research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-({4-[(4-cyano­phen­­oxy)carbon­yl]phen­­oxy}carbon­yl)phenyl 4-(benz­yl­oxy)-3-chloro­benzoate

crossmark logo

aDepartment of Physics, ACS College of Engineering, Bangalore, Karnataka-560074, India, bDepartment of Physics, Government First Grade College, Magadi, Karnataka-562120, India, cRaman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, Karnataka, India, and dDepartment of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur, Karnataka-572103, India
*Correspondence e-mail: anilphy1234@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 April 2022; accepted 23 August 2022; online 8 September 2022)

The title compound, C35H22ClNO7, is a non-liquid crystal with a bent-shaped mol­ecule. The dihedral angles between adjacent aromatic rings in the mol­ecule (starting from the cyano­benzene ring) are 72.61 (2), 87.69 (4), 64.08 (2) and 88.23 (2)°, indicating that adjacent rings are close to perpendicular to each other. In the crystal, the mol­ecules are linked by weak C—H⋯N and C—H⋯π inter­actions, thereby forming a two-dimensional supra­molecular architecture in the ac plane. The most important contributions to the crystal packing arise from H⋯H (59.3%), S⋯H (27.4%) and O⋯H (7.5%) inter­actions, as determined by a Hirshfeld surface analysis.

1. Chemical context

Banana/bent-shaped liquid crystals (LCs) are of great inter­est in the field of display materials. In particular, the –CN groups at the terminal end (Walba et al., 2000[Walba, D. M., Körblova, E., Shao, R., Maclennan, J. E., Link, D. R., Glaser, M. A. & Clark, N. A. (2000). Science, 288, 2181-2184.]; Reddy & Sadashiva, 2004[Reddy, R. A. & Sadashiva, B. K. (2004). J. Mater. Chem. 14, 310-319.]) of banana-shaped LCs have been linked to their bent or bow (twisted) anisometric phase with C2v symmetry. Furthermore, they exhibit polar order, chirality and spontaneous polarization in the fluid phase. We have reported the crystal structures of LC inter­mediates and found that benz­yloxy group-substituted mol­ecules are prone to be hydro­phobic (Kashi et al., 2012[Kashi, H. K. A., Palakshamurthy, B. S., VinduVahini, M., Srinivasa, H. T. & Devarajegowda, H. C. (2010). Acta Cryst. E66, o2126.]; Al-Eryani et al., 2011[Al-Eryani, W. F. A., Srinivasa, H. T., Jeyaseelan, S., Sadashivaiah, T. & Devarajegowda, H. C. (2011). Acta Cryst. E67, o840.]). Benz­yloxy group-substituted mol­ecules also play a significant role in synthesizing bent-shaped LCs and non-LCs (Palakshamurthy et al., 2012[Palakshamurthy, B. S., Srinivasa, H. T., Kumar, V., Sreenivasa, S. & Devarajegowda, H. C. (2012). Acta Cryst. E68, o3382.]). Hence, it is useful to study benz­yloxy group-substituted bent-shaped mol­ecules to understand the structural properties and the relationship between LCs and crystal structures.

[Scheme 1]

In a continuation of this work, we investigated the title mol­ecule, which possesses five aromatic rings with three ester groups and a benz­yloxy group at one terminal end, presumably making the mol­ecule highly polar. Furthermore, it has a chloro group at one side and a cyano group at the opposite terminal end of the mol­ecule, inducing an unsymmetrical structure (Hartung et al., 2000[Hartung, H., Stettler, A. & Weissflog, W. (2000). J. Mol. Struct. 526, 31-40.]). The mol­ecule was subjected to LC characterization studies, but it did not show any LC properties, which may be due to the absence of a flexible alkyl chain. The title compound was synthesized according to the procedure described by Sadashiva et al. (2002[Sadashiva, B. K., Amaranatha Reddy, R., Pratibha, R. & Madhusudana, N. V. (2002). J. Mater. Chem. 12, 943-950.]) and its crystal structure is reported herein.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The dihedral angles between the aromatic rings are as follows: A/B = 64.08 (2), A/C= 29.75 (2), A/D = 87.69 (4), A/E = 16.07 (3), B/C = 88.23 (2), B/D = 87.88 (4), B/E = 68.87 (4), C/D = 82.27 (3), E/D = 72.61 (2) and C/E = 37.46 (4)°, where A, B, C, D and E are the C1–C6, C23–C28, C30–C35, C8–C13 and C15–C20, rings, respectively. The torsion angles associated with the benz­yloxy group are −7.2 (3) (C15—O4—C14—O3), −3.1 (3) (C8—O2—C7—O1) and −0.7 (2)° (C3—O6—C22—O5). Three short intra­molecular C—H⋯O contacts (Table 1[link]) may influence the mol­ecular conformation.

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 and Cg5 are the centroids of the C23–C28 and C30–C35 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.944 (18) 2.411 (17) 2.7213 (19) 98.9 (12)
C12—H12⋯O4 0.93 2.42 2.733 (2) 100
C24—H24⋯O6 0.93 2.40 2.721 (2) 100
C17—H17⋯N1i 0.93 2.62 3.504 (3) 158
C25—H25⋯Cg5ii 0.93 2.86 3.744 (2) 158
C31—H31⋯Cg4iii 0.93 2.82 3.702 (3) 158
Symmetry codes: (i) [-x+2, -y-1, -z+1]; (ii) [-x, -y-1, -z]; (iii) [-x+1, -y-1, -z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by weak C—H⋯N hydrogen bonds and weak C—H⋯π inter­actions (Table 1[link]) to generate a two-dimensional supra­molecular architecture propagating in the ac plane as shown in Fig. 2[link]. Furthermore, the mol­ecules are linked by centrosymmetric aromatic ππ stacking inter­actions with Cg4⋯Cg4 and Cg3⋯Cg3 = 3.6387 (10) Å (slippage = 1.086 Å) and 3.7740 (10) (slippage = 1.407 Å), respectively, as shown in Fig. 3[link] (Cg4 is the centroid of the C23–C28 ring and Cg3 is the centroid of the C15–C20 ring).

[Figure 2]
Figure 2
The mol­ecular packing of the title compound. Dashed lines indicate the C—H⋯π inter­actions.
[Figure 3]
Figure 3
The mol­ecular packing of the title compound. Dashed lines indicate the ππ stacking inter­actions.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for mol­ecules containing the (4-cyano­phen­oxy)carbonyl fragment resulted in four matches with CSD refcodes EWUSIA (Srinivasa et al., 2015[Srinivasa, H. T., Siddagangappa, P. B., Velmurugan, D., Chickegowda, D. H. & Suresh, H. (2015). Acta Chim. Slov. 62, 768-774.]), IBUXOV (Ji et al., 2017[Ji, Y., Peng, Z., Tong, B., Shi, J., Zhi, J. & Dong, Y. (2017). Dyes Pigments, 139, 664-671.]), IBUXUB (Yingchun et al., 2016[Yingchun, J., Zhe, P., Bin, T., Jianbing, S., Junge, Z. & Yuping, D. (2016). Dyes Pigm. 16, S0143-7208.]) and OCUTIS (Yingchun et al., 2016[Yingchun, J., Zhe, P., Bin, T., Jianbing, S., Junge, Z. & Yuping, D. (2016). Dyes Pigm. 16, S0143-7208.]). In all these structures there is a 4-cyano­phen­oxy grouping at the one end of the mol­ecule, similar to the title compound. In IBUXOV, IBUXUB and OCUTIS the same core exists at both ends of the mol­ecule. Sometimes the presence of a –CN group at both terminals of the mol­ecule induces liquid-crystal properties.

In EWUSIA, the dihedral angles between the cyano­benzoate ring and the first neighbouring benzene ring, and between the second neighbour and the first and second benzene rings are 50.47 (2), 10.15 (3) and 50.02 (5)° compared to 72.61 (2), 16.06 (2) and 87.69 (4)° in the title mol­ecule. In IBUXOV, the dihedral angles between the rings (cyano­benzoate ring and the neighbouring benzene ring) are 69.45 (2) and 64.20 (3)°, and 73.60 (3) and 84.16 (3)° between the adjacent cyano­benzoate and benzene rings themselves. In IBUXUB, the dihedral angles between the rings (cyano­benzoate and the neighbouring benzene ring) are 69.68 (2) and 74.28 (4)°, and 48.87 (2) and 89.88 (4)° between the cyano­benzoate and benzene rings. In OCUTIS, the dihedral angles between adjacent cyano­benzoate and benzene rings are 81.21 (4) and 54.43 (2)° compared to angles between the cyano­benzoate and benzene rings of 55.02 (3) and 84.20 (3)°.

5. Hirshfeld surface analysis

CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface. net.]) was used to perform the Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) to further qu­antify the various inter­molecular inter­actions. The Hirshfeld surface mapped over dnorm is illustrated in Fig. 4[link] and the associated two-dimensional fingerprint plots in Fig. 5[link]. The major contributions to the crystal structure are from H⋯H (26.9%), C⋯H (27.2%) and O⋯H (19.6%) contacts. In Figs. 6[link] and 7[link], the red spots on the dnorm and de surfaces represent the C—H⋯π inter­actions.

[Figure 4]
Figure 4
Hirshfeld surface of the title compound mapped with dnorm.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound.
[Figure 6]
Figure 6
Hirshfeld surface of the title compound mapped over dnorm, showing the C—H⋯N inter­actions.
[Figure 7]
Figure 7
Hirshfeld surface of the title compound mapped over shape-index, showing the C—H⋯π inter­actions.

6. Synthesis and crystallization

4-[(4-Cyano­phen­oxy)carbon­yl]phenyl 3-hy­droxy­benzoate (1 mmol) and 4-(benz­yloxy)-3-chloro­benzoic acid (1.2 mmol) were dissolved in dry chloro­form (50 ml). After the addition of N,N-di­cyclo­hexyl­carbodi­imide (1.2 mmol) and a catalytic amount of 4-(N,N-di­methyl­amino)­pyridine (DMAP), the mixture was stirred at room temperature for about 12 h. The di­cyclo­hexyl­urea that precipitated was filtered off and the filtrate diluted with chloro­form. This solution was washed with 2% aqueous acetic acid solution (10 ml) and 5% ice-cold sodium hydroxide solution (10 ml) and finally washed with water and dried over anhydrous sodium sulfate. The crude residue obtained was chromatographed on silica gel using chloro­form as an eluent. Removal of solvent from the eluate afforded the white target material, which was crystallized from a mixture of chloro­form and aceto­nitrile. Single crystals in the form of colourless prisms suitable for diffraction studies were grown from a solution in ethyl alcohol by slow evaporation.

IR (nujol) λmax: 3105, 3080, 2237, 1738, 1733, 1614, 1523, 1452, 1253, 1054 cm−1; 1H NMR (500 MHz, CDCl3) δ H: 8.22 (m, 3H, Ar—H) , 8.19 (m, 3H, Ar-H), 8.02 (m, 2H, Ar—H), 7.98–7.30 (m, 7H, Ar—H), 6.99 (m, 5H, Ar—H), 5.22 (s, 2H, Ar—O—CH2–) ppm; 13C NMR (125 MHz, CDCl3) δ: 165.2, 159.8, 154.6, 153.7, 151.2, 136.7, 132.6, 130.2, 129, 128.9, 128.6, 127.6, 127.1, 126.8, 123.9, 122.3, 121.3, 112.4 ppm. Micro elemental analysis calculated for C35H22ClNO7; C, 69.60; H, 3.67; Cl, 5.87; N, 2.32; found C, 69.68; H, 3.72; Cl, 5.91; N, 2.35%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atoms H2, H4 and H6 were fully refined. Other H atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C35H22ClNO7
Mr 603.98
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.0202 (1), 9.8474 (2), 19.4712 (4)
α, β, γ (°) 95.422 (1), 94.693 (1), 103.857 (1)
V3) 1477.66 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.19 × 0.18 × 0.16
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.966, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 25466, 5207, 4255
Rint 0.024
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.114, 1.03
No. of reflections 5207
No. of parameters 410
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2017),; cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL (Sheldrick, 2015b).

3-({4-[(4-Cyanophenoxy)carbonyl]phenoxy}carbonyl)phenyl 4-(benzyloxy)-3-chlorobenzoate top
Crystal data top
C35H22ClNO7F(000) = 624
Mr = 603.98Prism
Triclinic, P1Dx = 1.357 Mg m3
Hall symbol: -P 1Melting point: 445 K
a = 8.0202 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8474 (2) ÅCell parameters from 5212 reflections
c = 19.4712 (4) Åθ = 1.0–25.0°
α = 95.422 (1)°µ = 0.18 mm1
β = 94.693 (1)°T = 296 K
γ = 103.857 (1)°Prism, colourless
V = 1477.66 (5) Å30.19 × 0.18 × 0.16 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
5207 independent reflections
Radiation source: fine-focus sealed tube4255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 2.06 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 1111
Tmin = 0.966, Tmax = 0.971l = 2323
25466 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.2788P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
5207 reflectionsΔρmax = 0.26 e Å3
410 parametersΔρmin = 0.32 e Å3
6 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0158 (18)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O70.66155 (14)1.37557 (12)1.06583 (6)0.0604 (3)
O60.23387 (14)0.91624 (11)0.82866 (6)0.0562 (3)
O20.31260 (15)0.47851 (13)0.70608 (7)0.0701 (4)
O40.70509 (18)0.04285 (14)0.58733 (6)0.0691 (4)
O50.07952 (16)0.85138 (14)0.91636 (6)0.0683 (4)
O30.6173 (2)0.06006 (17)0.67969 (8)0.0920 (5)
O10.06206 (16)0.37006 (13)0.64386 (7)0.0734 (4)
N11.2423 (3)0.3715 (2)0.52599 (11)0.0906 (6)
C331.1312 (3)1.7706 (3)1.18897 (11)0.0805 (6)
H331.2003001.8425481.2207430.097*
C341.1522 (3)1.6373 (3)1.18768 (11)0.0812 (6)
H341.2352501.6181641.2189120.097*
C351.0499 (3)1.5295 (2)1.13982 (10)0.0710 (5)
H351.0666161.4390641.1383000.085*
C300.9239 (2)1.55720 (18)1.09471 (8)0.0561 (4)
C290.8184 (2)1.44647 (19)1.03988 (9)0.0652 (5)
H29A0.7906241.4894410.9990360.078*
H29B0.8839751.3789791.0267580.078*
C260.5546 (2)1.27075 (17)1.02142 (8)0.0496 (4)
C250.5822 (2)1.23457 (18)0.95365 (9)0.0599 (4)
H250.6788481.2853190.9356570.072*
C240.4681 (2)1.12408 (17)0.91246 (8)0.0550 (4)
H240.4888301.1011300.8670420.066*
C230.32400 (19)1.04740 (15)0.93774 (8)0.0456 (3)
C220.19929 (19)0.92835 (16)0.89583 (8)0.0472 (4)
C30.1246 (2)0.80725 (15)0.78186 (8)0.0476 (4)
C20.1912 (2)0.69862 (16)0.75737 (8)0.0479 (4)
C10.08826 (19)0.59329 (16)0.70854 (7)0.0449 (3)
C70.1464 (2)0.46904 (17)0.68174 (8)0.0517 (4)
C80.3800 (2)0.36353 (18)0.68774 (9)0.0577 (4)
C130.4822 (2)0.37070 (19)0.63451 (10)0.0608 (4)
H130.4990460.4473920.6091520.073*
C120.5600 (2)0.26220 (18)0.61907 (9)0.0572 (4)
H120.6307740.2661330.5833880.069*
C110.53291 (19)0.14754 (17)0.65663 (8)0.0494 (4)
C140.6184 (2)0.03171 (19)0.64397 (9)0.0551 (4)
C150.8124 (2)0.04890 (18)0.57562 (9)0.0566 (4)
C200.9844 (2)0.00167 (19)0.59635 (10)0.0654 (5)
H201.0272130.0918400.6196810.078*
C191.0936 (2)0.08343 (19)0.58204 (10)0.0657 (5)
H191.2113880.0508690.5958750.079*
C181.0288 (2)0.21700 (18)0.54721 (9)0.0564 (4)
C211.1458 (3)0.3048 (2)0.53442 (10)0.0671 (5)
C270.40785 (19)1.19401 (19)1.04630 (8)0.0526 (4)
C280.29494 (19)1.08363 (18)1.00565 (8)0.0530 (4)
H280.1983601.0326831.0235890.064*
C90.3515 (2)0.2511 (2)0.72563 (10)0.0674 (5)
H90.2814200.2482490.7615110.081*
C100.4279 (2)0.1426 (2)0.70986 (9)0.0615 (4)
H100.4089680.0656410.7350400.074*
C170.8540 (2)0.26542 (19)0.52624 (9)0.0621 (5)
H170.8103920.3549340.5022760.074*
C160.7448 (2)0.18100 (19)0.54090 (9)0.0632 (5)
H160.6267630.2129400.5274750.076*
C60.0776 (2)0.59977 (17)0.68582 (8)0.0501 (4)
C50.1410 (2)0.71063 (18)0.71118 (9)0.0558 (4)
H50.2523020.7147860.6957590.067*
C40.0391 (2)0.81545 (17)0.75948 (9)0.0538 (4)
C310.9056 (3)1.6916 (2)1.09726 (13)0.0897 (7)
H310.8213941.7119331.0669930.108*
C321.0097 (3)1.7978 (3)1.14393 (15)0.1065 (9)
H320.9962151.8890941.1444220.128*
Cl0.37075 (6)1.23731 (8)1.13083 (2)0.0967 (2)
H60.146 (2)0.5267 (19)0.6546 (9)0.057 (5)*
H20.303 (2)0.6937 (18)0.7740 (9)0.061 (5)*
H40.080 (2)0.8914 (19)0.7778 (9)0.057 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0531 (6)0.0670 (7)0.0505 (6)0.0008 (5)0.0086 (5)0.0123 (5)
O60.0596 (7)0.0465 (6)0.0544 (6)0.0017 (5)0.0134 (5)0.0115 (5)
O20.0542 (7)0.0636 (8)0.0892 (9)0.0284 (6)0.0096 (6)0.0289 (6)
O40.0899 (9)0.0714 (8)0.0624 (7)0.0493 (7)0.0188 (6)0.0061 (6)
O50.0600 (7)0.0755 (8)0.0566 (7)0.0063 (6)0.0056 (6)0.0044 (6)
O30.1290 (13)0.0867 (10)0.0914 (10)0.0694 (10)0.0423 (9)0.0305 (9)
O10.0672 (8)0.0598 (8)0.0861 (9)0.0257 (6)0.0185 (7)0.0296 (7)
N10.0917 (13)0.0785 (12)0.1191 (16)0.0446 (10)0.0413 (11)0.0130 (11)
C330.0729 (13)0.0866 (16)0.0667 (12)0.0043 (11)0.0038 (10)0.0185 (11)
C340.0696 (12)0.0989 (17)0.0638 (12)0.0017 (11)0.0122 (9)0.0277 (11)
C350.0744 (12)0.0626 (11)0.0720 (12)0.0052 (9)0.0026 (10)0.0236 (9)
C300.0519 (9)0.0587 (10)0.0518 (9)0.0056 (7)0.0090 (7)0.0046 (7)
C290.0636 (10)0.0634 (11)0.0573 (10)0.0031 (8)0.0135 (8)0.0061 (8)
C260.0488 (8)0.0514 (9)0.0461 (8)0.0120 (7)0.0033 (6)0.0037 (7)
C250.0622 (10)0.0569 (10)0.0510 (9)0.0031 (8)0.0164 (8)0.0036 (7)
C240.0620 (10)0.0524 (9)0.0458 (8)0.0062 (7)0.0139 (7)0.0049 (7)
C230.0461 (8)0.0443 (8)0.0471 (8)0.0146 (6)0.0034 (6)0.0019 (6)
C220.0464 (8)0.0473 (8)0.0490 (8)0.0142 (7)0.0053 (7)0.0046 (7)
C30.0507 (8)0.0411 (8)0.0476 (8)0.0066 (6)0.0103 (7)0.0032 (6)
C20.0439 (8)0.0497 (9)0.0487 (8)0.0123 (7)0.0051 (7)0.0034 (7)
C10.0470 (8)0.0447 (8)0.0433 (8)0.0145 (6)0.0046 (6)0.0011 (6)
C70.0513 (9)0.0517 (9)0.0515 (9)0.0187 (7)0.0001 (7)0.0068 (7)
C80.0485 (9)0.0568 (10)0.0656 (10)0.0224 (7)0.0064 (8)0.0173 (8)
C130.0616 (10)0.0555 (10)0.0678 (11)0.0238 (8)0.0021 (8)0.0005 (8)
C120.0581 (10)0.0600 (10)0.0575 (9)0.0249 (8)0.0076 (8)0.0016 (8)
C110.0477 (8)0.0524 (9)0.0474 (8)0.0189 (7)0.0041 (6)0.0060 (7)
C140.0588 (10)0.0564 (10)0.0518 (9)0.0239 (8)0.0010 (7)0.0045 (8)
C150.0700 (11)0.0565 (10)0.0516 (9)0.0327 (8)0.0109 (8)0.0006 (7)
C200.0719 (12)0.0497 (10)0.0717 (11)0.0170 (8)0.0076 (9)0.0112 (8)
C190.0564 (10)0.0588 (11)0.0800 (12)0.0158 (8)0.0080 (9)0.0055 (9)
C180.0646 (10)0.0527 (10)0.0578 (9)0.0240 (8)0.0177 (8)0.0026 (8)
C210.0734 (12)0.0601 (11)0.0766 (12)0.0275 (9)0.0263 (10)0.0079 (9)
C270.0433 (8)0.0724 (11)0.0414 (8)0.0163 (7)0.0051 (6)0.0021 (7)
C280.0406 (8)0.0688 (10)0.0467 (8)0.0082 (7)0.0061 (6)0.0052 (7)
C90.0664 (11)0.0776 (13)0.0630 (11)0.0300 (9)0.0144 (9)0.0054 (10)
C100.0645 (10)0.0645 (11)0.0591 (10)0.0247 (8)0.0076 (8)0.0028 (8)
C170.0723 (11)0.0507 (10)0.0618 (10)0.0198 (8)0.0057 (8)0.0105 (8)
C160.0602 (10)0.0657 (11)0.0629 (10)0.0224 (8)0.0004 (8)0.0083 (9)
C60.0513 (9)0.0478 (9)0.0492 (8)0.0137 (7)0.0005 (7)0.0029 (7)
C50.0518 (9)0.0562 (10)0.0623 (10)0.0225 (7)0.0017 (7)0.0016 (8)
C40.0614 (10)0.0446 (9)0.0594 (10)0.0215 (7)0.0121 (8)0.0013 (7)
C310.0782 (14)0.0788 (14)0.1071 (17)0.0395 (11)0.0310 (12)0.0313 (12)
C320.0958 (17)0.0809 (15)0.133 (2)0.0416 (13)0.0338 (16)0.0495 (15)
Cl0.0578 (3)0.1601 (6)0.0491 (3)0.0054 (3)0.0139 (2)0.0263 (3)
Geometric parameters (Å, º) top
O7—C261.3545 (19)C1—C61.385 (2)
O7—C291.441 (2)C1—C71.476 (2)
O6—C221.3591 (19)C8—C131.370 (3)
O6—C31.4086 (17)C8—C91.372 (3)
O2—C71.3563 (19)C13—C121.382 (2)
O2—C81.396 (2)C13—H130.9300
O4—C141.350 (2)C12—C111.386 (2)
O4—C151.4052 (19)C12—H120.9300
O5—C221.1953 (19)C11—C101.385 (2)
O3—C141.190 (2)C11—C141.477 (2)
O1—C71.1909 (19)C15—C201.363 (3)
N1—C211.141 (2)C15—C161.371 (2)
C33—C321.349 (3)C20—C191.376 (3)
C33—C341.360 (3)C20—H200.9300
C33—H330.9300C19—C181.381 (2)
C34—C351.393 (3)C19—H190.9300
C34—H340.9300C18—C171.382 (3)
C35—C301.378 (3)C18—C211.441 (2)
C35—H350.9300C27—C281.370 (2)
C30—C311.363 (3)C27—Cl1.7284 (15)
C30—C291.495 (2)C28—H280.9300
C29—H29A0.9700C9—C101.376 (3)
C29—H29B0.9700C9—H90.9300
C26—C251.384 (2)C10—H100.9300
C26—C271.388 (2)C17—C161.372 (2)
C25—C241.379 (2)C17—H170.9300
C25—H250.9300C16—H160.9300
C24—C231.376 (2)C6—C51.378 (2)
C24—H240.9300C6—H60.929 (18)
C23—C281.390 (2)C5—C41.380 (2)
C23—C221.471 (2)C5—H50.9300
C3—C21.369 (2)C4—H40.940 (18)
C3—C41.373 (2)C31—C321.376 (3)
C2—C11.392 (2)C31—H310.9300
C2—H20.944 (18)C32—H320.9300
C26—O7—C29115.72 (12)C8—C13—H13120.5
C22—O6—C3118.29 (12)C12—C13—H13120.5
C7—O2—C8117.25 (12)C13—C12—C11120.16 (16)
C14—O4—C15117.53 (13)C13—C12—H12119.9
C32—C33—C34119.68 (19)C11—C12—H12119.9
C32—C33—H33120.2C10—C11—C12119.62 (15)
C34—C33—H33120.2C10—C11—C14118.11 (16)
C33—C34—C35120.33 (19)C12—C11—C14122.22 (15)
C33—C34—H34119.8O3—C14—O4122.49 (15)
C35—C34—H34119.8O3—C14—O4122.49 (15)
C30—C35—C34119.8 (2)O3—C14—C11125.25 (16)
C30—C35—H35120.1O4—C14—C11112.23 (15)
C34—C35—H35120.1O4—C14—C11112.23 (15)
C31—C30—C35118.56 (17)C20—C15—C16122.31 (16)
C31—C30—C29119.80 (18)C20—C15—O4117.50 (16)
C35—C30—C29121.44 (18)C16—C15—O4120.08 (16)
O7—C29—C30109.61 (13)C20—C15—O4117.50 (16)
O7—C29—H29A109.7C16—C15—O4120.08 (16)
C30—C29—H29A109.7C15—C20—C19118.63 (16)
O7—C29—H29B109.7C15—C20—H20120.7
C30—C29—H29B109.7C19—C20—H20120.7
H29A—C29—H29B108.2C20—C19—C18120.22 (17)
O7—C26—C25124.66 (14)C20—C19—H19119.9
O7—C26—C27117.23 (13)C18—C19—H19119.9
C25—C26—C27118.10 (14)C19—C18—C17120.04 (16)
C24—C25—C26120.76 (15)C19—C18—C21118.90 (17)
C24—C25—H25119.6C17—C18—C21121.06 (16)
C26—C25—H25119.6N1—C21—C18177.7 (2)
C23—C24—C25120.81 (14)C28—C27—C26121.24 (14)
C23—C24—H24119.6C28—C27—Cl119.84 (12)
C25—C24—H24119.6C26—C27—Cl118.91 (12)
C24—C23—C28118.75 (14)C27—C28—C23120.32 (14)
C24—C23—C22122.69 (14)C27—C28—H28119.8
C28—C23—C22118.56 (14)C23—C28—H28119.8
O5—C22—O6122.68 (14)C8—C9—C10119.15 (17)
O5—C22—O6122.68 (14)C8—C9—H9120.4
O5—C22—C23125.70 (14)C10—C9—H9120.4
O6—C22—C23111.61 (13)C9—C10—C11120.26 (18)
O6—C22—C23111.61 (13)C9—C10—H10119.9
C2—C3—C4122.09 (14)C11—C10—H10119.9
C2—C3—O6117.58 (14)C16—C17—C18119.79 (16)
C4—C3—O6120.24 (14)C16—C17—H17120.1
C2—C3—O6117.58 (14)C18—C17—H17120.1
C4—C3—O6120.24 (14)C15—C16—C17119.01 (17)
C3—C2—C1118.53 (15)C15—C16—H16120.5
C3—C2—H2120.9 (11)C17—C16—H16120.5
C1—C2—H2120.5 (11)C5—C6—C1120.23 (15)
C6—C1—C2119.99 (14)C5—C6—H6120.9 (11)
C6—C1—C7117.75 (14)C1—C6—H6118.8 (11)
C2—C1—C7122.20 (14)C6—C5—C4119.93 (15)
O1—C7—O2122.12 (14)C6—C5—H5120.0
O1—C7—O2122.12 (14)C4—C5—H5120.0
O1—C7—C1126.23 (15)C3—C4—C5119.21 (15)
O2—C7—C1111.65 (13)C3—C4—H4119.5 (11)
O2—C7—C1111.65 (13)C5—C4—H4121.3 (11)
C13—C8—C9121.82 (16)C30—C31—C32121.0 (2)
C13—C8—O2118.33 (17)C30—C31—H31119.5
C9—C8—O2119.73 (16)C32—C31—H31119.5
C13—C8—O2118.33 (17)C33—C32—C31120.6 (2)
C9—C8—O2119.73 (16)C33—C32—H32119.7
C8—C13—C12118.98 (17)C31—C32—H32119.7
C32—C33—C34—C350.5 (4)C15—O4—C14—C11170.88 (14)
C33—C34—C35—C301.6 (3)C10—C11—C14—O37.1 (3)
C34—C35—C30—C311.5 (3)C12—C11—C14—O3170.25 (19)
C34—C35—C30—C29176.40 (17)C10—C11—C14—O4174.84 (15)
C26—O7—C29—C30179.10 (15)C12—C11—C14—O47.8 (2)
C31—C30—C29—O792.2 (2)C10—C11—C14—O4174.84 (15)
C35—C30—C29—O793.0 (2)C12—C11—C14—O47.8 (2)
C29—O7—C26—C253.6 (3)C14—O4—C15—C2098.2 (2)
C29—O7—C26—C27175.84 (15)C14—O4—C15—C1685.5 (2)
O7—C26—C25—C24178.60 (17)C16—C15—C20—C190.3 (3)
C27—C26—C25—C240.9 (3)O4—C15—C20—C19176.45 (16)
C26—C25—C24—C230.1 (3)O4—C15—C20—C19176.45 (16)
C25—C24—C23—C280.2 (3)C15—C20—C19—C180.2 (3)
C25—C24—C23—C22179.69 (16)C20—C19—C18—C170.4 (3)
C3—O6—C22—O50.7 (2)C20—C19—C18—C21178.57 (18)
C3—O6—C22—C23179.61 (13)O7—C26—C27—C28178.18 (15)
C24—C23—C22—O5173.94 (17)C25—C26—C27—C281.3 (3)
C28—C23—C22—O56.0 (3)O7—C26—C27—Cl0.5 (2)
C24—C23—C22—O67.2 (2)C25—C26—C27—Cl179.98 (14)
C28—C23—C22—O6172.84 (14)C26—C27—C28—C231.0 (3)
C24—C23—C22—O67.2 (2)Cl—C27—C28—C23179.65 (13)
C28—C23—C22—O6172.84 (14)C24—C23—C28—C270.2 (2)
C22—O6—C3—C2110.45 (16)C22—C23—C28—C27179.86 (15)
C22—O6—C3—C472.9 (2)C13—C8—C9—C100.1 (3)
C4—C3—C2—C10.3 (2)O2—C8—C9—C10175.81 (15)
O6—C3—C2—C1176.95 (13)O2—C8—C9—C10175.81 (15)
O6—C3—C2—C1176.95 (13)C8—C9—C10—C110.3 (3)
C3—C2—C1—C60.1 (2)C12—C11—C10—C90.3 (3)
C3—C2—C1—C7177.12 (15)C14—C11—C10—C9177.15 (16)
C8—O2—C7—O13.1 (3)C19—C18—C17—C160.8 (3)
C8—O2—C7—C1176.36 (15)C21—C18—C17—C16178.11 (17)
C6—C1—C7—O12.8 (3)C20—C15—C16—C170.2 (3)
C2—C1—C7—O1174.35 (17)O4—C15—C16—C17175.92 (16)
C6—C1—C7—O2177.76 (14)O4—C15—C16—C17175.92 (16)
C2—C1—C7—O25.1 (2)C18—C17—C16—C150.7 (3)
C6—C1—C7—O2177.76 (14)C2—C1—C6—C50.3 (2)
C2—C1—C7—O25.1 (2)C7—C1—C6—C5177.48 (15)
C7—O2—C8—C1399.95 (19)C1—C6—C5—C40.1 (3)
C7—O2—C8—C984.0 (2)C2—C3—C4—C50.5 (3)
C9—C8—C13—C120.6 (3)O6—C3—C4—C5177.03 (14)
O2—C8—C13—C12175.35 (14)O6—C3—C4—C5177.03 (14)
O2—C8—C13—C12175.35 (14)C6—C5—C4—C30.3 (3)
C8—C13—C12—C110.7 (2)C35—C30—C31—C320.3 (4)
C13—C12—C11—C100.2 (2)C29—C30—C31—C32175.3 (2)
C13—C12—C11—C14177.55 (15)C34—C33—C32—C310.7 (4)
C15—O4—C14—O37.2 (3)C30—C31—C32—C330.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg4 and cg5 are the centroids of the C23–C28 and C30–C35 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.944 (18)2.411 (17)2.7213 (19)98.9 (12)
C12—H12···O40.932.422.733 (2)100
C24—H24···O60.932.402.721 (2)100
C17—H17···N1i0.932.623.504 (3)158
C25—H25···Cg5ii0.932.863.744 (2)158
C31—H31···Cg4iii0.932.823.702 (3)158
Symmetry codes: (i) x+2, y1, z+1; (ii) x, y1, z; (iii) x+1, y1, z.
 

Funding information

The authors thank the Vision Group on Science and Technology, Government of Karnataka, for the award of a major project under the CISEE scheme (reference No. VGST/CISEE/GRD-319/2014–15) to carry out this work at the Department of PG Studies and Research in Physics, UCS, Tumkur University.

References

First citationAl-Eryani, W. F. A., Srinivasa, H. T., Jeyaseelan, S., Sadashivaiah, T. & Devarajegowda, H. C. (2011). Acta Cryst. E67, o840.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHartung, H., Stettler, A. & Weissflog, W. (2000). J. Mol. Struct. 526, 31–40.  Web of Science CSD CrossRef CAS Google Scholar
First citationJi, Y., Peng, Z., Tong, B., Shi, J., Zhi, J. & Dong, Y. (2017). Dyes Pigments, 139, 664–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKashi, H. K. A., Palakshamurthy, B. S., VinduVahini, M., Srinivasa, H. T. & Devarajegowda, H. C. (2010). Acta Cryst. E66, o2126.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalakshamurthy, B. S., Srinivasa, H. T., Kumar, V., Sreenivasa, S. & Devarajegowda, H. C. (2012). Acta Cryst. E68, o3382.  CSD CrossRef IUCr Journals Google Scholar
First citationReddy, R. A. & Sadashiva, B. K. (2004). J. Mater. Chem. 14, 310–319.  Web of Science CrossRef CAS Google Scholar
First citationSadashiva, B. K., Amaranatha Reddy, R., Pratibha, R. & Madhusudana, N. V. (2002). J. Mater. Chem. 12, 943–950.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrinivasa, H. T., Siddagangappa, P. B., Velmurugan, D., Chickegowda, D. H. & Suresh, H. (2015). Acta Chim. Slov. 62, 768–774.  Web of Science CAS PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface. net.  Google Scholar
First citationWalba, D. M., Körblova, E., Shao, R., Maclennan, J. E., Link, D. R., Glaser, M. A. & Clark, N. A. (2000). Science, 288, 2181–2184.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYingchun, J., Zhe, P., Bin, T., Jianbing, S., Junge, Z. & Yuping, D. (2016). Dyes Pigm. 16, S0143–7208.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds