research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-[(benzyl­di­methyl­sil­yl)meth­yl]-1-ethyl­piperidin-1-ium ethane­sulfonate

crossmark logo

aTechnische Universität Dortmund, Fakultät Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 November 2021; accepted 27 December 2021; online 7 January 2022)

The title mol­ecular salt, C17H30NSi+·C2H5O4S, belongs to the class of a-amino­silanes and was synthesized by the alkyl­ation of 1-[(benzyl­dimethyl­sil­yl)meth­yl]piperidine using diethyl sulfate. This achiral salt crystallizes in the chiral space group P21. One of the Si—C bonds in the cation is unusually long [1.9075 (12) Å], which correlates with the adjacent quaternary N+ atom and was verified by quantum chemical calculations. In the crystal, the components are linked by weak C—H⋯O hydrogen bonds: a Hirshfeld surface analysis was performed to further investigate these inter­molecular inter­actions and their effects on the crystal packing.

1. Chemical context

Selective bond transformations on silicon compounds for the cleavage of Si—C bonds are of high inter­est in silicon chemistry (Denmark et al., 2007[Denmark, S., Baird, J. D. & Regens, C. S. (2007). J. Org. Chem. 73, 1440-1455.]; Denmark & Liu, 2010[Denmark, S. & Liu, J. H.-C. (2010). Angew. Chem. Int. Ed. 49, 2978-2986.]). Compared to C—C bonds, analogous Si—C bonds can be cleaved heterolytically using strong nucleophiles (Tomooka et al., 2000[Tomooka, K., Nakazaki, A. & Nakai, T. (2000). J. Am. Chem. Soc. 122, 408-409.]; Li & Hu, 2007[Li, Y. & Hu, J. (2007). Angew. Chem. Int. Ed. 46, 2489-2492.]). However, the selectivity of such reactions is limited to specific silanes. In particular, α-amino-functionalized silanes are well suited for these processes, as shown by our previous studies (Koller et al., 2017[Koller, S. G., Bauer, J. O. & Strohmann, C. (2017). Angew. Chem. Int. Ed. 56, 7991-7994.]). Our group has focused on using lithium organyls as strong nucleophiles to perform these Si—C transformations on highly substituted silanes (Bauer & Strohmann, 2014[Bauer, J. O. & Strohmann, C. (2014). Angew. Chem. Int. Ed. 53, 8167-8171.]). In particular, derivatives of α-piperdino­benzyl­silanes have been intensively studied by our group (Strohmann et al., 2004[Strohmann, C., Bindl, M., Fraass, V. C. & Hörnig, J. (2004). Angew. Chem. Int. Ed. 43, 1011-1014.]; Otte et al., 2017[Otte, F., Koller, S. G., Cuellar, E., Golz, C. & Strohmann, C. (2017). Inorg. Chim. Acta, 456, 44-48.]). When strong nucleophiles are used, deprotonation in the benzyl position competes with the selective Si—C bond cleavage of the benzyl group. For this purpose, the α-amino­functionality seems to play a key role, which could be responsible for the activation of the subsequent Si—C bond cleavage. In addition, the positively charged ammonium group leads to an increased electronegativity, which enhances the electron-withdrawing effect of the substituted α-amino­functionality. Consequently, the π-character of the Si—C bond is more pronounced, leading to an elongation of the bond. Thus, a selective cleavage of the amino functionality due to the elongated Si—C bond is also conceivable (Bent, 1960[Bent, H. A. (1960). J. Chem. Educ. 37, 616-624.], 1961[Bent, H. A. (1961). Chem. Rev. 61, 275-311.]; Otte et al., 2017[Otte, F., Koller, S. G., Cuellar, E., Golz, C. & Strohmann, C. (2017). Inorg. Chim. Acta, 456, 44-48.]).

Several derivates of these α-piperdino­benzyl­silanes have been synthesized by our research group: 1-[(benzyl­dimethyl­sil­yl)meth­yl]-1-ethyl­piperidin-1-ium ethane­sulfonate (1), the title compound, represents a compound that could lead to an extension of the aforementioned Si—C bond to the nitro­gen atom via the quaternary ammonium cation. Structural studies concerning this type of compound should better elucidate the reactivity as well as selectivity of Si—C cleavages of the benzyl-substituted α-amino­silanes.

[Scheme 1]

2. Structural commentary

Compound 1 crystallized from an n-pentane solution at 243 K in the form of colorless blocks with monoclinic (P21) symmetry. The chiral space group indicates that the achiral compound in the elementary cell is packed chirally; the Flack absolute structure parameter amounts to −0.005 (6) (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]). The mol­ecular structure of 1 is illustrated in Fig. 1[link]. The Si—C bonds span the range 1.862 (2) to 1.908 (1) Å, as shown in Table 1[link]. These values for the bond lengths are consistent with those in the literature, except for the long Si1—C10 bond length, which is related to the α-amino­silane functionality (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. 1-19.]). This observed elongation of the bond can be explained by the very electropositive feature of carbon atom C10. In addition, the ethyl­ated ammonium cation pushes even more electron density from C10 toward the amino functionality. There are only a few known species with such a long Si—C bond, which in turn may play a crucial role in the reactivity of α-amino-substituted silanes. Quantum chemical calculations at the M062X/6-31+G(d) level confirm the experimentally observed long Si—C bond. The calculated structure of compound 1 is shown in Fig. 2[link].

Table 1
Selected bond lengths (Å)

Si1—C7 1.8814 (11) Si1—C9 1.8662 (18)
Si1—C8 1.862 (2) Si1—C10 1.9075 (12)
[Figure 1]
Figure 1
(a) The mol­ecular structure of 1 illustrated using SCHAKAL99 (Keller, 1999[Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany.]). (b) The mol­ecular structure of 1 showing 50% displacement ellipsoids.
[Figure 2]
Figure 2
Visualization of the calculated structure of compound 1 with Molekel 4.3 (Flükiger et al., 2000[Flükiger, P., Lüthi, H. P., Portmann, S. & Weber, J. (2000). MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno , Switzerland.]) performed at the M062X/6–31+G(d) (Ditchfield et al., 1970[Ditchfield, R., Hehre, W. F. & Pople, J. A. (1970). J. Chem. Phys. 54, 724-728.]; Zhao & Truhlar, 2008[Zhao, Y. & Truhlar, D. G. (2008). Theor. Chem. Acc. 120, 215-241.]) level.

The silicon center in 1 features a tetra­hedral geometry, which is significantly distorted, as shown by the smallest angle of 98.35 (5)° (C7—Si1—C10) and the largest angle of 114.32 (7)° (C8—Si1—C10). This geometric distortion has been observed in many complex substituted silicon compounds and depends on the substituents (Otte et al., 2017[Otte, F., Koller, S. G., Cuellar, E., Golz, C. & Strohmann, C. (2017). Inorg. Chim. Acta, 456, 44-48.]). However, the distortion is large for compound 1 compared to most known silanes (Krupp et al., 2020[Krupp, A., Wegge, J., Otte, F., Kleinheider, J., Wall, H. & Strohmann, C. (2020). Acta Cryst. E76, 1437-1441.]).

3. Supra­molecular features

The crystal packing along the b-axis of compound 1 is illustrated in Fig. 3[link]. Further studies of the packing in the solid state were aimed at finding hydrogen bonds of compound 1 as well as discussing the intensities of those hydrogen bonds. These studies were performed using Hirshfeld surface analysis. The Hirshfeld surface mapped over dnorm in the range from −0.072 to 1.201 arbitrary units as well as the related fingerprints plots generated by CrystalExplorer2021 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.], Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackmann, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]) are illustrated in Fig. 4[link]. With a share of 71.4%, most of the inter­actions relate to weak van der Waals H⋯H contacts, which should play a minor role for the packing of the crystal. In contrast, the role of O⋯H/H⋯O contacts should be predominant in the crystal arrangement in the unit cell, as shown by the significant red spots on the Hirshfeld surface. Numerous hydrogen bonds of the ethyl sulfate group to the ammonium cation are visible on the surface. The contribution of these contacts amounts to 16.6%. C⋯H/H⋯C contacts as well as H⋯H contacts do not show as intense spots on the Hirshfeld surface and should not be considered as relevant as the O⋯H/H⋯O contacts for the crystal packing. All hydrogen bonds up to a distance of 3.4 Å as well as an angle of at least 155° are listed in Table 2[link]. According to Perlstein (2001[Perlstein, J. (2001). J. Am. Chem. Soc. 123, 191-192.]), all hydrogen bonds listed in Table 2[link] have a weak to moderately strong character, which can be explained in particular by the non-linear angles of 156 (7)° (C7—H7B⋯O2ii) to 167 (2)° (C3—H3⋯O2i). The shortest hydrogen-bond length is 3.1815 (16) Å and is the strongest supra­molecular inter­action with an angle of 162.8 (17)° (C17—H17A⋯O4). Analysis of the hydrogen-bonding network shows that all the hydrogen bonds shown in Table 2[link] can be assigned to one graph-set motif [D11(2); Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]] and all of these bonds are linearly connected to two different atoms.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 (3) 2.39 (3) 3.2990 (17) 167 (2)
C7—H7B⋯O2ii 0.91 (3) 2.54 (3) 3.3881 (16) 156 (2)
C17—H17A⋯O4 0.95 (2) 2.26 (2) 3.1815 (16) 162.8 (17)
C17—H17B⋯O3ii 0.93 (2) 2.47 (2) 3.3680 (15) 161.3 (19)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z]; (ii) [x-1, y, z].
[Figure 3]
Figure 3
A view along the b-axis direction of the crystal packing of compound 1.
[Figure 4]
Figure 4
Hirshfeld surfaces and two-dimensional fingerprint plots of 1 showing close contacts for (a) all contributions in the crystal and (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C inter­actions. Symmetry code: −x, [{1\over 2}] + y, −z.

4. Database survey

There are some other examples of crystallographically characterized α-amino­silane derivatives that are structurally based on compound 1 and its starting compound 2. Examples of such α-piperidino­silanes found in the Cambridge Structural Database (WebCSD, November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) are (R)-1-methyl-1-{[meth­yl(phen­yl)(tri­methyl­germ­yl)sil­yl]meth­yl}piperidinium iodide, C17H32GeNSiI (CSD refcode BOFLOY; Strohmann et al., 2008[Strohmann, C. & Däschlein, C. (2008). Organometallics, 27, 2499-2504.]), (tri­phenyl­silyl­piperid­in­yl­car­bene)tetra­carbonyl­tungsten(0), C28H25NO4SiW (DIZWUE; Schubert et al., 1986[Schubert, U., Hepp, W. & Müller, J. (1986). Organometallics, 1986, 5, 173-175.]), [bis­(tri­methyl­sil­yl)meth­yl]bis­[diphen­yl(N-piperidino­methyl­sil­yl)meth­yl]gall­ium n-pentane solvate, C45H67GaN2Si4·0.5(C5H12) (MASLUN; Uhl et al., 2000[Uhl, W., Cuypers, L., Schüler, K., Spies, T., Strohmann, C. & Lehmen, K. (2000). Z. Anorg. Allg. Chem. 626, 1526-1534.]), 8-chloro-8,8-dimethyl-1-aza-7-oxa-8-silabi­cyclo­(4.3.0)non-6-ene, C8H16ClNOSi (FUSYIB; Macharashvili et al., 1987[Macharashvili, A. A., Baukov, Y. I., Kramarova, E. P., Oleneva, G. I., Pestunovich, V. A., Struchkov, Y. T. & Shklover, V. (1987). Zh. Strukt. Khim. 28, 114-115.]), 1-{[benz­yl(meth­yl)phenyl­sil­yl]meth­yl}piperidinium bromide, C20H28NSiBr (NUPMUI; Barth et al., 2015[Barth, E. R., Golz, C., Koller, S. G. & Strohmann, C. (2015). Acta Cryst. E71, o759.]), N-(tri­phenyl­silylmeth­yl)-5,6-aza-C60fulleroid, C79H17NSi (YOXBOD; Hachiya et al., 2009[Hachiya, H., Kakuta, T., Takami, M. & Kabe, Y. (2009). J. Organomet. Chem. 694, 630-636.]).

5. Synthesis and crystallization

The reaction scheme for the synthesis of 1 is illustrated in Fig. 5[link]: 1-[(benzyl­dimethyl­sil­yl)meth­yl]piperidine (2) (0.81 mmol) was dissolved in acetone (3 ml) and diethyl sulfate (0.81 mmol) was added dropwise to the solution. The reaction mixture was stirred and heated for 6 h at 329 K. Afterwards the reaction was quenched by the addition of a mixture of H2O (2 ml) and NH3 (2 ml). The aqueous phase was extracted three times with CH2Cl2 and the combined organic phases were dried over Na2SO4. After the removal of volatile compounds, the raw product was dissolved in n-pentane (1 ml) and stored at 243 K. The title salt (1) was isolated as colorless crystalline blocks.

[Figure 5]
Figure 5
Reaction scheme of the alkyl­ation of 2 with diethyl sulfate for the synthesis of 1.

1H NMR (300.25 MHz, CDCl3): δ = 0.30 [s, 6H, Si(CH3)2], 1.24–1.31 (m, 6H, OCH2CH3, NCH2CH3), 1.65–1.90 [br. m, 6H, N(CH2CH2)2, NCH2CH2CH2], 2.29 (s, 2H, SiCH2Car), 3.12 (s, 2H, SiCH2N), 3.37–3.56 [br. m, 6H, N(CH2)3], 4.12 (q, 2H, 3JH–H = 7.1Hz, OCH2CH3), 7.04 (d, 2H, 3JH–H = 7.0Hz, CHar), 7.10–7.15 (m, 1H, CHar), 7.24 (d, 2H, 3JH–H = 7.6Hz, CHar) ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were refined freely using independent values for each Uiso(H).

Table 3
Experimental details

Crystal data
Chemical formula C17H30NSi+·C2H5O4S
Mr 401.63
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 8.4627 (8), 12.8187 (11), 10.3926 (9)
β (°) 107.033 (3)
V3) 1077.95 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.82 × 0.44 × 0.38
 
Data collection
Diffractometer Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Bruker, 2021[Bruker (2021). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.699, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 68418, 8122, 7987
Rint 0.021
(sin θ/λ)max−1) 0.766
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.065, 1.05
No. of reflections 8122
No. of parameters 375
No. of restraints 1
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.53, −0.59
Absolute structure Flack x determined using 3811 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.005 (6)
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackmann, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), GaussView 6.016 (Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 09, Revision A. 02. Gaussian, Inc., Wallingford, CT, USA.]), Gaussian 09 Revision A.02 (Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 09, Revision A. 02. Gaussian, Inc., Wallingford, CT, USA.]), SCHAKAL99 (Keller, 1999[Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany.]) and Molekel 4.3 (Flükiger et al., 2000[Flükiger, P., Lüthi, H. P., Portmann, S. & Weber, J. (2000). MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno , Switzerland.]).

Supporting information


Computing details top

Data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: CrystalExplorer21 (Spackman et al., 2021; Turner et al., 2017), publCIF (Westrip, 2010), Mercury (Macrae et al., 2020), GaussView 6.016 (Frisch et al., 2016), Gaussian 09 Revision A.02 (Frisch et al., 2016), SCHAKAL99 (Keller, 1999), Molekel 4.3 (Flükiger et al., 2000).

1-[(Benzyldimethylsilyl)methyl]-1-ethylpiperidin-1-ium ethanesulfonate top
Crystal data top
C17H30NSi+·C2H5O4SF(000) = 436
Mr = 401.63Dx = 1.237 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.4627 (8) ÅCell parameters from 9642 reflections
b = 12.8187 (11) Åθ = 3.0–30.6°
c = 10.3926 (9) ŵ = 0.23 mm1
β = 107.033 (3)°T = 100 K
V = 1077.95 (17) Å3Block, colourless
Z = 20.82 × 0.44 × 0.38 mm
Data collection top
Bruker D8 VENTURE
diffractometer
8122 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs7987 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.021
Detector resolution: 10.4167 pixels mm-1θmax = 33.0°, θmin = 2.5°
ω and φ scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
k = 1919
Tmin = 0.699, Tmax = 0.747l = 1515
68418 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.039P)2 + 0.1456P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.53 e Å3
8122 reflectionsΔρmin = 0.59 e Å3
375 parametersAbsolute structure: Flack x determined using 3811 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.005 (6)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.88614 (3)0.62026 (2)0.40720 (3)0.01913 (6)
Si10.05612 (4)0.31084 (3)0.20000 (3)0.01987 (7)
O31.05747 (10)0.61067 (7)0.48491 (8)0.01886 (15)
O10.85485 (10)0.74269 (6)0.37242 (10)0.01822 (15)
O40.77064 (16)0.60053 (10)0.4817 (2)0.0533 (5)
O20.85245 (18)0.56667 (8)0.27863 (13)0.0439 (4)
N10.35820 (12)0.43767 (7)0.34820 (11)0.01724 (16)
C100.19151 (13)0.39252 (8)0.34376 (12)0.01601 (18)
C140.53245 (16)0.29189 (10)0.48490 (16)0.0253 (2)
C170.41837 (15)0.50777 (10)0.47118 (15)0.0230 (2)
C60.27742 (13)0.25033 (8)0.16162 (10)0.01469 (17)
C50.31035 (14)0.14496 (9)0.17585 (11)0.01782 (18)
C130.48527 (15)0.35320 (9)0.35398 (14)0.0211 (2)
C70.13320 (13)0.30314 (9)0.25953 (11)0.01589 (17)
C10.38217 (16)0.30517 (11)0.05336 (13)0.0247 (2)
C150.59552 (18)0.36517 (13)0.60478 (17)0.0298 (3)
C180.96437 (15)0.78813 (9)0.30464 (13)0.0206 (2)
C40.44312 (17)0.09575 (11)0.08387 (14)0.0258 (2)
C30.54609 (16)0.15050 (14)0.02339 (13)0.0295 (3)
C160.46575 (16)0.44744 (12)0.60249 (15)0.0276 (3)
C110.35005 (16)0.50178 (10)0.22355 (15)0.0245 (2)
C190.93127 (16)0.90390 (9)0.29232 (12)0.0202 (2)
C120.23198 (19)0.59372 (11)0.19959 (18)0.0306 (3)
C80.0020 (3)0.3761 (2)0.03268 (16)0.0472 (5)
C20.51474 (18)0.25531 (15)0.03823 (14)0.0316 (3)
C90.1422 (2)0.17830 (15)0.1885 (3)0.0455 (5)
H13A0.442 (2)0.3078 (18)0.274 (2)0.024 (4)*
H30.638 (3)0.121 (2)0.085 (3)0.043 (6)*
H13B0.583 (3)0.3899 (17)0.346 (2)0.025 (5)*
H50.241 (2)0.1076 (17)0.250 (2)0.024 (4)*
H11A0.318 (2)0.4547 (16)0.1467 (19)0.017 (4)*
H12A0.122 (3)0.5740 (19)0.193 (2)0.029 (5)*
H10A0.128 (3)0.4494 (18)0.358 (2)0.026 (5)*
H7A0.108 (3)0.2671 (17)0.343 (2)0.023 (4)*
H16A0.368 (3)0.4130 (18)0.614 (2)0.032 (5)*
H7B0.162 (3)0.369 (2)0.277 (3)0.041 (6)*
H8A0.071 (4)0.332 (3)0.020 (3)0.056 (8)*
H18A1.077 (3)0.7716 (19)0.355 (2)0.037 (6)*
H17A0.512 (3)0.5403 (16)0.456 (2)0.023 (5)*
H16B0.512 (3)0.504 (2)0.676 (3)0.040 (6)*
H17B0.331 (3)0.5512 (18)0.475 (2)0.032 (5)*
H12B0.233 (3)0.630 (2)0.106 (3)0.043 (6)*
H20.586 (3)0.296 (2)0.110 (2)0.041 (6)*
H11B0.454 (3)0.525 (2)0.235 (2)0.033 (6)*
H14A0.439 (3)0.2515 (19)0.494 (2)0.030 (5)*
H14B0.617 (3)0.2459 (19)0.477 (2)0.033 (6)*
H19A0.825 (3)0.916 (2)0.235 (3)0.040 (6)*
H19B0.945 (3)0.933 (2)0.382 (2)0.037 (6)*
H9A0.058 (3)0.133 (2)0.123 (3)0.048 (7)*
H19C1.009 (3)0.943 (2)0.251 (2)0.031 (5)*
H10.362 (3)0.379 (2)0.045 (3)0.041 (6)*
H10B0.205 (3)0.3469 (18)0.418 (2)0.027 (5)*
H9B0.231 (5)0.175 (4)0.154 (4)0.090 (13)*
H40.477 (3)0.018 (2)0.093 (3)0.037 (6)*
H8B0.103 (6)0.397 (4)0.005 (4)0.095 (14)*
H18B0.945 (3)0.751 (2)0.216 (2)0.037 (6)*
H15A0.700 (4)0.397 (2)0.597 (3)0.058 (8)*
H12C0.274 (3)0.647 (2)0.270 (3)0.046 (7)*
H15B0.623 (4)0.327 (2)0.686 (3)0.051 (7)*
H8C0.044 (5)0.439 (4)0.038 (4)0.078 (11)*
H9C0.167 (5)0.140 (4)0.293 (4)0.092 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01109 (10)0.01196 (10)0.03141 (13)0.00019 (8)0.00167 (8)0.00310 (9)
Si10.01993 (14)0.02043 (14)0.02339 (14)0.00530 (11)0.01279 (11)0.00846 (11)
O30.0134 (3)0.0214 (4)0.0193 (3)0.0031 (3)0.0009 (3)0.0034 (3)
O10.0140 (3)0.0118 (3)0.0301 (4)0.0013 (3)0.0084 (3)0.0021 (3)
O40.0297 (5)0.0335 (7)0.1128 (13)0.0101 (5)0.0458 (7)0.0345 (7)
O20.0507 (7)0.0172 (4)0.0404 (6)0.0058 (4)0.0234 (5)0.0085 (4)
N10.0133 (4)0.0120 (4)0.0294 (5)0.0001 (3)0.0109 (3)0.0006 (3)
C100.0127 (4)0.0146 (4)0.0237 (5)0.0019 (3)0.0099 (3)0.0023 (3)
C140.0194 (5)0.0169 (5)0.0405 (7)0.0031 (4)0.0104 (5)0.0045 (4)
C170.0145 (4)0.0161 (5)0.0387 (6)0.0020 (4)0.0082 (4)0.0083 (4)
C60.0134 (4)0.0151 (4)0.0158 (4)0.0024 (3)0.0045 (3)0.0004 (3)
C50.0185 (4)0.0157 (4)0.0178 (4)0.0026 (3)0.0030 (3)0.0012 (3)
C130.0168 (4)0.0148 (4)0.0361 (6)0.0035 (4)0.0148 (4)0.0004 (4)
C70.0156 (4)0.0146 (4)0.0185 (4)0.0018 (3)0.0066 (3)0.0030 (3)
C10.0215 (5)0.0259 (5)0.0243 (5)0.0078 (4)0.0032 (4)0.0072 (5)
C150.0190 (5)0.0313 (7)0.0367 (7)0.0027 (5)0.0047 (5)0.0017 (5)
C180.0222 (5)0.0148 (4)0.0282 (5)0.0033 (4)0.0129 (4)0.0036 (4)
C40.0235 (5)0.0286 (6)0.0240 (5)0.0094 (4)0.0052 (4)0.0081 (4)
C30.0162 (5)0.0506 (8)0.0197 (5)0.0043 (5)0.0022 (4)0.0102 (5)
C160.0177 (5)0.0326 (6)0.0321 (6)0.0019 (5)0.0064 (4)0.0093 (5)
C110.0217 (5)0.0200 (5)0.0367 (6)0.0007 (4)0.0163 (5)0.0072 (5)
C190.0250 (5)0.0131 (4)0.0230 (5)0.0009 (4)0.0081 (4)0.0012 (4)
C120.0283 (6)0.0195 (5)0.0444 (8)0.0042 (4)0.0115 (6)0.0082 (5)
C80.0582 (11)0.0667 (13)0.0200 (6)0.0352 (11)0.0163 (7)0.0063 (7)
C20.0201 (5)0.0496 (9)0.0211 (5)0.0105 (6)0.0004 (4)0.0041 (5)
C90.0296 (7)0.0320 (7)0.0824 (14)0.0062 (6)0.0279 (9)0.0332 (9)
Geometric parameters (Å, º) top
S1—O31.4435 (8)C1—C21.396 (2)
S1—O11.6149 (9)C1—H10.98 (3)
S1—O41.4364 (12)C15—C161.518 (2)
S1—O21.4545 (13)C15—H15A1.00 (3)
Si1—C71.8814 (11)C15—H15B0.95 (3)
Si1—C81.862 (2)C18—C191.5086 (16)
Si1—C91.8662 (18)C18—H18A0.97 (3)
Si1—C101.9075 (12)C18—H18B1.00 (3)
O1—C181.4412 (14)C4—C31.388 (2)
N1—C101.5130 (14)C4—H41.05 (3)
N1—C171.5227 (17)C3—C21.387 (3)
N1—C131.5148 (15)C3—H30.93 (3)
N1—C111.5186 (17)C16—H16A0.98 (2)
C10—H10A0.94 (2)C16—H16B1.04 (3)
C10—H10B0.95 (2)C11—C121.5177 (19)
C14—C131.5199 (19)C11—H11A0.97 (2)
C14—C151.526 (2)C11—H11B0.91 (2)
C14—H14A0.97 (2)C19—H19A0.94 (3)
C14—H14B0.95 (2)C19—H19B0.99 (2)
C17—C161.517 (2)C19—H19C1.01 (2)
C17—H17A0.95 (2)C12—H12A0.94 (2)
C17—H17B0.93 (2)C12—H12B1.08 (3)
C6—C51.3957 (15)C12—H12C0.99 (3)
C6—C71.5019 (15)C8—H8A0.89 (3)
C6—C11.4005 (16)C8—H8B1.01 (5)
C5—C41.3946 (16)C8—H8C0.91 (4)
C5—H50.95 (2)C2—H20.96 (3)
C13—H13A0.99 (2)C9—H9A1.01 (3)
C13—H13B0.97 (2)C9—H9B0.92 (4)
C7—H7A0.95 (2)C9—H9C1.15 (4)
C7—H7B0.91 (3)
O3—S1—O1106.26 (5)C14—C15—H15A106.7 (18)
O3—S1—O2111.61 (7)C14—C15—H15B110.4 (18)
O4—S1—O3114.45 (8)C16—C15—C14109.66 (11)
O4—S1—O1101.47 (6)C16—C15—H15A111.9 (18)
O4—S1—O2115.54 (11)C16—C15—H15B111.2 (18)
O2—S1—O1106.15 (6)H15A—C15—H15B107 (3)
C7—Si1—C1098.35 (5)O1—C18—C19108.00 (9)
C8—Si1—C10114.32 (7)O1—C18—H18A108.5 (14)
C8—Si1—C7109.31 (9)O1—C18—H18B107.5 (15)
C8—Si1—C9110.06 (12)C19—C18—H18A112.9 (15)
C9—Si1—C10113.19 (8)C19—C18—H18B114.0 (15)
C9—Si1—C7111.06 (7)H18A—C18—H18B106 (2)
C18—O1—S1114.55 (7)C5—C4—H4123.5 (14)
C10—N1—C17109.32 (9)C3—C4—C5120.81 (13)
C10—N1—C13111.87 (9)C3—C4—H4115.5 (14)
C10—N1—C11111.84 (9)C4—C3—H3123.5 (18)
C13—N1—C17109.24 (10)C2—C3—C4118.93 (12)
C13—N1—C11105.96 (9)C2—C3—H3117.5 (18)
C11—N1—C17108.49 (10)C17—C16—C15111.58 (12)
Si1—C10—H10A107.8 (13)C17—C16—H16A109.3 (13)
Si1—C10—H10B101.7 (14)C17—C16—H16B104.1 (15)
N1—C10—Si1125.08 (8)C15—C16—H16A108.7 (14)
N1—C10—H10A105.8 (14)C15—C16—H16B110.8 (15)
N1—C10—H10B108.7 (13)H16A—C16—H16B112.3 (19)
H10A—C10—H10B106.6 (18)N1—C11—H11A107.2 (12)
C13—C14—C15110.47 (11)N1—C11—H11B105.7 (15)
C13—C14—H14A110.8 (14)C12—C11—N1115.05 (11)
C13—C14—H14B104.5 (14)C12—C11—H11A109.7 (12)
C15—C14—H14A110.4 (14)C12—C11—H11B109.4 (16)
C15—C14—H14B111.0 (15)H11A—C11—H11B109.7 (19)
H14A—C14—H14B110 (2)C18—C19—H19A109.5 (16)
N1—C17—H17A101.9 (12)C18—C19—H19B109.3 (15)
N1—C17—H17B108.3 (14)C18—C19—H19C113.5 (14)
C16—C17—N1112.92 (10)H19A—C19—H19B111 (2)
C16—C17—H17A111.3 (13)H19A—C19—H19C106 (2)
C16—C17—H17B105.7 (14)H19B—C19—H19C107 (2)
H17A—C17—H17B117 (2)C11—C12—H12A112.9 (14)
C5—C6—C7120.82 (10)C11—C12—H12B107.8 (14)
C5—C6—C1118.15 (11)C11—C12—H12C109.8 (16)
C1—C6—C7121.03 (10)H12A—C12—H12B108.6 (19)
C6—C5—H5118.5 (13)H12A—C12—H12C112 (2)
C4—C5—C6120.72 (11)H12B—C12—H12C106 (2)
C4—C5—H5120.8 (13)Si1—C8—H8A103 (2)
N1—C13—C14113.73 (10)Si1—C8—H8B113 (3)
N1—C13—H13A107.5 (12)Si1—C8—H8C110 (2)
N1—C13—H13B105.1 (13)H8A—C8—H8B118 (3)
C14—C13—H13A112.5 (13)H8A—C8—H8C112 (3)
C14—C13—H13B108.6 (13)H8B—C8—H8C101 (3)
H13A—C13—H13B109.1 (17)C1—C2—H2118.4 (17)
Si1—C7—H7A109.8 (13)C3—C2—C1120.64 (13)
Si1—C7—H7B108.6 (17)C3—C2—H2121.0 (17)
C6—C7—Si1113.71 (7)Si1—C9—H9A110.7 (16)
C6—C7—H7A108.8 (13)Si1—C9—H9B116 (3)
C6—C7—H7B109.9 (17)Si1—C9—H9C107 (2)
H7A—C7—H7B106 (2)H9A—C9—H9B102 (3)
C6—C1—H1118.4 (16)H9A—C9—H9C107 (3)
C2—C1—C6120.75 (13)H9B—C9—H9C114 (3)
C2—C1—H1120.8 (16)
S1—O1—C18—C19174.27 (8)C5—C4—C3—C20.2 (2)
O3—S1—O1—C1855.64 (10)C13—N1—C10—Si165.17 (13)
O4—S1—O1—C18175.59 (11)C13—N1—C17—C1652.78 (12)
O2—S1—O1—C1863.30 (11)C13—N1—C11—C12178.50 (12)
N1—C17—C16—C1556.11 (14)C13—C14—C15—C1656.25 (15)
C10—Si1—C7—C6174.81 (8)C7—C6—C5—C4179.20 (11)
C10—N1—C17—C1669.94 (12)C7—C6—C1—C2179.19 (11)
C10—N1—C13—C1467.70 (13)C1—C6—C5—C40.58 (17)
C10—N1—C11—C1259.35 (15)C1—C6—C7—Si182.81 (12)
C14—C15—C16—C1756.65 (16)C15—C14—C13—N156.46 (14)
C17—N1—C10—Si1173.69 (8)C4—C3—C2—C10.2 (2)
C17—N1—C13—C1453.48 (13)C11—N1—C10—Si153.52 (12)
C17—N1—C11—C1261.30 (14)C11—N1—C17—C16167.85 (10)
C6—C5—C4—C30.40 (19)C11—N1—C13—C14170.17 (10)
C6—C1—C2—C30.4 (2)C8—Si1—C7—C655.31 (11)
C5—C6—C7—Si196.96 (11)C9—Si1—C7—C666.31 (12)
C5—C6—C1—C20.59 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.93 (3)2.39 (3)3.2990 (17)167 (2)
C7—H7B···O2ii0.91 (3)2.54 (3)3.3881 (16)156 (2)
C17—H17A···O40.95 (2)2.26 (2)3.1815 (16)162.8 (17)
C17—H17B···O3ii0.93 (2)2.47 (2)3.3680 (15)161.3 (19)
Symmetry codes: (i) x, y1/2, z; (ii) x1, y, z.
 

Acknowledgements

J-LK and CS would like to thank the Fonds der Chemischen Industrie for a doctoral fellowship.

Funding information

Funding for this research was provided by: Verband der Chemischen Industrie.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. 1–19.  Google Scholar
First citationBarth, E. R., Golz, C., Koller, S. G. & Strohmann, C. (2015). Acta Cryst. E71, o759.  CSD CrossRef IUCr Journals Google Scholar
First citationBauer, J. O. & Strohmann, C. (2014). Angew. Chem. Int. Ed. 53, 8167–8171.  Web of Science CSD CrossRef CAS Google Scholar
First citationBent, H. A. (1960). J. Chem. Educ. 37, 616–624.  CrossRef CAS Google Scholar
First citationBent, H. A. (1961). Chem. Rev. 61, 275–311.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2021). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDenmark, S., Baird, J. D. & Regens, C. S. (2007). J. Org. Chem. 73, 1440–1455.  Web of Science CrossRef Google Scholar
First citationDenmark, S. & Liu, J. H.-C. (2010). Angew. Chem. Int. Ed. 49, 2978–2986.  Web of Science CrossRef CAS Google Scholar
First citationDitchfield, R., Hehre, W. F. & Pople, J. A. (1970). J. Chem. Phys. 54, 724–728.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlükiger, P., Lüthi, H. P., Portmann, S. & Weber, J. (2000). MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno , Switzerland.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 09, Revision A. 02. Gaussian, Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHachiya, H., Kakuta, T., Takami, M. & Kabe, Y. (2009). J. Organomet. Chem. 694, 630–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationKeller, E. (1999). SCHAKAL99. University of Freiburg, Germany.  Google Scholar
First citationKoller, S. G., Bauer, J. O. & Strohmann, C. (2017). Angew. Chem. Int. Ed. 56, 7991–7994.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrupp, A., Wegge, J., Otte, F., Kleinheider, J., Wall, H. & Strohmann, C. (2020). Acta Cryst. E76, 1437–1441.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y. & Hu, J. (2007). Angew. Chem. Int. Ed. 46, 2489–2492.  Web of Science CrossRef CAS Google Scholar
First citationMacharashvili, A. A., Baukov, Y. I., Kramarova, E. P., Oleneva, G. I., Pestunovich, V. A., Struchkov, Y. T. & Shklover, V. (1987). Zh. Strukt. Khim. 28, 114–115.  CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtte, F., Koller, S. G., Cuellar, E., Golz, C. & Strohmann, C. (2017). Inorg. Chim. Acta, 456, 44–48.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPerlstein, J. (2001). J. Am. Chem. Soc. 123, 191–192.  CrossRef CAS Google Scholar
First citationSchubert, U., Hepp, W. & Müller, J. (1986). Organometallics, 1986, 5, 173–175.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrohmann, C., Bindl, M., Fraass, V. C. & Hörnig, J. (2004). Angew. Chem. Int. Ed. 43, 1011–1014.  Web of Science CSD CrossRef CAS Google Scholar
First citationStrohmann, C. & Däschlein, C. (2008). Organometallics, 27, 2499–2504.  Web of Science CSD CrossRef CAS Google Scholar
First citationTomooka, K., Nakazaki, A. & Nakai, T. (2000). J. Am. Chem. Soc. 122, 408–409.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackmann, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationUhl, W., Cuypers, L., Schüler, K., Spies, T., Strohmann, C. & Lehmen, K. (2000). Z. Anorg. Allg. Chem. 626, 1526–1534.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Y. & Truhlar, D. G. (2008). Theor. Chem. Acc. 120, 215–241.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds