research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 2-[(2,3,5,6-tetra­fluoro­pyridin-4-yl)amino]­ethyl methacrylate

crossmark logo

aDepartment of Chemistry, United States Air Force Academy, Colorado Springs, CO 80840, USA
*Correspondence e-mail: abby.jennings@afacademy.af.edu, andrew.j.peloquin4.mil@mail.mil

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 9 May 2023; accepted 18 May 2023; online 26 May 2023)

In the title compound, C11H10F4N2O2, the conformation about the N—C—C—O bond is gauche [torsion angle = 61.84 (13)°]. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into [010] chains, which are cross-linked by C—H⋯F and C—H⋯π contacts. Hirshfeld surface analysis was conducted to aid in the visualization of these various influences on the packing. This analysis showed that the largest contribution to the surface contacts arises from F⋯H/H⋯F inter­actions (35.6%), followed by O⋯H/H⋯O (17.8%) and H⋯H (12.7%).

1. Chemical context

Perfluoro­pyridine (C5NF5; PFPy) is an ideal candidate to use in the preparation of complex fluorinated compounds and materials as PFPy is reactive towards nucleophilic addition (Sandford, 2012[Sandford, G. (2012). Halogenated Heterocycles: Synthesis, Application and Environment, edited by J. Iskra, pp. 1-31. Berlin, Heidelberg: Springer.]). Furthermore, our group and others have demonstrated that this addition can be regio-selectively controlled, with stoichiometric addition to the 4-(para-) position being exclusive with a broad range of nucleophiles (Brittain & Cobb, 2019[Brittain, W. D. G. & Cobb, S. L. (2019). Org. Biomol. Chem. 17, 2110-2115.]; Peloquin et al., 2020[Peloquin, A. J., Kure, D. A., Jennings, A. R., McMillen, C. D., Iacono, S. T. & Pennington, W. T. (2020). Cryst. Growth Des. 20, 5484-5492.]; Seyb & Kerres, 2013[Seyb, C. & Kerres, J. (2013). Eur. Polym. J. 49, 518-531.]). Sequential addition can also be accomplished at the 3,5-(meta-) positions (Corley et al., 2019[Corley, C. A., Kobra, K., Peloquin, A. J., Salmon, K., Gumireddy, L., Knoerzer, T. A., McMillen, C. D., Pennington, W. T., Schoffstall, A. M. & Iacono, S. T. (2019). J. Fluor. Chem. 228, 109409.]; Houck et al., 2021[Houck, M. B., Fuhrer, T. J., Phelps, C. R., Brown, L. C. & Iacono, S. T. (2021). Macromolecules, 54, 5586-5594.]). As part of our ongoing work in this area, the synthesis and single-crystal structure of the title compound, C11H10F4N2O2, is reported herein.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the monoclinic space group P21/n with one mol­ecule in the asymmetric unit. The N2—C6 bond is rotated by only 15.81 (8)° from the C1–C5/N1 ring plane, presumably to encourage conjugation of the nitro­gen atom lone pair with the aromatic ring π system, which is reflected in the C3—N2 bond length of 1.3522 (16) Å; the C3—N2—C6—C7 torsion angle is −81.68 (16)°. The amine nitro­gen atom (N2) and ester oxygen atom (O1) are gauche to one another, with N2—C6—C7—O1 = 61.84 (13)°. The C10 methyl group is oriented in such a fashion as to enable a weak C—H⋯π inter­action with the aromatic ring of an adjacent mol­ecule (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg11 is the centroid of the C1–C5/N1 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN2⋯O2i 0.811 (18) 2.119 (17) 2.8296 (15) 146.3 (15)
C6—H6B⋯F3 0.99 2.23 2.9004 (15) 124
C7—H7B⋯F3ii 0.99 2.57 3.5368 (15) 167
C7—H7B⋯F4ii 0.99 2.63 3.3646 (16) 131
C7—H7ACg1iii 0.99 2.89 3.6047 (15) 130
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-1, y, z]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound (a) and the unit-cell packing (b). Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features

The main directional inter­actions in the crystal structure of the title compound are of the type C—H⋯F, N—H⋯O and C—H⋯π (Table 1[link]). The N—H⋯O hydrogen bonds link the mol­ecules into [010] chains, with adjacent mol­ecules related by a 21 screw axis. Weak hydrogen-bonding inter­actions are observed between one hydrogen atom bound to each carbon atom of the two-carbon (C6/C7) linker unit between the amine nitro­gen atom and the ester, and F3 as acceptor. One of these inter­actions is intra­molecular (C6—H6A⋯F3) with the other being inter­molecular (C7—H7A⋯F3). A hydrogen-bonding inter­action occurs between the secondary amine and the carbonyl oxygen atom (N2—H1N2⋯O2). Finally, a weak C—H⋯π inter­action is observed between H7B and the pyridine ring π system.

Hirshfeld surface analysis was used to investigate the presence of hydrogen bonds and inter­molecular inter­actions in the crystal structure. The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) were generated by CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]), using standard surface resolution with the three-dimensional dnorm surfaces plotted over a fixed color scale of −0.025 (red) to 1.38 (blue) a.u.; the pale-red spots symbolize short contacts and negative dnorm values on the corresponding surface plots shown in Fig. 2[link], associated with their relative contributions to the Hirshfeld surface.

[Figure 2]
Figure 2
Map of dnorm (a) and shape index (b) onto the Hirshfeld surface for the title compound.

The largest contribution to the overall crystal packing is from F⋯H/H⋯F inter­actions (35.6%) (Table 2[link]). However, the spike in the fingerprint plot (Fig. 3[link]) associated with this contact is masked by that of the O⋯H/H⋯O contacts, which appears in the plot at 0.80 Å < (di + de) < 1.15 Å. The H⋯H and C⋯H/H⋯C contacts have the second and third largest contributions, at 17.8 and 12.7%, respectively. Smaller spikes on the shoulder of the fingerprint plot, appearing at 1.15 Å < (di + de) < 1.160 Å, correspond to the N⋯H/H⋯N contacts.

Table 2
Percentage contribution of inter-atomic contacts to the Hirshfeld surface of the title compound

Contact Percentage contribution
F⋯H/H⋯F 35.6
H⋯H 17.8
C⋯H/H⋯C 12.7
N⋯H/H⋯N 8.7
O⋯H/H⋯O 8.7
F⋯F 6.3
O⋯C/C⋯O 2.5
F⋯O/O⋯F 2.4
F⋯N/N⋯F 1.8
C⋯F/F⋯C 1.7
C⋯C 1.4
N⋯C/C⋯N 0.3
[Figure 3]
Figure 3
The overall two-dimensional fingerprint plot for the title compound.

4. Database survey

A search of the November 2019 release of the Cambridge Structure Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), with updates through November 2012, was performed using the program ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). The search was limited to 2,3,5,6-tetra­fluoro­pyridine-based compounds with a secondary amine nitro­gen atom bound to the ring in the 4-position. This search resulted in 19 hits: the C—C—N—C torsion angles indicate planarity, presumably due to conjugation of the nitro­gen atom lone pair into the pyridine ring π system, in the majority of cases. In cases of non-planarity, this is typically due to steric factors of the substituent on the nitro­gen atom or conjugation of that nitro­gen lone pair into the π system of the substituent. For example, in CSD refcode NIXMEN (Ranjbar-Karimi et al., 2008[Ranjbar-Karimi, R., Sandford, G., Yufit, D. S. & Howard, J. A. K. (2008). J. Fluor. Chem. 129, 307-313.]), the bulk of a phenyl ring attached to the nitro­gen atom subsitutent discourages planarity, resulting in a torsion angle of 37.4°. In TAPRAD (Yamaguchi et al., 1992[Yamaguchi, K., Matsumura, G., Haga, N. & Shudo, K. (1992). Acta Cryst. C48, 559-561.]), the conjugation of the nitro­gen lone pair is into a urea substituent, vice the pyridine ring, with a torsion angle of 38.7°.

5. Synthesis and crystallization

2-[(Perfluoro­pyridin-4-yl)amino]­ethan-1-ol was synthesized using a known method and used without further purification (Peloquin, et al., 2020[Peloquin, A. J., Kure, D. A., Jennings, A. R., McMillen, C. D., Iacono, S. T. & Pennington, W. T. (2020). Cryst. Growth Des. 20, 5484-5492.]). Methacryloyl chloride was purchased from Sigma and distilled under reduced pressure prior to use.

A 500 ml round-bottom flask equipped with an addition funnel was charged with 2-[(perfluoro­pyridin-4-yl)amino]­ethan-1-ol (13.4 g, 62.3 mmol), tri­methyl­amine (10.7 ml, 77.2 mmol) and diethyl ether (300 ml). The solution was stirred under nitro­gen at 273–278 K for 15 minutes. Next, a solution of methacrylol chloride (7.50 ml, 76.8 mmol) in ether (10 ml) was added dropwise to the round-bottom flask using an addition funnel. The solution was allowed to gradually warm to room temperature and was stirred for 96 h under nitro­gen. Precipitated salts were removed by vacuum filtration and the filtrate was concentrated under reduced pressure. Crystals of the title compound in the form of colorless needles were obtained by recrystallization from a solution in warm (∼328 K) hexa­nes (9.0 g, 50.7%): m.p. 335–336 K; 1H NMR (500 MHz, CDCl3): δ 6.01 (s, vinyl, 1H), 5.61 (s, vinyl, 1H), 4.90 (bs, –NHCH2CH2O–, 1H), 4.38 (t, –NHCH2CH2O–, 2H, 3J = 5.0 Hz), 3.86 (q, –NHCH2CH2O–, 2H, 3J = 5.3 Hz), 1.93 (s, CH2=C(CH3)–, 3H); 19F NMR (471 MHz, CDCl3): δ −93.6 (bs, 2F), −163.4 (bs, 2F); 13C NMR (125 MHz, CDCl3): δ 167.8 (C=O), 135.8 (CH2=C(CH3)-), 126.4 [CH2=C(CH3)–], 63.7 (–OCH2CH2NH–), 44.1 (–OCH2CH2NH–), 18.3 [CH2=C(CH3)–].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. N-bound H atoms were refined freely. C-bound H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C11H10F4N2O2
Mr 278.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 106
a, b, c (Å) 6.8588 (1), 10.7797 (2), 15.7707 (2)
β (°) 91.251 (1)
V3) 1165.74 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.15
Crystal size (mm) 0.44 × 0.18 × 0.17
 
Data collection
Diffractometer XtaLAB Synergy, Single source at offset/far, HyPix3000
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.705, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 33062, 2583, 2211
Rint 0.035
(sin θ/λ)max−1) 0.647
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.06
No. of reflections 2583
No. of parameters 177
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 v2017.3-0 (Bruker, 2017); cell refinement: SAINT V8.38A (Bruker, 2017); data reduction: SAINT V8.38A (Bruker, 2017); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

2-[(2,3,5,6-Tetrafluoropyridin-4-yl)amino]ethyl 2-methylprop-2-enoate top
Crystal data top
C11H10F4N2O2F(000) = 568
Mr = 278.21Dx = 1.585 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.8588 (1) ÅCell parameters from 19836 reflections
b = 10.7797 (2) Åθ = 2.3–27.2°
c = 15.7707 (2) ŵ = 0.15 mm1
β = 91.251 (1)°T = 106 K
V = 1165.74 (3) Å3Needle, colourless
Z = 40.44 × 0.18 × 0.17 mm
Data collection top
XtaLAB Synergy, Single source at offset/far, HyPix3000
diffractometer
2211 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.035
φ and ω scansθmax = 27.4°, θmin = 2.3°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2019)
h = 88
Tmin = 0.705, Tmax = 1.000k = 1313
33062 measured reflectionsl = 1920
2583 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.4834P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2583 reflectionsΔρmax = 0.28 e Å3
177 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.76605 (14)0.04660 (8)0.49959 (5)0.0400 (2)
F20.49913 (12)0.06997 (8)0.37165 (5)0.0334 (2)
F30.92779 (11)0.36294 (8)0.24890 (5)0.0301 (2)
F41.17024 (11)0.32149 (9)0.37827 (5)0.0364 (2)
O10.53522 (13)0.47979 (9)0.28749 (6)0.0261 (2)
O20.30721 (15)0.62510 (10)0.30633 (7)0.0391 (3)
N10.96939 (17)0.18455 (11)0.43992 (7)0.0296 (3)
N20.56174 (17)0.22514 (11)0.23936 (7)0.0267 (3)
C10.8023 (2)0.12386 (13)0.43516 (8)0.0293 (3)
C20.66735 (19)0.13523 (12)0.37096 (8)0.0258 (3)
C30.69653 (18)0.21724 (12)0.30299 (8)0.0228 (3)
C40.87510 (19)0.28051 (12)0.30859 (8)0.0241 (3)
C50.99991 (19)0.25973 (13)0.37622 (8)0.0274 (3)
C60.53726 (19)0.32687 (13)0.17900 (8)0.0266 (3)
H6A0.4688480.2956830.1273490.032*
H6B0.6673410.3569030.1623480.032*
C70.42353 (19)0.43344 (13)0.21475 (8)0.0272 (3)
H7A0.4061130.4995310.1716630.033*
H7B0.2932370.4050860.2323750.033*
C80.45919 (19)0.57648 (13)0.32828 (9)0.0276 (3)
C90.5847 (2)0.61826 (14)0.40162 (9)0.0306 (3)
C100.7559 (2)0.54178 (16)0.42728 (10)0.0417 (4)
H10A0.8438160.5340690.3793960.063*
H10B0.7119270.4591660.4443810.063*
H10C0.8251250.5815800.4750120.063*
C110.5387 (3)0.72537 (16)0.43920 (10)0.0430 (4)
H11A0.6174100.7560410.4848590.052*
H11B0.4272480.7707000.4202120.052*
HN20.467 (3)0.1814 (16)0.2450 (10)0.032 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0534 (6)0.0383 (5)0.0284 (4)0.0099 (4)0.0041 (4)0.0129 (4)
F20.0342 (5)0.0303 (4)0.0360 (5)0.0056 (3)0.0052 (3)0.0048 (3)
F30.0244 (4)0.0381 (5)0.0277 (4)0.0070 (3)0.0027 (3)0.0070 (3)
F40.0247 (4)0.0491 (5)0.0351 (5)0.0030 (4)0.0091 (3)0.0017 (4)
O10.0213 (5)0.0304 (5)0.0264 (5)0.0017 (4)0.0040 (4)0.0011 (4)
O20.0270 (5)0.0447 (6)0.0453 (6)0.0115 (5)0.0054 (4)0.0008 (5)
N10.0328 (6)0.0332 (6)0.0228 (6)0.0102 (5)0.0038 (5)0.0007 (5)
N20.0236 (6)0.0292 (6)0.0270 (6)0.0065 (5)0.0051 (4)0.0039 (5)
C10.0382 (8)0.0281 (7)0.0216 (6)0.0111 (6)0.0035 (5)0.0028 (5)
C20.0276 (7)0.0241 (6)0.0260 (6)0.0012 (5)0.0038 (5)0.0004 (5)
C30.0229 (6)0.0238 (6)0.0217 (6)0.0024 (5)0.0001 (5)0.0018 (5)
C40.0242 (6)0.0263 (6)0.0217 (6)0.0012 (5)0.0001 (5)0.0008 (5)
C50.0228 (6)0.0329 (7)0.0265 (7)0.0043 (5)0.0034 (5)0.0047 (6)
C60.0243 (6)0.0342 (7)0.0211 (6)0.0043 (5)0.0051 (5)0.0044 (5)
C70.0203 (6)0.0345 (7)0.0266 (7)0.0031 (5)0.0062 (5)0.0062 (6)
C80.0227 (6)0.0309 (7)0.0295 (7)0.0034 (5)0.0021 (5)0.0065 (6)
C90.0310 (7)0.0341 (7)0.0269 (7)0.0055 (6)0.0005 (5)0.0016 (6)
C100.0419 (9)0.0459 (9)0.0369 (8)0.0100 (7)0.0106 (7)0.0114 (7)
C110.0490 (10)0.0442 (9)0.0356 (8)0.0130 (7)0.0057 (7)0.0044 (7)
Geometric parameters (Å, º) top
F1—C11.3413 (16)C4—C51.3714 (18)
F2—C21.3516 (15)C6—H6A0.9900
F3—C41.3495 (15)C6—H6B0.9900
F4—C51.3444 (16)C6—C71.505 (2)
O1—C71.4540 (15)C7—H7A0.9900
O1—C81.3367 (17)C7—H7B0.9900
O2—C81.2105 (16)C8—C91.4961 (19)
N1—C11.3201 (19)C9—C101.484 (2)
N1—C51.3111 (18)C9—C111.339 (2)
N2—C31.3522 (16)C10—H10A0.9800
N2—C61.4594 (17)C10—H10B0.9800
N2—HN20.811 (18)C10—H10C0.9800
C1—C21.3625 (19)C11—H11A0.9500
C2—C31.4072 (18)C11—H11B0.9500
C3—C41.4030 (18)
C8—O1—C7116.31 (10)C7—C6—H6A109.1
C5—N1—C1114.56 (11)C7—C6—H6B109.1
C3—N2—C6126.76 (11)O1—C7—C6106.82 (10)
C3—N2—HN2114.8 (11)O1—C7—H7A110.4
C6—N2—HN2115.4 (12)O1—C7—H7B110.4
F1—C1—C2118.98 (13)C6—C7—H7A110.4
N1—C1—F1116.09 (12)C6—C7—H7B110.4
N1—C1—C2124.93 (13)H7A—C7—H7B108.6
F2—C2—C1120.90 (12)O1—C8—C9112.50 (11)
F2—C2—C3117.95 (11)O2—C8—O1122.86 (13)
C1—C2—C3121.13 (12)O2—C8—C9124.62 (13)
N2—C3—C2119.91 (12)C10—C9—C8118.83 (13)
N2—C3—C4126.72 (12)C11—C9—C8117.68 (13)
C4—C3—C2113.32 (11)C11—C9—C10123.46 (14)
F3—C4—C3121.52 (11)C9—C10—H10A109.5
F3—C4—C5118.55 (12)C9—C10—H10B109.5
C5—C4—C3119.92 (12)C9—C10—H10C109.5
F4—C5—C4117.72 (12)H10A—C10—H10B109.5
N1—C5—F4116.16 (11)H10A—C10—H10C109.5
N1—C5—C4126.12 (13)H10B—C10—H10C109.5
N2—C6—H6A109.1C9—C11—H11A120.0
N2—C6—H6B109.1C9—C11—H11B120.0
N2—C6—C7112.48 (11)H11A—C11—H11B120.0
H6A—C6—H6B107.8
F1—C1—C2—F20.02 (19)C1—N1—C5—C41.0 (2)
F1—C1—C2—C3178.48 (11)C1—C2—C3—N2178.87 (12)
F2—C2—C3—N22.59 (18)C1—C2—C3—C41.25 (18)
F2—C2—C3—C4179.79 (11)C2—C3—C4—F3179.97 (11)
F3—C4—C5—F41.19 (18)C2—C3—C4—C50.49 (18)
F3—C4—C5—N1178.86 (12)C3—N2—C6—C781.68 (16)
O1—C8—C9—C108.07 (19)C3—C4—C5—F4179.25 (11)
O1—C8—C9—C11170.13 (13)C3—C4—C5—N10.7 (2)
O2—C8—C9—C10173.30 (15)C5—N1—C1—F1179.66 (11)
O2—C8—C9—C118.5 (2)C5—N1—C1—C20.2 (2)
N1—C1—C2—F2179.47 (12)C6—N2—C3—C2160.42 (13)
N1—C1—C2—C31.0 (2)C6—N2—C3—C422.3 (2)
N2—C3—C4—F32.5 (2)C7—O1—C8—O20.88 (19)
N2—C3—C4—C5177.92 (13)C7—O1—C8—C9179.54 (11)
N2—C6—C7—O161.78 (13)C8—O1—C7—C6179.42 (11)
C1—N1—C5—F4178.91 (11)
Hydrogen-bond geometry (Å, º) top
Cg11 is the centroid of the C1–C5/N1 ring.
D—H···AD—HH···AD···AD—H···A
N2—HN2···O2i0.811 (18)2.119 (17)2.8296 (15)146.3 (15)
C6—H6B···F30.992.232.9004 (15)124
C7—H7B···F3ii0.992.573.5368 (15)167
C7—H7B···F4ii0.992.633.3646 (16)131
C7—H7A···Cg1iii0.992.893.6047 (15)130
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1, y, z; (iii) x+3/2, y+1/2, z+1/2.
Percentage contribution of inter-atomic contacts to the Hirshfeld surface of the title compound top
ContactPercentage contribution
F···H/H···F35.6
H···H17.8
C···H/H···C12.7
N···H/H···N8.7
O···H/H···O8.7
F···F6.3
O···C/C···O2.5
F···O/O···F2.4
F···N/N···F1.8
C···F/F···C1.7
C···C1.4
N···C/C···N0.3
 

Funding information

Funding for this research was provided by: Air Force Office of Scientific Research.

References

First citationBrittain, W. D. G. & Cobb, S. L. (2019). Org. Biomol. Chem. 17, 2110–2115.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCorley, C. A., Kobra, K., Peloquin, A. J., Salmon, K., Gumireddy, L., Knoerzer, T. A., McMillen, C. D., Pennington, W. T., Schoffstall, A. M. & Iacono, S. T. (2019). J. Fluor. Chem. 228, 109409.  CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHouck, M. B., Fuhrer, T. J., Phelps, C. R., Brown, L. C. & Iacono, S. T. (2021). Macromolecules, 54, 5586–5594.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeloquin, A. J., Kure, D. A., Jennings, A. R., McMillen, C. D., Iacono, S. T. & Pennington, W. T. (2020). Cryst. Growth Des. 20, 5484–5492.  Web of Science CSD CrossRef CAS Google Scholar
First citationRanjbar-Karimi, R., Sandford, G., Yufit, D. S. & Howard, J. A. K. (2008). J. Fluor. Chem. 129, 307–313.  CAS Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSandford, G. (2012). Halogenated Heterocycles: Synthesis, Application and Environment, edited by J. Iskra, pp. 1–31. Berlin, Heidelberg: Springer.  Google Scholar
First citationSeyb, C. & Kerres, J. (2013). Eur. Polym. J. 49, 518–531.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationYamaguchi, K., Matsumura, G., Haga, N. & Shudo, K. (1992). Acta Cryst. C48, 559–561.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds