research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Distorted zinc coordination polyhedra in bis­­(1-eth­­oxy-2-{[(2-meth­­oxy­eth­yl)imino]­meth­yl}propan-1-olato)zinc, a possible CVD precursor for zinc oxide thin films

crossmark logo

aDepartment of Physics, Chemistry and Mathematics, Alabama A & M University, 4900 Meridian Street N, Huntsville, Alabama 35811-7500, USA, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: keneshia.johnson@aamu.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 January 2022; accepted 7 February 2022; online 10 February 2022)

A new metal–organic precursor for the chemical vapor deposition of zinc oxide thin films, [Zn(C9H16NO3)2], has been synthesized and characterized by 1H and 13C NMR spectroscopy, single-crystal X-ray diffraction and thermogravimetric analysis. The asymmetric unit of the title compound consists of two mol­ecules (Z′ = 2), with different zinc coordination polyhedra. In one mol­ecule, the metal atom is in a distorted trigonal–bipyramidal ZnN2O3 environment (τ5 = 0.192) with a long bond to an ether O donor atom [Zn—O = 2.727 (6) Å]. In the other, the Zn atom is in a distorted ZnN2O4 octa­hedral environment with long bonds to the ether O donors of both ligands [Zn—O = 2.514 (4) and 2.661 (4) Å; O—Zn—O = 82.46 (14)°]. The crystal structure features weak C—H⋯·O inter­actions.

1. Chemical context

Zinc oxide is of considerable current inter­est in materials science because it is a semiconductor with a band gap of 3.37 eV and it possesses high electron mobility, a high exciton binding energy of 60 meV, strong room-temperature luminescence, photoelectric response, high transparency, and high photocatalytic activity (Ganesh et al., 2017[Ganesh, R. S., Durgadevi, E., Navaneethan, M., Patil, V. L., Ponnusamy, S., Muthamizhchelvan, C., Kawasaki, S., Patil, P. S. & Hayakawa, Y. (2017). J. Alloys Compd. 721, 182-190.]; Das & Sarkar, 2017[Das, M. & Sarkar, D. (2017). Ceram. Int. 43, 11123-11131.]). As a result of these favorable properties, ZnO has potential applications in solar cells, sensors, ultra-violet laser diodes, actuators, field-emission devices, photocatalysts and piezoelectric devices (Galstyann et al., 2015[Galstyan, V., Comini, E., Baratto, C., Faglia, G. & Sberveglieri, G. (2015). Ceram. Int. 41, 14239-14244.]; Hong et al., 2017[Hong, K. S., Kim, J. W., Bae, J. S., Hong, T. E., Jeong, E. D., Jin, J. S., Ha, M. G. & Kim, J. P. (2017). Physica B, 504, 103-108.]). The identification of a viable technique that is capable of depositing zinc oxide thin films of high purity and high quality is a significant challenge. Metal–organic chemical vapor deposition (MOCVD) has proven to be a promising method for depositing high-quality ZnO thin films at a high growth rate over a large area (Malandrino et al., 2005[Malandrino, G., Blandino, M., Perdicaro, L. M. S., Fragalà, I. L., Rossi, P. & Dapporto, P. (2005). Inorg. Chem. 44, 9684-9689.]). The success of the MOCVD process depends heavily on the precursor. An `ideal' MOCVD precursor should be volatile, exhibit a sufficiently large temperature window between evaporation and film deposition, and decompose without the incorporation of residual impurities. Diethyl zinc, Zn(C2H5)2, in combination with an oxygen source, H2O, or ROH is the traditional precursor for depositing ZnO thin films (Smith, 1983[Smith, F. (1983). Appl. Phys. Lett. 43, 1108-1110.]). As a result of the pyrophoric nature of the alkyl zinc reagents and the gas-phase pre-reaction that results in precursor decomposition and film contamination, alternative precursors such as alkoxide, dialkyl zinc precursors of acetate and acetyl­acetonate have been employed (Sato et al., 1994[Sato, H., Minami, T., Miyata, T., Takata, S. & Ishii, M. (1994). Thin Solid Films, 246, 65-70.]). The drawback with these precursors is that impurities are often incorporated in the deposited ZnO films. These disadvantages have resulted in a search for single-source precursors. A single-source precursor is one that has the oxygen already present in the precursor, thereby eliminating the need for an external oxygen source.

[Scheme 1]

The synthesis of two thermally stable ketoiminato zinc complexes [Zn{[(CH2)xOCH3]NC(CH3)=C(H)C(CH3)=O}2] (1: x = 2; 2: x = 3) were reported with melting points as low as 330 K (Barreca et al., 2010[Barreca, D., Bekermann, D., Comini, E., Devi, A., Fischer, R. A., Gasparotto, A., Maccato, C., Sberveglieri, G. & Tondello, E. (2010). Sens. Actuators B Chem. 149, 1-7.]; Bekermann et al., 2010a[Bekermann, D., Rogalla, D., Becker, H.-W., Winter, M., Fischer, R. A. & Devi, A. (2010a). Eur. J. Inorg. Chem. pp. 1366-1372.],b[Bekermann, D., Gasparotto, A., Barreca, D., Bovo, L., Devi, A., Fischer, R. A., Lebedev, O. I., Maccato, C., Tondello, E. & Van Tendeloo, G. (2010b). Cryst. Growth Des. 10, 2011-2018.]). In another case, ketoiminato zinc complexes that incorporate ether O-donor atoms have shown promise (Cosham et al., 2015[Cosham, S. D., Kociok-Köhn, G., Johnson, A. L., Hamilton, J. A., Hill, M. S., Molloy, K. C. & Castaing, R. (2015). Eur. J. Inorg. Chem. pp. 4362-4372.]). With these favorable results in mind, we decided to further explore the β-enamino­alk­oxy­ester ligand platform. Our research group has demonstrated that high-quality ZnO thin films with fewer impurities can be accomplished by utilizing Zn–bis-β-imino­esterate complexes (Matthews et al., 2006[Matthews, J. S., Onakoya, O. O., Ouattara, T. S. & Butcher, R. J. (2006). Dalton Trans. pp. 3806-3811.]; Onakoya et al., 2011[Onakoya, O. O., Johnson, K. O., Butcher, R. J. & Matthews, J. S. (2011). Acta Cryst. E67, m1692.]; Gbemigun et al., 2019[Gbemigun, O. O., Butcher, R. J. & Matthews, J. S. (2019). J. Chem. Crystallogr. 49, 80-86.]). Studies have shown that the organic ligand attached to the N moiety of the zinc complex has a significant effect on the level of carbon incorporated into the deposited ZnO thin film (Manzi et al., 2015[Manzi, J. A., Knapp, C. E., Parkin, I. P. & Carmalt, C. J. (2015). Eur. J. Inorg. Chem. pp. 3658-3665.]), thus the investigation of such compounds with different substituents at the N atom is of significant inter­est in improving precursors for these ZnO films. Herein, the synthesis, characterization and crystal structure of the title compound 1 are reported.

2. Structural commentary

The synthesis of [Zn(C9H16NO3)2] (1), was carried out by the direct reaction of 1a with diethyl zinc in a 2:1 molar ratio under an inert atmosphere of nitro­gen utilizing Schlenk techniques to afford white single crystals of complex 1. The 1H-NMR and 13C-NMR spectra of 1 contain the characteristic resonances in the expected regions. The 1H-NMR spectrum in particular shows the absence of the N—H resonance (δ = 8.63) that was present in the free ligand (1a), indicating the absence of any starting material. Generally, the introduction of a Lewis acidic metal center into the ligand sphere results in the proton and carbon resonances being shifted downfield (Matthews et al., 2006[Matthews, J. S., Onakoya, O. O., Ouattara, T. S. & Butcher, R. J. (2006). Dalton Trans. pp. 3806-3811.]). This was not observed in this study: in going from the free ligand (1a) to complex 1 most of the proton and carbon resonances were slightly shifted upfield. This inconsistency suggests that the electron density in the chelate ring of 1 is not completely delocalized around the ring. If complete delocalization was observed, the carbon atoms and protons in the complex would have been deshielded and the resonances would have been shifted downfield.

The title complex, C18H32N2O6Zn, 1, crystallizes in the monoclinic space group P21/c with eight mol­ecules in the unit cell, thus two in the asymmetric unit (Z′ = 2 and named as A and B for the purposes of discussion), which have adopted different metal-ion coordinations and conformations (Table 1[link]). In mol­ecule A (Fig. 1[link]), the Zn atom is in a distorted trigonal–bipyramidal ZnN2O3 environment (τ5 = 0.192; Addison et al., 1984[Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) with a long bond to an ether O donor atom [Zn1—O4A = 2.727 (6) Å] and the ligand N atoms in the axial sites [N1A—Zn1—N2A = 144.05 (19)°].

Table 1
Selected geometric parameters (Å, °)

Zn1—N1A 1.958 (4) Zn2—N2B 2.004 (5)
Zn1—N2A 1.966 (5) Zn2—O1B 2.017 (4)
Zn1—O2A 1.974 (4) Zn2—O2B 2.045 (4)
Zn1—O1A 2.025 (4) Zn2—O6B 2.514 (4)
Zn1—O4A 2.727 (6) Zn2—O4B 2.661 (4)
Zn2—N1B 1.990 (4)    
       
N1A—Zn1—N2A 144.05 (19) N1B—Zn2—O2B 101.90 (17)
N1A—Zn1—O2A 112.56 (17) N2B—Zn2—O2B 92.60 (18)
N2A—Zn1—O2A 94.98 (17) O1B—Zn2—O2B 102.98 (17)
N1A—Zn1—O1A 95.04 (17) N1B—Zn2—O6B 86.02 (16)
N2A—Zn1—O1A 96.25 (17) N2B—Zn2—O6B 76.39 (17)
O2A—Zn1—O1A 110.72 (18) O1B—Zn2—O6B 85.76 (16)
N1A—Zn1—O4A 71.83 (18) O2B—Zn2—O6B 167.48 (16)
N2A—Zn1—O4A 84.34 (17) N1B—Zn2—O4B 73.58 (16)
O2A—Zn1—O4A 93.49 (18) N2B—Zn2—O4B 83.20 (17)
O1A—Zn1—O4A 155.58 (17) O1B—Zn2—O4B 164.14 (14)
N1B—Zn2—N2B 152.5 (2) O2B—Zn2—O4B 90.42 (15)
N1B—Zn2—O1B 95.08 (17) O6B—Zn2—O4B 82.46 (14)
N2B—Zn2—O1B 104.33 (18)    
[Figure 1]
Figure 1
The mol­ecular structure of mol­ecule A showing the long Zn—O (ether) inter­action influencing the conformation of the substituent. Atomic displacement parameters are shown at the 30% probability level.

In mol­ecule B (Fig. 2[link]), the Zn atom is in a distorted octa­hedral environment with long bonds to the ether O donors of both ligands [Zn—O bond lengths of 2.514 (4) and 2.661 (4) Å; O6B—Zn2—O4B bond angle = 82.46 (14)°]. Also in B there is disorder in some of the ethyl substituent groups [occupancies of 0.717 (13)/0.283 (13) and 0.68 (3)/0.32 (3)]. In B, the ether donor atoms are arranged in a cis fashion so the complex does not exhibit tetra­gonal distortion. There are significant differences in the short Zn—O and Zn—N bond lengths in the two mol­ecules [Zn—O = 1.974 (4)/2.025 (4) and 2.017 (4)/2.045 (4) Å: Zn—N = 1.958 (4)/1.966 (5) and 1.990 (4)/2.004 (5) Å for A and B, respectively].

[Figure 2]
Figure 2
The mol­ecular structure of mol­ecule B (major disorder component only) showing long Zn—O (ether) bonds (arranged in a cis fashion) resulting a distorted octa­hedral coordination for the metal atom. Atomic displacement parameters are shown at the 30% probability level.

Both keto­imine chelate rings are almost planar (r.m.s. deviations of 0.018 and 0.026 Å for mol­ecule A and 0.002 and 0.014 Å for mol­ecule B) with the zinc atoms deviating from the respective planes by 0.089 (6)/0.220 (6) Å and 0.248 (2)/0.030 (7) Å for A and B, respectively. The dihedral angles between the chelate planes in 1 are 71.4 (1) and 77.3 (1)° for the A and B mol­ecules, respectively.

3. Supra­molecular features

As far as the packing of 1 is concerned, there are both inter- and intra­molecular C—H⋯O inter­actions (Table 2[link]). While these are presumably weak based on their length, it can be seen that the intra­molecular C—H⋯O inter­actions influence the conformations adopted by the side chains for both mol­ecules (see Figs. 1[link], 2[link] and 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6A—H6AB⋯O3Bi 0.98 2.63 3.568 (8) 161
C15A—H15A⋯O6A 0.98 2.64 3.396 (7) 134
C15A—H15C⋯O3Aii 0.98 2.65 3.369 (7) 131
C18A—H18A⋯O3Aiii 0.98 2.60 3.304 (8) 129
C8B—H8BA⋯O2B 0.99 2.60 3.279 (7) 126
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Packing diagram for 1 showing both the intra- and inter­molecular C—H⋯O inter­actions.

4. Database survey

Four closely related structures to 1 have been reported [Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcodes SUPXEI, SUPXIM, SUPXOS and SUPXUY; Cosham et al., 2015[Cosham, S. D., Kociok-Köhn, G., Johnson, A. L., Hamilton, J. A., Hill, M. S., Molloy, K. C. & Castaing, R. (2015). Eur. J. Inorg. Chem. pp. 4362-4372.]], which incorporate both a keto­imine ligand along with ether O donors. In each case the ether donors are in cis positions with Zn—O bond lengths ranging from 2.316 to 2.575 Å.

There are five previously reported structures of ketoiminato zinc complexes (EFIWEY and EFIWIC, Gbemigun et al., 2019[Gbemigun, O. O., Butcher, R. J. & Matthews, J. S. (2019). J. Chem. Crystallogr. 49, 80-86.]; IDAWAN, Onakoya et al., 2011[Onakoya, O. O., Johnson, K. O., Butcher, R. J. & Matthews, J. S. (2011). Acta Cryst. E67, m1692.]; WELSOW, Matthews et al., 2006[Matthews, J. S., Onakoya, O. O., Ouattara, T. S. & Butcher, R. J. (2006). Dalton Trans. pp. 3806-3811.]; YUJMAT, Manzi et al., 2015[Manzi, J. A., Knapp, C. E., Parkin, I. P. & Carmalt, C. J. (2015). Eur. J. Inorg. Chem. pp. 3658-3665.]). These all contain zinc in a slightly distorted tetra­hedral environment [τ4′ = 0.65, 0.65 0.73, 0.82, 0.79 and 0.73 (Okuniewski et al., 2015[Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47-57.]), respectively, for EFIWEY, EFIWIC, IDAWAN, WELSOW and YUJMAT]. However EFIWEY and EFIWIC are both dimers with only one imino­esterate ligand attached to each zinc atom so IDAWAN, WELSOW and YUJMAT are the most relevant structures to the present example.

The asymmetry in the out-of-plane deviations of the Zn atoms in 1 noted above is a pattern that is repeated in the three most closely related structures (deviations = 0.084/0.341, 0.146/0.373 and 0.152/0.208 Å for IDAWAN, WELSOW and YUJMAT, respectively). The dihedral angles between the chelate-ring planes for IDAWAN, WELSOW and YUJMAT are 89.29, 81.0 and 72.47°, respectively.

5. Experimental

All chemicals were purchased from Aldrich and used without further purification. The 1H and 13C-NMR spectra were recorded with a Bruker AVANCE 400MHz Ultra ShieldTM NMR spectrometer. Chemical shifts for 1H (400MHz) and 13C (100MHz) were referenced to CDCl3 and reported in ppm. Thermogravimetric analyses were performed under a nitro­gen atmosphere at 1atm using a Perkin–Elmer thermogravimetric analyzer series 7 at a heating rate of 10°C min−1. All manipulations were carried out using oven dried, standard reflux glassware consisting of a condenser connected to a round-bottom flask. Distillation was performed using oven-dried micro-still apparatus.

5.1. Synthesis and crystallization

Synthesis of ethyl-3-N-(2-meth­oxy­ethyl­amino)­but-2-enoate (1a)

Ethyl aceto­acetate (5.00 g, 38.42 mmol) and 2-meth­oxy­ethyl­amine (5.77 g, 76.84 mmol) were added to a 100 ml round-bottom flask via syringe. The solution was refluxed for 1h with constant stirring. The resulting mixture was allowed to cool to room temperature and approximately 30 ml of hexane was added to dissolve the product. The solution was then dried over anhydrous sodium sulfate. The resulting mixture was then filtered, and the solvent was evaporated in vacuo to afford a viscous yellow oil. This crude product was then purified via vacuum distillation to afford a viscous light-yellow oil (1a) (yield 73.02%, 5.22 g), b.p. 389–396 K at 1.2 mm Hg; 1H NMR 400 MHz, CDCl3, δ ppm: 1.21 (t, 3H, (OCH2CH3), 1.90 (s, 3H, CH3CN), 3.35 (s, 3H, OCH3), 3.36 (q, 2H, NCH2CH2), 3.46 (t, 2H, OCH2CH2), 4.05 (q, 2H, OCH2CH3), 4.43 (s, 1H, CCHCO), 8.63 (br s, 1H, NH); 13C NMR 100 MHz, CDCl3, δ ppm: 14.57 [OCH2CH3], 19.43 [CH3CN], 42.78 [CH2CH2N], 58.20 [OCH3], 58.99 [OCH2CH3], 71.80 [OCH2CH2], 82.60 [CCHCO], 161.55 [CH3CN], 170.44 [CHCO].

Synthesis and crystallization of [Zn (C9H16NO3)2] (1)

50ml of dried hexa­nes, ethyl-3-N-(2-meth­oxy­ethyl­amino) butano­ate (1a) (6.87 g, 36.5 mmol) and a stir bar were added to a 250 ml Schlenk flask under an inert atmosphere of nitro­gen. The mixture was degassed with N2 gas for approximately fifteen minutes then diethyl zinc (2.25 g, 18.25 mmol) was added. The resulting mixture was refluxed for 4 h with constant stirring. The solvent was removed in vacuo at room temperature to afford a viscous yellow oil. The yellow oil was recrystallized from a solution in dry hexa­nes for 48 h at 243 K to afford white needle-like crystals. The hexa­nes were removed using a cannula and the white needle-like crystals were purified by washing with cold 10 ml portions of dried hexa­nes (yield 71.7%, 5.73 g), m.p. 311.0–311.2 K. 1H NMR 400 MHz, (CDCl3, ppm): δ 1.18 (t, 6H, (OCH2CH3), 1.92 (s, 6H, CH3CN), 3.20 (s, 6H, OCH3), 3.43 (m, 4H, NCH2CH2), 3.43 (m, 4H, OCH2CH2), 4.03 (q, 4H, OCH2CH3), 4.28 (s, 2H, CCHCO); 13C NMR 100 MHz, CDCl3, δ ppm: 15.01 [OCH2CH3], 22.87 [CH3CN], 49.66 [CH2CH2N], 58.87 [OCH3], 59.01 [OCH2CH3], 72.37 [OCH2CH2], 78.14 [CCHCO], 171.37 [CH3CN], 172.31 [CHCO].

5.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. This was a highly air-sensitive compound and the best available crystal was chosen. However it was non-merohedrally twinned with multiple components. Integration and refinement using the hklf5 (twinned) file was not successful so the hklf4 file was used. Consequently there are two significant difference peaks in chemically unreasonable positions. A face-indexed absorption correction was applied but there are still some residual peaks near the metal atoms. For one of the asymmetric mol­ecules there is disorder in some of the ethyl substituents. These were constrained to have similar metrical parameters and refined with occupancy factors of 0.717 (13)/0.283 (13) and 0.68 (3)/0.32 (3). A riding model was used for the H atoms with atomic displacement parameters = 1.2Ueq(C) [1.5Ueq(CH3)], with C—H bond lengths ranging from 0.95 to 0.99 Å.

Table 3
Experimental details

Crystal data
Chemical formula [Zn(C9H16NO3)2]
Mr 437.82
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 14.6212 (4), 14.8002 (4), 20.1288 (7)
β (°) 101.719 (3)
V3) 4265.0 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.89
Crystal size (mm) 0.45 × 0.09 × 0.06
 
Data collection
Diffractometer Xcalibur, Ruby, Gemini
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.484, 0.908
No. of measured, independent and observed [I > 2σ(I)] reflections 17610, 8591, 6698
Rint 0.089
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.111, 0.277, 1.06
No. of reflections 8591
No. of parameters 537
No. of restraints 78
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 4.24, −0.65
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(1-ethoxy-2-{[(2-methoxyethyl)imino]methyl}propan-1-olato)zinc top
Crystal data top
[Zn(C9H16NO3)2]F(000) = 1856
Mr = 437.82Dx = 1.364 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 14.6212 (4) ÅCell parameters from 6033 reflections
b = 14.8002 (4) Åθ = 3.0–75.4°
c = 20.1288 (7) ŵ = 1.89 mm1
β = 101.719 (3)°T = 123 K
V = 4265.0 (2) Å3Needle, colorless
Z = 80.45 × 0.09 × 0.06 mm
Data collection top
Xcalibur, Ruby, Gemini
diffractometer
6698 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1Rint = 0.089
ω scansθmax = 76.0°, θmin = 3.1°
Absorption correction: analytical
(CrysalisPro; Rigaku OD, 2015)
h = 1813
Tmin = 0.484, Tmax = 0.908k = 1817
17610 measured reflectionsl = 2524
8591 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.111Hydrogen site location: mixed
wR(F2) = 0.277H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1511P)2 + 16.9004P]
where P = (Fo2 + 2Fc2)/3
8591 reflections(Δ/σ)max = 0.001
537 parametersΔρmax = 4.24 e Å3
78 restraintsΔρmin = 0.65 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.35835 (5)0.13597 (4)0.66026 (4)0.0310 (2)
O1A0.4279 (3)0.2317 (3)0.6185 (2)0.0357 (9)
O2A0.3745 (3)0.0160 (3)0.6213 (2)0.0387 (9)
O3A0.4400 (3)0.3643 (3)0.5675 (2)0.0378 (9)
O4A0.2400 (4)0.0727 (4)0.7382 (3)0.0599 (13)
O5A0.4161 (3)0.1296 (2)0.63054 (19)0.0336 (8)
O6A0.4062 (3)0.1582 (3)0.8736 (2)0.0381 (9)
N1A0.2344 (3)0.1872 (3)0.6256 (2)0.0296 (9)
N2A0.4552 (3)0.1178 (3)0.7425 (2)0.0294 (9)
C1A0.5839 (5)0.4288 (5)0.5533 (4)0.0546 (17)
H1AA0.6520640.4246800.5666920.082*
H1AB0.5630270.4871550.5677180.082*
H1AC0.5651510.4233130.5038810.082*
C2A0.5402 (4)0.3538 (4)0.5864 (4)0.0427 (14)
H2AA0.5590640.2944470.5709980.051*
H2AB0.5606790.3571980.6363590.051*
C3A0.3870 (4)0.2986 (3)0.5886 (3)0.0308 (11)
C4A0.2923 (4)0.3166 (3)0.5742 (3)0.0333 (11)
H4AA0.2737430.3717010.5512270.040*
C5A0.2205 (4)0.2630 (3)0.5896 (3)0.0307 (11)
C6A0.1225 (4)0.2945 (4)0.5617 (3)0.0407 (13)
H6AA0.0899200.3042260.5990820.061*
H6AB0.0893760.2485930.5308280.061*
H6AC0.1243970.3512710.5369150.061*
C7A0.1500 (5)0.1396 (4)0.6387 (4)0.0441 (14)
H7AA0.1145160.1809050.6627410.053*
H7AB0.1091940.1231530.5948090.053*
C8A0.1747 (5)0.0567 (5)0.6798 (4)0.0551 (18)
H8AA0.1175050.0316660.6920460.066*
H8AB0.1994210.0109960.6522230.066*
C9A0.2629 (5)0.0069 (4)0.7766 (4)0.0471 (15)
H9AA0.3101560.0068410.8173060.071*
H9AB0.2875740.0519460.7492080.071*
H9AC0.2067490.0307890.7899550.071*
C10A0.3544 (5)0.2377 (5)0.5466 (4)0.0507 (16)
H10A0.3241220.2463080.4989180.076*
H10B0.3163280.2656420.5757950.076*
H10C0.4163700.2657920.5550850.076*
C11A0.3641 (5)0.1402 (4)0.5616 (3)0.0425 (14)
H11A0.3975590.1102980.5294970.051*
H11B0.3016230.1120360.5566780.051*
C12A0.4215 (4)0.0453 (3)0.6573 (3)0.0285 (10)
C13A0.4795 (4)0.0382 (3)0.7205 (3)0.0281 (10)
H13A0.5099330.0918390.7393920.034*
C14A0.4976 (3)0.0410 (3)0.7595 (3)0.0261 (10)
C15A0.5742 (4)0.0330 (4)0.8228 (3)0.0335 (11)
H15A0.5524000.0598950.8612510.050*
H15B0.6302000.0649450.8157610.050*
H15C0.5891600.0308450.8322410.050*
C16A0.4798 (4)0.1990 (3)0.7836 (3)0.0320 (11)
H16A0.4898660.2497020.7538000.038*
H16B0.5390230.1884230.8165270.038*
C17A0.4043 (4)0.2243 (4)0.8214 (3)0.0338 (11)
H17A0.4161010.2852440.8415260.041*
H17B0.3424920.2244530.7901830.041*
C18A0.3342 (5)0.1735 (5)0.9087 (4)0.0500 (16)
H18A0.3384040.1292440.9453690.075*
H18B0.2737180.1673580.8773530.075*
H18C0.3400150.2346100.9277850.075*
Zn20.85410 (5)0.09199 (5)0.66562 (4)0.0317 (2)
O1B0.9268 (3)0.0149 (3)0.6119 (2)0.0359 (9)
O2B0.8621 (3)0.2179 (2)0.6254 (2)0.0366 (9)
O3B0.9421 (3)0.1030 (3)0.5452 (3)0.0504 (12)
O4B0.7311 (3)0.1518 (3)0.7363 (2)0.0416 (10)
O5B0.9141 (3)0.3605 (3)0.6238 (2)0.0409 (10)
O6B0.8534 (3)0.0450 (3)0.7393 (2)0.0410 (9)
N1B0.7292 (3)0.0503 (3)0.6164 (2)0.0298 (9)
N2B0.9467 (3)0.1229 (3)0.7504 (3)0.0351 (10)
C1B1.0900 (6)0.1661 (6)0.5398 (5)0.058 (2)0.717 (13)
H1B11.0648680.2256160.5478540.087*0.717 (13)
H1B21.1572260.1647920.5590600.087*0.717 (13)
H1B31.0795170.1546660.4909310.087*0.717 (13)
C2B1.0416 (7)0.0943 (6)0.5732 (6)0.054 (2)0.717 (13)
H2B11.0542960.1032840.6230110.065*0.717 (13)
H2B21.0640310.0335690.5635750.065*0.717 (13)
C1D1.0829 (14)0.1511 (10)0.6037 (8)0.056 (3)0.283 (13)
H1D11.0566370.1390700.6439150.084*0.283 (13)
H1D21.1508220.1427640.6150770.084*0.283 (13)
H1D31.0686390.2134070.5885840.084*0.283 (13)
C2D1.0410 (18)0.0867 (11)0.5477 (8)0.054 (3)0.283 (13)
H2D11.0584860.0232740.5597380.065*0.283 (13)
H2D21.0590440.1022870.5043270.065*0.283 (13)
C3B0.8874 (4)0.0465 (4)0.5736 (3)0.0348 (12)
C4B0.7930 (4)0.0664 (4)0.5550 (3)0.0367 (12)
H4BA0.7763730.1163070.5253030.044*
C5B0.7193 (4)0.0205 (4)0.5756 (3)0.0316 (11)
C6B0.6228 (4)0.0594 (4)0.5486 (3)0.0417 (14)
H6BA0.5959310.0805240.5866620.063*
H6BB0.6277300.1101940.5183230.063*
H6BC0.5825720.0126130.5235570.063*
C7B0.6456 (4)0.0888 (4)0.6343 (3)0.0371 (12)
H7BA0.6177370.0439940.6608560.044*
H7BB0.5992320.1020020.5923030.044*
C8B0.6667 (4)0.1750 (4)0.6755 (3)0.0411 (14)
H8BA0.6943990.2207850.6495940.049*
H8BB0.6087360.2001290.6863070.049*
C9B0.7565 (5)0.2290 (5)0.7778 (4)0.0518 (17)
H9BA0.8006790.2112710.8191360.078*
H9BB0.7005000.2550880.7899920.078*
H9BC0.7856910.2738470.7529680.078*
C10B0.8568 (10)0.4667 (6)0.5372 (7)0.056 (3)0.68 (3)
H10G0.8172130.5021890.5613700.083*0.68 (3)
H10H0.8331070.4719620.4882210.083*0.68 (3)
H10I0.9209720.4894760.5486160.083*0.68 (3)
C11B0.8552 (12)0.3684 (6)0.5581 (7)0.0503 (18)0.68 (3)
H11E0.7906620.3496700.5596840.060*0.68 (3)
H11F0.8784820.3294840.5251580.060*0.68 (3)
C10D0.8820 (18)0.4511 (9)0.5240 (10)0.054 (3)0.32 (3)
H10D0.8802790.5026620.5542210.081*0.32 (3)
H10E0.8367710.4606270.4814080.081*0.32 (3)
H10F0.9447960.4452830.5143910.081*0.32 (3)
C11D0.857 (2)0.3656 (9)0.5578 (11)0.051 (2)0.32 (3)
H11C0.7905340.3665550.5607100.061*0.32 (3)
H11D0.8682030.3121190.5308350.061*0.32 (3)
C12B0.9140 (4)0.2785 (3)0.6554 (3)0.0330 (11)
C13B0.9754 (4)0.2754 (4)0.7185 (3)0.0349 (12)
H13B1.0092610.3288960.7335010.042*
C14B0.9910 (3)0.2003 (4)0.7615 (3)0.0332 (12)
C15B1.0658 (5)0.2141 (5)0.8255 (4)0.0558 (18)
H15D1.1115910.1651040.8295030.084*
H15E1.0367010.2139850.8652930.084*
H15F1.0971110.2721460.8227630.084*
C16B0.9706 (5)0.0497 (4)0.7992 (4)0.0479 (16)
H16C0.9983560.0754240.8441820.058*
H16D1.0180130.0104870.7850510.058*
C17B0.8880 (5)0.0057 (4)0.8052 (3)0.0461 (15)
H17C0.9060390.0536570.8396180.055*
H17D0.8394320.0325320.8188230.055*
C18B0.7731 (5)0.1005 (5)0.7379 (4)0.0502 (16)
H18D0.7549320.1289550.6931860.075*
H18E0.7214320.0633020.7467500.075*
H18F0.7877770.1474700.7727980.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0219 (4)0.0181 (3)0.0519 (4)0.0018 (2)0.0047 (3)0.0036 (3)
O1A0.0216 (19)0.0256 (18)0.061 (2)0.0044 (15)0.0111 (16)0.0087 (17)
O2A0.038 (2)0.0224 (18)0.052 (2)0.0057 (16)0.0012 (17)0.0002 (16)
O3A0.029 (2)0.0264 (19)0.058 (2)0.0023 (15)0.0106 (17)0.0113 (16)
O4A0.053 (3)0.051 (3)0.071 (3)0.011 (2)0.001 (2)0.012 (2)
O5A0.034 (2)0.0217 (17)0.044 (2)0.0024 (15)0.0055 (16)0.0039 (15)
O6A0.031 (2)0.037 (2)0.049 (2)0.0001 (17)0.0138 (17)0.0019 (17)
N1A0.021 (2)0.022 (2)0.046 (2)0.0006 (16)0.0078 (17)0.0042 (17)
N2A0.030 (2)0.0163 (18)0.043 (2)0.0025 (17)0.0109 (18)0.0009 (17)
C1A0.046 (4)0.038 (3)0.086 (5)0.002 (3)0.026 (3)0.007 (3)
C2A0.029 (3)0.036 (3)0.065 (4)0.001 (2)0.015 (3)0.003 (3)
C3A0.027 (3)0.020 (2)0.046 (3)0.000 (2)0.010 (2)0.001 (2)
C4A0.031 (3)0.022 (2)0.048 (3)0.006 (2)0.011 (2)0.006 (2)
C5A0.024 (3)0.024 (2)0.043 (3)0.004 (2)0.005 (2)0.008 (2)
C6A0.030 (3)0.034 (3)0.056 (3)0.010 (2)0.003 (2)0.000 (2)
C7A0.033 (3)0.035 (3)0.062 (4)0.005 (2)0.003 (3)0.002 (3)
C8A0.052 (4)0.057 (4)0.054 (4)0.019 (3)0.003 (3)0.009 (3)
C9A0.036 (3)0.037 (3)0.070 (4)0.004 (3)0.016 (3)0.010 (3)
C10A0.053 (4)0.041 (3)0.055 (4)0.005 (3)0.002 (3)0.009 (3)
C11A0.042 (3)0.030 (3)0.050 (3)0.001 (2)0.004 (3)0.003 (2)
C12A0.022 (2)0.016 (2)0.049 (3)0.0020 (18)0.011 (2)0.001 (2)
C13A0.025 (3)0.015 (2)0.046 (3)0.0032 (18)0.012 (2)0.0032 (19)
C14A0.013 (2)0.022 (2)0.044 (3)0.0019 (17)0.0064 (18)0.0022 (19)
C15A0.027 (3)0.027 (3)0.046 (3)0.002 (2)0.007 (2)0.000 (2)
C16A0.028 (3)0.019 (2)0.049 (3)0.003 (2)0.007 (2)0.005 (2)
C17A0.028 (3)0.024 (2)0.050 (3)0.001 (2)0.010 (2)0.004 (2)
C18A0.041 (4)0.057 (4)0.058 (4)0.007 (3)0.023 (3)0.006 (3)
Zn20.0195 (4)0.0219 (4)0.0528 (4)0.0002 (3)0.0056 (3)0.0014 (3)
O1B0.0205 (19)0.0286 (19)0.059 (2)0.0041 (15)0.0090 (16)0.0085 (17)
O2B0.031 (2)0.0206 (17)0.058 (2)0.0056 (15)0.0085 (17)0.0033 (16)
O3B0.025 (2)0.042 (2)0.086 (3)0.0044 (18)0.014 (2)0.027 (2)
O4B0.030 (2)0.033 (2)0.061 (2)0.0036 (17)0.0077 (18)0.0066 (18)
O5B0.026 (2)0.0266 (19)0.070 (3)0.0044 (16)0.0094 (18)0.0091 (18)
O6B0.030 (2)0.032 (2)0.061 (2)0.0020 (17)0.0095 (18)0.0099 (18)
N1B0.0108 (19)0.032 (2)0.047 (2)0.0010 (16)0.0071 (16)0.0105 (19)
N2B0.024 (2)0.026 (2)0.053 (3)0.0025 (18)0.0008 (19)0.0023 (19)
C1B0.027 (4)0.055 (4)0.097 (6)0.003 (3)0.024 (4)0.024 (4)
C2B0.022 (3)0.046 (4)0.096 (6)0.004 (3)0.019 (4)0.021 (4)
C1D0.023 (5)0.048 (6)0.098 (7)0.009 (5)0.017 (6)0.016 (5)
C2D0.022 (4)0.047 (5)0.097 (6)0.006 (4)0.020 (5)0.018 (5)
C3B0.020 (3)0.030 (3)0.057 (3)0.002 (2)0.014 (2)0.005 (2)
C4B0.024 (3)0.030 (3)0.056 (3)0.005 (2)0.008 (2)0.000 (2)
C5B0.022 (3)0.029 (3)0.044 (3)0.003 (2)0.007 (2)0.011 (2)
C6B0.021 (3)0.040 (3)0.063 (4)0.005 (2)0.004 (2)0.017 (3)
C7B0.021 (3)0.039 (3)0.053 (3)0.006 (2)0.011 (2)0.014 (2)
C8B0.026 (3)0.036 (3)0.065 (4)0.013 (2)0.018 (2)0.019 (3)
C9B0.035 (3)0.045 (4)0.079 (5)0.004 (3)0.020 (3)0.011 (3)
C10B0.048 (5)0.037 (4)0.078 (5)0.002 (4)0.005 (4)0.015 (4)
C11B0.040 (4)0.036 (3)0.070 (4)0.000 (3)0.002 (3)0.011 (3)
C10D0.045 (6)0.038 (5)0.075 (6)0.001 (5)0.003 (6)0.012 (5)
C11D0.042 (4)0.037 (4)0.071 (5)0.000 (4)0.002 (4)0.011 (4)
C12B0.019 (2)0.021 (2)0.063 (3)0.0028 (19)0.017 (2)0.003 (2)
C13B0.017 (2)0.028 (3)0.061 (3)0.006 (2)0.012 (2)0.003 (2)
C14B0.009 (2)0.034 (3)0.055 (3)0.0024 (19)0.004 (2)0.003 (2)
C15B0.043 (4)0.049 (4)0.068 (4)0.013 (3)0.008 (3)0.005 (3)
C16B0.038 (3)0.036 (3)0.062 (4)0.001 (3)0.007 (3)0.010 (3)
C17B0.047 (4)0.034 (3)0.055 (3)0.007 (3)0.005 (3)0.014 (3)
C18B0.039 (4)0.043 (3)0.068 (4)0.007 (3)0.008 (3)0.020 (3)
Geometric parameters (Å, º) top
Zn1—N1A1.958 (4)O3B—C3B1.361 (7)
Zn1—N2A1.966 (5)O3B—C2B1.456 (11)
Zn1—O2A1.974 (4)O3B—C2D1.46 (3)
Zn1—O1A2.025 (4)O4B—C9B1.419 (8)
Zn1—O4A2.727 (6)O4B—C8B1.425 (7)
O1A—C3A1.246 (6)O5B—C12B1.371 (7)
O2A—C12A1.271 (6)O5B—C11D1.42 (3)
O3A—C3A1.364 (6)O5B—C11B1.429 (15)
O3A—C2A1.444 (7)O6B—C18B1.429 (7)
O4A—C8A1.376 (8)O6B—C17B1.442 (8)
O4A—C9A1.412 (8)N1B—C5B1.322 (7)
O5A—C12A1.355 (6)N1B—C7B1.458 (7)
O5A—C11A1.450 (7)N2B—C14B1.312 (7)
O6A—C18A1.400 (7)N2B—C16B1.457 (8)
O6A—C17A1.431 (7)C1B—C2B1.509 (10)
N1A—C5A1.329 (7)C1B—H1B10.9800
N1A—C7A1.490 (8)C1B—H1B20.9800
N2A—C14A1.306 (7)C1B—H1B30.9800
N2A—C16A1.462 (6)C2B—H2B10.9900
C1A—C2A1.502 (9)C2B—H2B20.9900
C1A—H1AA0.9800C1D—C2D1.508 (11)
C1A—H1AB0.9800C1D—H1D10.9800
C1A—H1AC0.9800C1D—H1D20.9800
C2A—H2AA0.9900C1D—H1D30.9800
C2A—H2AB0.9900C2D—H2D10.9900
C3A—C4A1.382 (8)C2D—H2D20.9900
C4A—C5A1.399 (8)C3B—C4B1.387 (8)
C4A—H4AA0.9500C4B—C5B1.405 (8)
C5A—C6A1.502 (7)C4B—H4BA0.9500
C6A—H6AA0.9800C5B—C6B1.518 (7)
C6A—H6AB0.9800C6B—H6BA0.9800
C6A—H6AC0.9800C6B—H6BB0.9800
C7A—C8A1.483 (9)C6B—H6BC0.9800
C7A—H7AA0.9900C7B—C8B1.518 (9)
C7A—H7AB0.9900C7B—H7BA0.9900
C8A—H8AA0.9900C7B—H7BB0.9900
C8A—H8AB0.9900C8B—H8BA0.9900
C9A—H9AA0.9800C8B—H8BB0.9900
C9A—H9AB0.9800C9B—H9BA0.9800
C9A—H9AC0.9800C9B—H9BB0.9800
C10A—C11A1.475 (9)C9B—H9BC0.9800
C10A—H10A0.9800C10B—C11B1.515 (9)
C10A—H10B0.9800C10B—H10G0.9800
C10A—H10C0.9800C10B—H10H0.9800
C11A—H11A0.9900C10B—H10I0.9800
C11A—H11B0.9900C11B—H11E0.9900
C12A—C13A1.384 (8)C11B—H11F0.9900
C13A—C14A1.406 (7)C10D—C11D1.515 (9)
C13A—H13A0.9500C10D—H10D0.9800
C14A—C15A1.520 (7)C10D—H10E0.9800
C15A—H15A0.9800C10D—H10F0.9800
C15A—H15B0.9800C11D—H11C0.9900
C15A—H15C0.9799C11D—H11D0.9900
C16A—C17A1.511 (8)C12B—C13B1.400 (8)
C16A—H16A0.9900C13B—C14B1.398 (8)
C16A—H16B0.9900C13B—H13B0.9500
C17A—H17A0.9900C14B—C15B1.525 (8)
C17A—H17B0.9900C15B—H15D0.9801
C18A—H18A0.9800C15B—H15E0.9800
C18A—H18B0.9800C15B—H15F0.9800
C18A—H18C0.9800C16B—C17B1.484 (9)
Zn2—N1B1.990 (4)C16B—H16C0.9900
Zn2—N2B2.004 (5)C16B—H16D0.9900
Zn2—O1B2.017 (4)C17B—H17C0.9900
Zn2—O2B2.045 (4)C17B—H17D0.9900
Zn2—O6B2.514 (4)C18B—H18D0.9800
Zn2—O4B2.661 (4)C18B—H18E0.9800
O1B—C3B1.253 (7)C18B—H18F0.9800
O2B—C12B1.247 (7)
N1A—Zn1—N2A144.05 (19)C3B—O3B—C2B114.1 (5)
N1A—Zn1—O2A112.56 (17)C3B—O3B—C2D123.2 (8)
N2A—Zn1—O2A94.98 (17)C9B—O4B—C8B111.1 (5)
N1A—Zn1—O1A95.04 (17)C9B—O4B—Zn2117.3 (4)
N2A—Zn1—O1A96.25 (17)C8B—O4B—Zn291.2 (3)
O2A—Zn1—O1A110.72 (18)C12B—O5B—C11D115.2 (7)
N1A—Zn1—O4A71.83 (18)C12B—O5B—C11B116.4 (5)
N2A—Zn1—O4A84.34 (17)C18B—O6B—C17B112.6 (5)
O2A—Zn1—O4A93.49 (18)C18B—O6B—Zn2123.6 (4)
O1A—Zn1—O4A155.58 (17)C17B—O6B—Zn2100.0 (3)
C3A—O1A—Zn1121.6 (3)C5B—N1B—C7B118.2 (5)
C12A—O2A—Zn1120.7 (4)C5B—N1B—Zn2121.9 (4)
C3A—O3A—C2A116.8 (4)C7B—N1B—Zn2119.1 (4)
C8A—O4A—C9A111.7 (6)C14B—N2B—C16B119.5 (5)
C8A—O4A—Zn188.8 (4)C14B—N2B—Zn2124.7 (4)
C9A—O4A—Zn1119.6 (4)C16B—N2B—Zn2115.6 (4)
C12A—O5A—C11A117.2 (4)C2B—C1B—H1B1109.5
C18A—O6A—C17A110.8 (5)C2B—C1B—H1B2109.5
C5A—N1A—C7A117.1 (5)H1B1—C1B—H1B2109.5
C5A—N1A—Zn1123.3 (4)C2B—C1B—H1B3109.5
C7A—N1A—Zn1119.6 (4)H1B1—C1B—H1B3109.5
C14A—N2A—C16A121.2 (5)H1B2—C1B—H1B3109.5
C14A—N2A—Zn1124.2 (4)O3B—C2B—C1B106.7 (7)
C16A—N2A—Zn1114.6 (3)O3B—C2B—H2B1110.4
C2A—C1A—H1AA109.5C1B—C2B—H2B1110.4
C2A—C1A—H1AB109.5O3B—C2B—H2B2110.4
H1AA—C1A—H1AB109.5C1B—C2B—H2B2110.4
C2A—C1A—H1AC109.5H2B1—C2B—H2B2108.6
H1AA—C1A—H1AC109.5C2D—C1D—H1D1109.5
H1AB—C1A—H1AC109.5C2D—C1D—H1D2109.5
O3A—C2A—C1A107.7 (5)H1D1—C1D—H1D2109.5
O3A—C2A—H2AA110.2C2D—C1D—H1D3109.5
C1A—C2A—H2AA110.2H1D1—C1D—H1D3109.5
O3A—C2A—H2AB110.2H1D2—C1D—H1D3109.5
C1A—C2A—H2AB110.2O3B—C2D—C1D99.9 (15)
H2AA—C2A—H2AB108.5O3B—C2D—H2D1111.8
O1A—C3A—O3A118.0 (5)C1D—C2D—H2D1111.8
O1A—C3A—C4A128.0 (5)O3B—C2D—H2D2111.8
O3A—C3A—C4A114.0 (5)C1D—C2D—H2D2111.8
C3A—C4A—C5A127.6 (5)H2D1—C2D—H2D2109.5
C3A—C4A—H4AA116.2O1B—C3B—O3B117.9 (5)
C5A—C4A—H4AA116.2O1B—C3B—C4B128.9 (5)
N1A—C5A—C4A124.1 (5)O3B—C3B—C4B113.2 (5)
N1A—C5A—C6A119.7 (5)C3B—C4B—C5B126.8 (5)
C4A—C5A—C6A116.3 (5)C3B—C4B—H4BA116.6
C5A—C6A—H6AA109.5C5B—C4B—H4BA116.6
C5A—C6A—H6AB109.5N1B—C5B—C4B125.0 (5)
H6AA—C6A—H6AB109.5N1B—C5B—C6B120.0 (5)
C5A—C6A—H6AC109.5C4B—C5B—C6B115.1 (5)
H6AA—C6A—H6AC109.5C5B—C6B—H6BA109.5
H6AB—C6A—H6AC109.5C5B—C6B—H6BB109.5
C8A—C7A—N1A111.9 (5)H6BA—C6B—H6BB109.5
C8A—C7A—H7AA109.2C5B—C6B—H6BC109.5
N1A—C7A—H7AA109.2H6BA—C6B—H6BC109.5
C8A—C7A—H7AB109.2H6BB—C6B—H6BC109.5
N1A—C7A—H7AB109.2N1B—C7B—C8B112.0 (5)
H7AA—C7A—H7AB107.9N1B—C7B—H7BA109.2
O4A—C8A—C7A112.5 (6)C8B—C7B—H7BA109.2
O4A—C8A—H8AA109.1N1B—C7B—H7BB109.2
C7A—C8A—H8AA109.1C8B—C7B—H7BB109.2
O4A—C8A—H8AB109.1H7BA—C7B—H7BB107.9
C7A—C8A—H8AB109.1O4B—C8B—C7B107.0 (4)
H8AA—C8A—H8AB107.8O4B—C8B—H8BA110.3
O4A—C9A—H9AA109.5C7B—C8B—H8BA110.3
O4A—C9A—H9AB109.5O4B—C8B—H8BB110.3
H9AA—C9A—H9AB109.5C7B—C8B—H8BB110.3
O4A—C9A—H9AC109.5H8BA—C8B—H8BB108.6
H9AA—C9A—H9AC109.5O4B—C9B—H9BA109.5
H9AB—C9A—H9AC109.5O4B—C9B—H9BB109.5
C11A—C10A—H10A109.5H9BA—C9B—H9BB109.5
C11A—C10A—H10B109.5O4B—C9B—H9BC109.5
H10A—C10A—H10B109.5H9BA—C9B—H9BC109.5
C11A—C10A—H10C109.5H9BB—C9B—H9BC109.5
H10A—C10A—H10C109.5C11B—C10B—H10G109.5
H10B—C10A—H10C109.5C11B—C10B—H10H109.5
O5A—C11A—C10A108.1 (5)H10G—C10B—H10H109.5
O5A—C11A—H11A110.1C11B—C10B—H10I109.5
C10A—C11A—H11A110.1H10G—C10B—H10I109.5
O5A—C11A—H11B110.1H10H—C10B—H10I109.5
C10A—C11A—H11B110.1O5B—C11B—C10B107.2 (9)
H11A—C11A—H11B108.4O5B—C11B—H11E110.3
O2A—C12A—O5A116.8 (5)C10B—C11B—H11E110.3
O2A—C12A—C13A129.0 (5)O5B—C11B—H11F110.3
O5A—C12A—C13A114.2 (4)C10B—C11B—H11F110.3
C12A—C13A—C14A125.9 (5)H11E—C11B—H11F108.5
C12A—C13A—H13A117.0C11D—C10D—H10D109.5
C14A—C13A—H13A117.0C11D—C10D—H10E109.5
N2A—C14A—C13A123.6 (5)H10D—C10D—H10E109.5
N2A—C14A—C15A121.2 (5)C11D—C10D—H10F109.5
C13A—C14A—C15A115.2 (4)H10D—C10D—H10F109.5
C14A—C15A—H15A109.2H10E—C10D—H10F109.5
C14A—C15A—H15B109.6O5B—C11D—C10D108.5 (17)
H15A—C15A—H15B109.5O5B—C11D—H11C110.0
C14A—C15A—H15C109.6C10D—C11D—H11C110.0
H15A—C15A—H15C109.5O5B—C11D—H11D110.0
H15B—C15A—H15C109.5C10D—C11D—H11D110.0
N2A—C16A—C17A111.6 (4)H11C—C11D—H11D108.4
N2A—C16A—H16A109.3O2B—C12B—O5B118.0 (5)
C17A—C16A—H16A109.3O2B—C12B—C13B129.1 (5)
N2A—C16A—H16B109.3O5B—C12B—C13B112.9 (5)
C17A—C16A—H16B109.3C14B—C13B—C12B125.5 (5)
H16A—C16A—H16B108.0C14B—C13B—H13B117.2
O6A—C17A—C16A107.0 (4)C12B—C13B—H13B117.2
O6A—C17A—H17A110.3N2B—C14B—C13B125.2 (5)
C16A—C17A—H17A110.3N2B—C14B—C15B120.4 (5)
O6A—C17A—H17B110.3C13B—C14B—C15B114.5 (5)
C16A—C17A—H17B110.3C14B—C15B—H15D109.3
H17A—C17A—H17B108.6C14B—C15B—H15E109.6
O6A—C18A—H18A109.5H15D—C15B—H15E109.5
O6A—C18A—H18B109.5C14B—C15B—H15F109.5
H18A—C18A—H18B109.5H15D—C15B—H15F109.5
O6A—C18A—H18C109.5H15E—C15B—H15F109.5
H18A—C18A—H18C109.5N2B—C16B—C17B112.2 (5)
H18B—C18A—H18C109.5N2B—C16B—H16C109.2
N1B—Zn2—N2B152.5 (2)C17B—C16B—H16C109.2
N1B—Zn2—O1B95.08 (17)N2B—C16B—H16D109.2
N2B—Zn2—O1B104.33 (18)C17B—C16B—H16D109.2
N1B—Zn2—O2B101.90 (17)H16C—C16B—H16D107.9
N2B—Zn2—O2B92.60 (18)O6B—C17B—C16B106.8 (5)
O1B—Zn2—O2B102.98 (17)O6B—C17B—H17C110.4
N1B—Zn2—O6B86.02 (16)C16B—C17B—H17C110.4
N2B—Zn2—O6B76.39 (17)O6B—C17B—H17D110.4
O1B—Zn2—O6B85.76 (16)C16B—C17B—H17D110.4
O2B—Zn2—O6B167.48 (16)H17C—C17B—H17D108.6
N1B—Zn2—O4B73.58 (16)O6B—C18B—H18D109.5
N2B—Zn2—O4B83.20 (17)O6B—C18B—H18E109.5
O1B—Zn2—O4B164.14 (14)H18D—C18B—H18E109.5
O2B—Zn2—O4B90.42 (15)O6B—C18B—H18F109.5
O6B—Zn2—O4B82.46 (14)H18D—C18B—H18F109.5
C3B—O1B—Zn2120.9 (3)H18E—C18B—H18F109.5
C12B—O2B—Zn2122.8 (4)
C3A—O3A—C2A—C1A175.4 (5)C2B—O3B—C3B—O1B10.7 (9)
Zn1—O1A—C3A—O3A173.9 (4)C2D—O3B—C3B—O1B10.6 (11)
Zn1—O1A—C3A—C4A5.1 (8)C2B—O3B—C3B—C4B169.3 (7)
C2A—O3A—C3A—O1A4.7 (8)C2D—O3B—C3B—C4B169.4 (8)
C2A—O3A—C3A—C4A174.4 (5)O1B—C3B—C4B—C5B0.3 (11)
O1A—C3A—C4A—C5A0.6 (10)O3B—C3B—C4B—C5B179.7 (6)
O3A—C3A—C4A—C5A179.6 (5)C7B—N1B—C5B—C4B178.4 (5)
C7A—N1A—C5A—C4A178.6 (5)Zn2—N1B—C5B—C4B8.9 (7)
Zn1—N1A—C5A—C4A2.2 (7)C7B—N1B—C5B—C6B0.1 (7)
C7A—N1A—C5A—C6A2.7 (7)Zn2—N1B—C5B—C6B169.6 (4)
Zn1—N1A—C5A—C6A176.5 (4)C3B—C4B—C5B—N1B0.2 (10)
C3A—C4A—C5A—N1A4.8 (9)C3B—C4B—C5B—C6B178.3 (6)
C3A—C4A—C5A—C6A173.9 (6)C5B—N1B—C7B—C8B174.2 (5)
C5A—N1A—C7A—C8A179.3 (5)Zn2—N1B—C7B—C8B15.9 (6)
Zn1—N1A—C7A—C8A1.4 (7)C9B—O4B—C8B—C7B179.0 (5)
C9A—O4A—C8A—C7A179.8 (6)Zn2—O4B—C8B—C7B59.0 (4)
Zn1—O4A—C8A—C7A58.2 (6)N1B—C7B—C8B—O4B60.8 (6)
N1A—C7A—C8A—O4A51.8 (9)C12B—O5B—C11B—C10B172.8 (9)
C12A—O5A—C11A—C10A171.2 (5)C12B—O5B—C11D—C10D167.1 (14)
Zn1—O2A—C12A—O5A169.2 (3)Zn2—O2B—C12B—O5B179.9 (3)
Zn1—O2A—C12A—C13A11.9 (8)Zn2—O2B—C12B—C13B0.7 (8)
C11A—O5A—C12A—O2A5.1 (7)C11D—O5B—C12B—O2B2.9 (15)
C11A—O5A—C12A—C13A173.9 (5)C11B—O5B—C12B—O2B1.0 (10)
O2A—C12A—C13A—C14A1.1 (9)C11D—O5B—C12B—C13B176.4 (14)
O5A—C12A—C13A—C14A180.0 (5)C11B—O5B—C12B—C13B178.3 (9)
C16A—N2A—C14A—C13A177.4 (5)O2B—C12B—C13B—C14B0.4 (10)
Zn1—N2A—C14A—C13A0.5 (7)O5B—C12B—C13B—C14B178.8 (5)
C16A—N2A—C14A—C15A0.1 (8)C16B—N2B—C14B—C13B179.4 (6)
Zn1—N2A—C14A—C15A178.0 (4)Zn2—N2B—C14B—C13B5.4 (8)
C12A—C13A—C14A—N2A5.6 (8)C16B—N2B—C14B—C15B1.1 (9)
C12A—C13A—C14A—C15A172.0 (5)Zn2—N2B—C14B—C15B175.2 (5)
C14A—N2A—C16A—C17A108.3 (6)C12B—C13B—C14B—N2B3.8 (9)
Zn1—N2A—C16A—C17A73.6 (5)C12B—C13B—C14B—C15B176.7 (6)
C18A—O6A—C17A—C16A176.4 (5)C14B—N2B—C16B—C17B145.5 (6)
N2A—C16A—C17A—O6A71.1 (6)Zn2—N2B—C16B—C17B39.9 (7)
C3B—O3B—C2B—C1B175.8 (7)C18B—O6B—C17B—C16B179.9 (5)
C3B—O3B—C2D—C1D101.5 (11)Zn2—O6B—C17B—C16B46.9 (5)
Zn2—O1B—C3B—O3B172.2 (4)N2B—C16B—C17B—O6B61.7 (7)
Zn2—O1B—C3B—C4B7.7 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6A—H6AB···O3Bi0.982.633.568 (8)161
C15A—H15A···O6A0.982.643.396 (7)134
C15A—H15C···O3Aii0.982.653.369 (7)131
C18A—H18A···O3Aiii0.982.603.304 (8)129
C8B—H8BA···O2B0.992.603.279 (7)126
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+3/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program for award CHE-0619278 for funds to purchase the diffractometer. KOJ wishes to acknowledge the Alabama A&M University Advancing Success in STEM Undergraduate Research and Education (ASSURED) program and the Alabama A&M University chemistry department for partial funding of this work.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-0619278).

References

First citationAddison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBarreca, D., Bekermann, D., Comini, E., Devi, A., Fischer, R. A., Gasparotto, A., Maccato, C., Sberveglieri, G. & Tondello, E. (2010). Sens. Actuators B Chem. 149, 1–7.  Web of Science CrossRef CAS Google Scholar
First citationBekermann, D., Gasparotto, A., Barreca, D., Bovo, L., Devi, A., Fischer, R. A., Lebedev, O. I., Maccato, C., Tondello, E. & Van Tendeloo, G. (2010b). Cryst. Growth Des. 10, 2011–2018.  Web of Science CrossRef CAS Google Scholar
First citationBekermann, D., Rogalla, D., Becker, H.-W., Winter, M., Fischer, R. A. & Devi, A. (2010a). Eur. J. Inorg. Chem. pp. 1366–1372.  Web of Science CSD CrossRef Google Scholar
First citationCosham, S. D., Kociok-Köhn, G., Johnson, A. L., Hamilton, J. A., Hill, M. S., Molloy, K. C. & Castaing, R. (2015). Eur. J. Inorg. Chem. pp. 4362–4372.  Web of Science CSD CrossRef Google Scholar
First citationDas, M. & Sarkar, D. (2017). Ceram. Int. 43, 11123–11131.  Web of Science CrossRef CAS Google Scholar
First citationGalstyan, V., Comini, E., Baratto, C., Faglia, G. & Sberveglieri, G. (2015). Ceram. Int. 41, 14239–14244.  Web of Science CrossRef CAS Google Scholar
First citationGanesh, R. S., Durgadevi, E., Navaneethan, M., Patil, V. L., Ponnusamy, S., Muthamizhchelvan, C., Kawasaki, S., Patil, P. S. & Hayakawa, Y. (2017). J. Alloys Compd. 721, 182–190.  Google Scholar
First citationGbemigun, O. O., Butcher, R. J. & Matthews, J. S. (2019). J. Chem. Crystallogr. 49, 80–86.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHong, K. S., Kim, J. W., Bae, J. S., Hong, T. E., Jeong, E. D., Jin, J. S., Ha, M. G. & Kim, J. P. (2017). Physica B, 504, 103–108.  Web of Science CrossRef CAS Google Scholar
First citationMalandrino, G., Blandino, M., Perdicaro, L. M. S., Fragalà, I. L., Rossi, P. & Dapporto, P. (2005). Inorg. Chem. 44, 9684–9689.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationManzi, J. A., Knapp, C. E., Parkin, I. P. & Carmalt, C. J. (2015). Eur. J. Inorg. Chem. pp. 3658–3665.  Web of Science CSD CrossRef Google Scholar
First citationMatthews, J. S., Onakoya, O. O., Ouattara, T. S. & Butcher, R. J. (2006). Dalton Trans. pp. 3806–3811.  Web of Science CSD CrossRef Google Scholar
First citationOkuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationOnakoya, O. O., Johnson, K. O., Butcher, R. J. & Matthews, J. S. (2011). Acta Cryst. E67, m1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSato, H., Minami, T., Miyata, T., Takata, S. & Ishii, M. (1994). Thin Solid Films, 246, 65–70.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, F. (1983). Appl. Phys. Lett. 43, 1108–1110.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds