0196 (7)0.0053 (7)
N10.0575 (7)0.0460 (6)0.0439 (6)0.0005 (5)0.0173 (5)0.0048 (5)
N20.0428 (6)0.0522 (6)0.0410 (6)0.0024 (5)0.0151 (5)0.0053 (5)
N30.0571 (7)0.0682 (9)0.0499 (7)0.0110 (6)0.0081 (6)0.0044 (6)
C10.0391 (6)0.0471 (7)0.0400 (6)0.0016 (5)0.0162 (5)0.0023 (5)
C20.0431 (7)0.0463 (7)0.0456 (7)0.0025 (5)0.0159 (6)0.0014 (5)
C30.0422 (7)0.0564 (8)0.0417 (7)0.0047 (6)0.0120 (6)0.0020 (6)
C40.0495 (7)0.0581 (8)0.0430 (7)0.0032 (6)0.0100 (6)0.0086 (6)
C50.0583 (8)0.0459 (7)0.0497 (8)0.0044 (6)0.0170 (7)0.0054 (6)
C60.0448 (7)0.0469 (7)0.0407 (7)0.0022 (5)0.0167 (5)0.0017 (5)
C70.0499 (7)0.0587 (8)0.0431 (7)0.0020 (6)0.0177 (6)0.0057 (6)
C80.0420 (6)0.0581 (8)0.0389 (6)0.0022 (6)0.0154 (5)0.0031 (6)
C90.0817 (11)0.0442 (8)0.0587 (9)0.0015 (7)0.0177 (8)0.0096 (7)
C100.0962 (14)0.0537 (9)0.0664 (11)0.0152 (9)0.0242 (10)0.0010 (8)
C110.0582 (9)0.0647 (10)0.0496 (8)0.0100 (7)0.0160 (7)0.0133 (7)
C120.1129 (17)0.0938 (15)0.0472 (9)0.0270 (13)0.0154 (10)0.0162 (9)
O50.0672 (7)0.0703 (8)0.0665 (7)0.0164 (6)0.0108 (6)0.0165 (6)
O60.0545 (6)0.0687 (7)0.0395 (5)0.0039 (5)0.0084 (4)0.0010 (5)
O70.0814 (8)0.0699 (8)0.0713 (8)0.0128 (7)0.0185 (7)0.0192 (6)
O80.0821 (9)0.1119 (12)0.0456 (6)0.0207 (8)0.0003 (6)0.0032 (7)
N40.0618 (8)0.0444 (7)0.0686 (9)0.0033 (6)0.0035 (7)0.0003 (6)
N50.0449 (6)0.0510 (6)0.0392 (6)0.0030 (5)0.0142 (5)0.0021 (5)
N60.0524 (7)0.0794 (10)0.0474 (7)0.0110 (6)0.0144 (6)0.0106 (6)
C130.0399 (6)0.0477 (7)0.0403 (7)0.0019 (5)0.0149 (5)0.0016 (5)
C140.0445 (7)0.0477 (7)0.0438 (7)0.0011 (5)0.0175 (6)0.0002 (5)
C150.0420 (7)0.0613 (9)0.0408 (7)0.0039 (6)0.0138 (6)0.0030 (6)
C160.0495 (8)0.0668 (9)0.0446 (7)0.0032 (7)0.0097 (6)0.0087 (7)
C170.0602 (9)0.0518 (8)0.0576 (9)0.0039 (7)0.0111 (7)0.0118 (7)
C180.0463 (7)0.0472 (7)0.0500 (8)0.0001 (6)0.0107 (6)0.0014 (6)
C190.0471 (7)0.0573 (9)0.0537 (8)0.0030 (6)0.0125 (6)0.0081 (7)
C200.0422 (7)0.0564 (8)0.0413 (7)0.0035 (6)0.0139 (5)0.0013 (6)
C210.094 (2)0.0477 (12)0.063 (3)0.0111 (13)0.0230 (18)0.0014 (13)
C220.147 (3)0.0596 (16)0.0650 (16)0.0060 (19)0.0352 (18)0.0036 (13)
C21A0.094 (2)0.0477 (12)0.063 (3)0.0111 (13)0.0230 (18)0.0014 (13)
C22A0.147 (3)0.0596 (16)0.0650 (16)0.0060 (19)0.0352 (18)0.0036 (13)
C230.0613 (9)0.0723 (10)0.0449 (8)0.0092 (8)0.0142 (7)0.0088 (7)
C240.0837 (13)0.1014 (15)0.0454 (9)0.0179 (11)0.0098 (9)0.0116 (9)
Geometric parameters (Å, º) top
O1—C71.2156 (18)O8—N61.2234 (19)
O2—C81.3308 (16)N4—C191.376 (2)
O2—C111.456 (2)N4—C181.3906 (19)
O3—N31.2084 (19)N4—C21A1.503 (3)
O4—N31.2178 (19)N4—C211.509 (3)
N1—C71.3789 (18)N5—C201.2809 (18)
N1—C61.3938 (17)N5—C131.3909 (16)
N1—C91.4762 (19)N6—C151.4597 (19)
N2—C81.2856 (18)C13—C141.3880 (19)
N2—C11.3920 (16)C13—C181.406 (2)
N3—C31.4563 (18)C14—C151.3771 (19)
C1—C21.3886 (18)C14—H140.9400
C1—C61.4088 (19)C15—C161.382 (2)
C2—C31.3777 (19)C16—C171.372 (2)
C2—H20.9400C16—H160.9400
C3—C41.378 (2)C17—C181.402 (2)
C4—C51.378 (2)C17—H170.9400
C4—H40.9400C19—C201.485 (2)
C5—C61.3975 (19)C21—C221.500 (5)
C5—H50.9400C21—H21A0.9800
C7—C81.487 (2)C21—H21B0.9800
C9—C101.503 (3)C22—H22A0.9700
C9—H9A0.9800C22—H22B0.9700
C9—H9B0.9800C22—H22C0.9700
C10—H10A0.9700C21A—C22A1.500 (5)
C10—H10B0.9700C21A—H21C0.9800
C10—H10C0.9700C21A—H21D0.9800
C11—C121.499 (2)C22A—H22D0.9700
C11—H11A0.9800C22A—H22E0.9700
C11—H11B0.9800C22A—H22F0.9700
C12—H12A0.9700C23—C241.502 (2)
C12—H12B0.9700C23—H23A0.9800
C12—H12C0.9700C23—H23B0.9800
O5—C191.2181 (18)C24—H24A0.9700
O6—C201.3320 (16)C24—H24B0.9700
O6—C231.450 (2)C24—H24C0.9700
O7—N61.219 (2)
C8—O2—C11117.00 (12)O7—N6—O8122.89 (15)
C7—N1—C6121.81 (12)O7—N6—C15118.61 (13)
C7—N1—C9116.86 (12)O8—N6—C15118.49 (15)
C6—N1—C9120.86 (12)C14—C13—N5118.24 (12)
C8—N2—C1116.94 (12)C14—C13—C18119.19 (12)
O3—N3—O4122.46 (15)N5—C13—C18122.57 (12)
O3—N3—C3119.25 (13)C15—C14—C13119.46 (13)
O4—N3—C3118.29 (15)C15—C14—H14120.3
C2—C1—N2118.15 (12)C13—C14—H14120.3
C2—C1—C6119.35 (12)C14—C15—C16122.21 (14)
N2—C1—C6122.50 (12)C14—C15—N6119.06 (14)
C3—C2—C1119.25 (13)C16—C15—N6118.73 (13)
C3—C2—H2120.4C17—C16—C15118.77 (14)
C1—C2—H2120.4C17—C16—H16120.6
C2—C3—C4122.36 (13)C15—C16—H16120.6
C2—C3—N3118.81 (13)C16—C17—C18120.60 (15)
C4—C3—N3118.83 (13)C16—C17—H17119.7
C3—C4—C5118.82 (13)C18—C17—H17119.7
C3—C4—H4120.6N4—C18—C17122.21 (14)
C5—C4—H4120.6N4—C18—C13118.09 (13)
C4—C5—C6120.52 (14)C17—C18—C13119.69 (13)
C4—C5—H5119.7O5—C19—N4123.26 (15)
C6—C5—H5119.7O5—C19—C20122.57 (15)
N1—C6—C5122.24 (13)N4—C19—C20114.17 (13)
N1—C6—C1118.12 (12)N5—C20—O6122.66 (14)
C5—C6—C1119.62 (12)N5—C20—C19126.01 (13)
O1—C7—N1123.01 (15)O6—C20—C19111.33 (12)
O1—C7—C8122.88 (14)C22—C21—N4109.1 (3)
N1—C7—C8114.10 (12)C22—C21—H21A109.9
N2—C8—O2122.29 (13)N4—C21—H21A109.9
N2—C8—C7125.80 (12)C22—C21—H21B109.9
O2—C8—C7111.89 (12)N4—C21—H21B109.9
N1—C9—C10111.37 (14)H21A—C21—H21B108.3
N1—C9—H9A109.4C21—C22—H22A109.5
C10—C9—H9A109.4C21—C22—H22B109.5
N1—C9—H9B109.4H22A—C22—H22B109.5
C10—C9—H9B109.4C21—C22—H22C109.5
H9A—C9—H9B108.0H22A—C22—H22C109.5
C9—C10—H10A109.5H22B—C22—H22C109.5
C9—C10—H10B109.5C22A—C21A—N499.0 (4)
H10A—C10—H10B109.5C22A—C21A—H21C112.0
C9—C10—H10C109.5N4—C21A—H21C112.0
H10A—C10—H10C109.5C22A—C21A—H21D112.0
H10B—C10—H10C109.5N4—C21A—H21D112.0
O2—C11—C12106.68 (15)H21C—C21A—H21D109.7
O2—C11—H11A110.4C21A—C22A—H22D109.5
C12—C11—H11A110.4C21A—C22A—H22E109.5
O2—C11—H11B110.4H22D—C22A—H22E109.5
C12—C11—H11B110.4C21A—C22A—H22F109.5
H11A—C11—H11B108.6H22D—C22A—H22F109.5
C11—C12—H12A109.5H22E—C22A—H22F109.5
C11—C12—H12B109.5O6—C23—C24106.09 (15)
H12A—C12—H12B109.5O6—C23—H23A110.5
C11—C12—H12C109.5C24—C23—H23A110.5
H12A—C12—H12C109.5O6—C23—H23B110.5
H12B—C12—H12C109.5C24—C23—H23B110.5
C20—O6—C23116.99 (12)H23A—C23—H23B108.7
C19—N4—C18122.06 (13)C23—C24—H24A109.5
C19—N4—C21A110.1 (3)C23—C24—H24B109.5
C18—N4—C21A126.2 (3)H24A—C24—H24B109.5
C19—N4—C21120.3 (2)C23—C24—H24C109.5
C18—N4—C21116.4 (2)H24A—C24—H24C109.5
C20—N5—C13116.92 (12)H24B—C24—H24C109.5
C8—N2—C1—C2175.40 (12)C18—C13—C14—C150.7 (2)
C8—N2—C1—C64.29 (19)C13—C14—C15—C161.9 (2)
N2—C1—C2—C3179.92 (12)C13—C14—C15—N6178.12 (12)
C6—C1—C2—C30.21 (19)O7—N6—C15—C142.0 (2)
C1—C2—C3—C42.4 (2)O8—N6—C15—C14178.77 (14)
C1—C2—C3—N3177.23 (12)O7—N6—C15—C16178.01 (15)
O3—N3—C3—C23.8 (2)O8—N6—C15—C161.2 (2)
O4—N3—C3—C2176.32 (17)C14—C15—C16—C172.7 (2)
O3—N3—C3—C4176.54 (15)N6—C15—C16—C17177.32 (14)
O4—N3—C3—C43.3 (2)C15—C16—C17—C180.9 (3)
C2—C3—C4—C52.6 (2)C19—N4—C18—C17178.21 (16)
N3—C3—C4—C5177.08 (14)C21A—N4—C18—C1717.8 (4)
C3—C4—C5—C60.1 (2)C21—N4—C18—C1711.0 (3)
C7—N1—C6—C5175.02 (13)C19—N4—C18—C130.8 (2)
C9—N1—C6—C53.1 (2)C21A—N4—C18—C13163.2 (3)
C7—N1—C6—C13.41 (19)C21—N4—C18—C13168.0 (2)
C9—N1—C6—C1175.31 (13)C16—C17—C18—N4177.29 (16)
C4—C5—C6—N1175.95 (13)C16—C17—C18—C131.7 (2)
C4—C5—C6—C12.5 (2)C14—C13—C18—N4176.54 (13)
C2—C1—C6—N1175.89 (12)N5—C13—C18—N43.0 (2)
N2—C1—C6—N13.80 (19)C14—C13—C18—C172.5 (2)
C2—C1—C6—C52.6 (2)N5—C13—C18—C17177.98 (13)
N2—C1—C6—C5177.72 (12)C18—N4—C19—O5176.01 (16)
C6—N1—C7—O1170.86 (14)C21A—N4—C19—O517.7 (3)
C9—N1—C7—O11.3 (2)C21—N4—C19—O59.3 (3)
C6—N1—C7—C88.83 (19)C18—N4—C19—C203.7 (2)
C9—N1—C7—C8178.96 (13)C21A—N4—C19—C20162.6 (3)
C1—N2—C8—O2179.26 (11)C21—N4—C19—C20170.4 (2)
C1—N2—C8—C72.2 (2)C13—N5—C20—O6179.47 (12)
C11—O2—C8—N20.9 (2)C13—N5—C20—C190.2 (2)
C11—O2—C8—C7179.69 (12)C23—O6—C20—N50.5 (2)
O1—C7—C8—N2171.07 (14)C23—O6—C20—C19179.92 (13)
N1—C7—C8—N28.6 (2)O5—C19—C20—N5176.16 (15)
O1—C7—C8—O27.6 (2)N4—C19—C20—N53.6 (2)
N1—C7—C8—O2172.67 (12)O5—C19—C20—O63.2 (2)
C7—N1—C9—C1091.55 (17)N4—C19—C20—O6177.06 (13)
C6—N1—C9—C1080.74 (18)C19—N4—C21—C22106.9 (3)
C8—O2—C11—C12177.81 (14)C18—N4—C21—C2285.6 (3)
C20—N5—C13—C14176.30 (12)C19—N4—C21A—C22A98.8 (4)
C20—N5—C13—C183.2 (2)C18—N4—C21A—C22A95.6 (5)
N5—C13—C14—C15179.71 (12)C20—O6—C23—C24173.60 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O3i0.982.593.250 (2)125
C16—H16···O5ii0.942.583.2624 (19)130
C22—H22A···O10.972.553.487 (4)162
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Comparison of the selected (X-ray and DFT) geometric data (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
O1—C71.2156 (18)1.2145
O2—C81.3308 (16)1.3257
O2—C111.456 (2)1.4490
O3—N31.2084 (19)1.2236
O4—N31.2178 (19)1.2254
C8—O2—C11117.00 (12)117.61
C7—N1—C6121.81 (12)122.08
C6—N1—C9120.86 (12)121.09
O3—N3—O4122.46 (15)123.09
O1—C7—N1123.01 (15)123.12
Calculated energies. top
Molecular Energy (a.u.) (eV)Compound (I)
Total Energy TE (eV)-25316,62
EHOMO (eV)-6.56
ELUMO (eV)-2.16
Gap ΔE (eV)4.39
Dipole moment µ (Debye)2.93
Ionisation potential I (eV)6.56
Electron affinity A2.16
Electronegativity χ4.36
Hardness η2.19
Softness σ0.45
Electrophilicity index ω-4.32

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAbad, N., Ramli, Y., Ettahiri, W., Ferfra, S. & Essassi, E. M. (2020). J. Mar. Chim. Heterocycl, 19, 1–62.  CAS Google Scholar
First citationAmmar, Y. A., Farag, A. A., Ali, A. M., Hessein, S. A., Askar, A. A., Fayed, E. A., Elsisi, D. M. & Ragab, A. (2020). Bioorg. Chem. 99, 103841.  Web of Science CrossRef PubMed Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBenzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2685.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationChen, L., Hu, J. & Sun, H. S. (2021). IUCrData, 6, x210018.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJain, S., Chandra, V., Kumar, J. P., Pathak, K., Pathak, D. & Vaidya, A. (2019). Arabian J. Chem. 12, 4920–4946.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMeka, G. & Chintakunta, R. (2023). Results Chem. 5, 100783.  Web of Science CrossRef Google Scholar
First citationMissioui, M., El Fal, M., Taoufik, J., Essassi, E. M., Mague, J. T. & Ramli, Y. (2018). IUCrData, 3, x180882.  Google Scholar
First citationOyallon, B., Brachet-Botineau, M., Logé, C., Bonnet, P., Souab, M., Robert, T., Ruchaud, S., Bach, S., Berthelot, P., Gouilleux, F., Viaud-Massuard, M. C. & Denevault-Sabourin, C. (2018). Eur. J. Med. Chem. 154, 101–109.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPathakumari, B., Liang, G. & Liu, W. (2020). Biomed. Pharmacother. 130, 110550.  Web of Science CrossRef PubMed Google Scholar
First citationRamli, Y., Moussaif, A., Zouihri, H., Lazar, S. & Essassi, E. M. (2010). Acta Cryst. E66, o1922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationWei, Z., Qi, S., Xu, Y., Liu, H., Wu, J., Li, H., Xia, C. & Duan, G. (2019). Adv. Synth. Catal. 361, 5490–5498.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds