research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-azido-1,3-bis­­(2,6-diiso­propyl­phen­yl)-1,3,2-di­aza­phospho­lidine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Saint Mary's University, 923 Robie St., Halifax, Nova Scotia, B3H 3C3, Canada
*Correspondence e-mail: jason.masuda@smu.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 May 2017; accepted 23 May 2017; online 31 May 2017)

The title compound, C26H38N5P, was synthesized by reacting 2-chloro-1,3-bis­(2,6-diiso­propyl­phen­yl)-1,3,2-di­aza­phospho­lidine with sodium azide and a catalytic amount of lithium chloride in tetra­hydro­furan. The title compound is the first structurally characterized 2-azido-1,3,2-di­aza­phospho­lidine and exhibits a P atom in a trigonal pyramidal geometry. The azide P—N bond length of 1.8547 (16) Å is significantly longer than the P—N separations for the chelating di­amine [P—N = 1.6680 (15) and 1.6684 (14) Å]. The sterically hindered 2,6-diiso­propyl­phenyl groups twist away from the central heterocycle, with dihedral angles between the central heteocyclic ring and benzene rings of 76.17 (10) and 79.74 (9)°. In the crystal, a weak C—H⋯N link to the terminal N atom of the azide group leads to [100] chains.

1. Chemical context

Phosphine azides possess at least one azide group attached to phospho­rus and display a broad range of reactivity that is directly dependent on the other substituents attached to the P atom. One of the most inter­esting properties of these mol­ecules is that both free and coordinated alkyl and aryl derivatives are much more reactive than their corresponding amino derivatives, as demonstrated by their lower thermal and photochemical stability. For example, the phosphinoazide complex Ph2P(N3)–Cr(CO)5 readily undergoes photolysis under UV light to produce the phosphino–iso­cyanate complex Ph2P(NCO)–Cr(CO)5 (Ocando et al., 1985[Ocando, E., Majid, S., Pierre Majoral, J., Baceiredo, A. & Bertrand, G. (1985). Polyhedron, 4, 1667-1668.]), while the related bis­(diiso­propyl­amino) complex (iPr2N)2P(N3)–Cr(CO)5 does not (Cowley et al., 1995[Cowley, A. H., Gabbaï, F. P., Bertrand, G., Carrano, C. J. & Bond, M. R. (1995). J. Organomet. Chem. 493, 95-99.]). The crystal structure of the title compound is the first reported example of a structurally characterized 2-azido-1,3,2-di­aza­phospho­lidine; however, a few closely related compounds are known, such as those derived from 1,3,2-di­aza­phospho­lenes.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. It crystallizes in the monoclinic space group P21/n with one mol­ecule in the asymmetric unit. The bond lengths between the P atom and its flanking N atoms are similar [P1—N4 = 1.6680 (15) Å, P1—N5 = 1.6684 (14) Å and N4—P1—N5 = 91.14 (7)°], while the phospho­rus centre adopts a trigonal pyramidal geometry, with the sum of the angles at phospho­rus equal to 294.14 (7)°. The azide group is quasilinear [N3—N2—N1 = 176.6 (2)°], with similar N—N bond lengths [N1—N2 = 1.168 (2) Å and N2—N3 = 1.155 (2) Å]. The phospho­rus–azide bond length (P1—N1) is significantly longer [1.8547 (16) Å] than found for atoms N4 and N5. The average sum of the bond angles at the N4 and N5 positions is 359.87 (12)°, very close to an ideal trigonal planar geometry. This is a strong indication that the nominal lone pairs of atoms N4 and N5 participate in N—P⋯π inter­actions and, when coupled with the significantly longer P1—N1 bond length, suggests a partial ionic character similar to earlier reports in acyclic structures (Cowley et al., 1995[Cowley, A. H., Gabbaï, F. P., Bertrand, G., Carrano, C. J. & Bond, M. R. (1995). J. Organomet. Chem. 493, 95-99.]). The overall conformation of the C1/C2/N4/N5/P1 ring is well described as an envelope, with atom N5 deviating from the other atoms (r.m.s. deviation = 0.030 Å) by −0.274 (2) Å. The steric demands of the bulky 2,6-diiso­propyl­phenyl groups cause the aromatic rings to twist away from the central five-membered ring, with torsion angles of 103.69 (18) and 101.83 (17)° for P1—N1—C3—C4 and P1—N2—C15—C20, respectively. The isopropyl groups are oriented away from the central five-membered ring, but the `congested' nature of the mol­ecule results in intra­molecular short contacts between all four of the methine H atoms (H9, H12, H21 and H24) and atoms N4 and N5 (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N4 1.00 2.43 2.926 (2) 110
C12—H12⋯N4 1.00 2.44 2.913 (2) 109
C21—H21⋯N5 1.00 2.49 2.932 (2) 106
C24—H24⋯N1 1.00 2.66 3.443 (3) 136
C24—H24⋯N5 1.00 2.46 2.955 (2) 110
C22—H22C⋯N3i 0.98 2.69 3.669 (3) 174
Symmetry code: (i) x-1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% displacement ellipsoids. H atoms have been omitted for clarity.

3. Supra­molecular features

The only significant directional inter­action in the crystal of the title compound is a long [2.69 (3) Å] C—H⋯N hydrogen bond to the terminal N atom of the azide group, which results in [100] chains in the crystal (Fig. 2[link]).

[Figure 2]
Figure 2
The packing of the title compound, showing inter­molecular C—H⋯N inter­actions as dashed lines, which result in [100] chains.

4. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated that no other 2-azido-1,3,2-(di­aryl­amino)­phospho­lidine derivatives have been structurally characterized. Some structurally similar compounds were identified, however, namely 2-azido-1,3-bis­(2,6-diiso­propyl­lphen­yl)-1,3,2-di­aza­phospho­lene (CSD refcode CILBAC; Gediga et al., 2014[Gediga, M., Burck, S., Bender, J., Förster, D., Nieger, M. & Gudat, D. (2014). Eur. J. Inorg. Chem. pp. 1818-1825.]) and its corresponding 2,6-di­methyl­phenyl derivative (GOFHAL; Burck et al., 2008[Burck, S., Gudat, D., Nieger, M., Schalley, C. A. & Weilandt, T. (2008). Dalton Trans. pp. 3478-3485.]). Acyclic derivatives featuring bis­(diiso­propyl­amino) (PIJZAJ; Englert et al., 1993[Englert, U., Paetzold, P. & Eversheim, E. (1993). Z. Kristallogr. 208, 307-309.]) and bis­(dicylo­hexyl­amino) (ZABCEK; Cowley et al., 1995[Cowley, A. H., Gabbaï, F. P., Bertrand, G., Carrano, C. J. & Bond, M. R. (1995). J. Organomet. Chem. 493, 95-99.]) ligands are known, and also 1-azido-N,N′-bis(2,4,6-tri-tert-butyl­phenyl)phosphinedi­amine (YABVUV; Nieger et al., 2016[Nieger, M., Niecke, E. & Larbig, M. (2016). Private communication (refcode YABVUV). CCDC, Cambridge, England.]).

5. Synthesis and crystallization

The synthesis of the title compound was achieved using a similar method as reported in the literature for 2-azido-1,3-bis­(2,6-diiso­propyl­lphen­yl)-1,3,2-di­aza­phospho­lene (Gediga et al., 2014[Gediga, M., Burck, S., Bender, J., Förster, D., Nieger, M. & Gudat, D. (2014). Eur. J. Inorg. Chem. pp. 1818-1825.]). In a 20 ml scintillation vial, 0.102 g (0.229 mmol, 1 eq.) of colourless 2-chloro-1,3-bis­(2,6-diiso­propyl­phen­yl)-1,3,2-di­aza­phospho­lidine were dissolved in 1 ml of THF producing a colourless solution. To this solution, 0.016 g (0.246 mmol, 1.1 eq.) of colourless sodium azide and a spatula tip (<1 mg) of lithium chloride were added to solution immediately producing a colourless mixture. The reaction mixture was left to stir for 1 d and monitored using 31P{1H} NMR spectroscopy, and once the starting material was completely consumed the reaction mixture was dried in vacuo. Extraction of the colourless residue with cold pentane, followed by filtration through Celite produced a colourless solution, which afforded 0.060 g (60%) of the title compound as a colourless powder after removal of the solvent. Crystals of the product were obtained by concentrating the filtrate and storing in a 238 K freezer overnight. 1H NMR (CDCl3): δ 7.31 (t, 3JHH = 7.6 Hz, 2H, p-Dipp), 7.24–7.17 (m, 4H, m-Dipp), 3.88–3.82 (pseudo-q, 2H, NHC-CH2), 3.74 (sept, 3JHH = 6.8 Hz, 2H, iPr-CH), 3.48–3.39 (m, 4H, iPr-CH, NHC-CH2), 1.33–1.25 (m, 3JHH = 6.8 Hz, 24H, iPr-CH3). 13C{1H} NMR (CDCl3): δ 150.3, 148.4, 136.2, 128.1, 124.7, 124.2, 54.4, 29.0, 25.3, 24.9, 24.5. 31P{1H} NMR (CDCl3): δ 129.8. IR (KBr pellet): ν 3062 (w), 2963 (s), 2926 (m), 2867 (m), 2500 (w), 2125 (m), 2085 (s, N=N=N), 1678 (w), 1584 (w), 1462 (s), 1445 (s), 1383 (m), 1363 (m), 1324 (m), 1323 (m), 1257 (s), 1211 (w), 1185 (w), 1106 (m), 1075 (s), 1056 (w), 1043 (w), 980 (w), 946 (w), 935 (w), 852 (w), 806 (s), 761 (s), 730 (w), 688 (w), 651 (w), 602 (w), 583 (w), 550 (w), 542 (w), 470 (s), 437 cm−1 (w). M.p. (K): 415.4–417.6 (decomposes, gas was released).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were included in geometrically idealized positions and refined using a riding model. Dihedral angles for the methyl H atoms were allowed to refine freely. The atomic displacement parameters of atoms N1 and N2 were constrained to be approximately equal using an EADP command.

Table 2
Experimental details

Crystal data
Chemical formula C26H38N5P
Mr 451.58
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 10.0148 (12), 17.343 (2), 15.6270 (19)
β (°) 105.948 (2)
V3) 2609.7 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.39 × 0.35 × 0.27
 
Data collection
Diffractometer Siemens/Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.718, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 29851, 5708, 4350
Rint 0.047
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 1.02
No. of reflections 5708
No. of parameters 291
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Azido-1,3-bis(2,6-diisopropylphenyl)-1,3,2-diazaphospholidine top
Crystal data top
C26H38N5PF(000) = 976
Mr = 451.58Dx = 1.149 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.0148 (12) ÅCell parameters from 5265 reflections
b = 17.343 (2) Åθ = 2.2–25.2°
c = 15.6270 (19) ŵ = 0.13 mm1
β = 105.948 (2)°T = 150 K
V = 2609.7 (5) Å3Block, colourless
Z = 40.39 × 0.35 × 0.27 mm
Data collection top
Siemens/Bruker APEXII
diffractometer
4350 reflections with I > 2σ(I)
Detector resolution: 66 pixels mm-1Rint = 0.047
φ and ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.718, Tmax = 0.746k = 2222
29851 measured reflectionsl = 1919
5708 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0515P)2 + 1.4293P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5708 reflectionsΔρmax = 0.36 e Å3
291 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.59945 (4)0.54203 (3)0.26470 (3)0.02022 (12)
N10.79052 (16)0.53002 (10)0.29154 (11)0.0320 (3)
N20.84392 (16)0.55461 (10)0.23965 (11)0.0320 (3)
N30.9030 (2)0.57761 (13)0.19098 (13)0.0507 (5)
N40.54371 (15)0.45109 (8)0.24970 (9)0.0219 (3)
N50.57675 (15)0.54345 (8)0.36653 (9)0.0213 (3)
C10.5191 (3)0.41282 (12)0.32687 (13)0.0425 (6)
H1A0.5744710.3648490.3403330.051*
H1B0.4196150.3993790.3152590.051*
C20.5609 (2)0.46709 (11)0.40234 (13)0.0364 (5)
H2A0.4892210.4686270.4351280.044*
H2B0.6496780.4503540.4439320.044*
C30.51337 (18)0.41222 (10)0.16538 (11)0.0231 (4)
C40.60771 (19)0.35813 (11)0.14988 (12)0.0274 (4)
C50.5759 (2)0.32088 (13)0.06777 (14)0.0413 (5)
H50.6385720.2839140.0559810.050*
C60.4543 (2)0.33718 (15)0.00350 (14)0.0492 (6)
H60.4342810.3117340.0524310.059*
C70.3621 (2)0.38992 (13)0.01970 (13)0.0420 (5)
H70.2784440.4002260.0251910.050*
C80.38869 (19)0.42858 (11)0.10071 (12)0.0286 (4)
C90.7420 (2)0.33751 (12)0.21946 (13)0.0336 (5)
H90.7502430.3718280.2720920.040*
C100.7379 (3)0.25436 (14)0.25043 (17)0.0561 (7)
H10A0.7312850.2193610.2001990.084*
H10B0.6569800.2471680.2733630.084*
H10C0.8228200.2431310.2976200.084*
C110.8689 (2)0.35145 (16)0.18521 (17)0.0519 (6)
H11A0.8658680.3165480.1353980.078*
H11B0.9535970.3417720.2331960.078*
H11C0.8686440.4049830.1650780.078*
C120.2812 (2)0.48372 (12)0.11812 (14)0.0367 (5)
H120.3262430.5139510.1729500.044*
C130.1612 (3)0.43896 (19)0.1354 (3)0.1000 (14)
H13A0.0938970.4750200.1481960.150*
H13B0.1961370.4045860.1864060.150*
H13C0.1160900.4083290.0826600.150*
C140.2272 (4)0.53980 (17)0.0432 (2)0.0820 (10)
H14A0.1771320.5116690.0103620.123*
H14B0.3051810.5678850.0314060.123*
H14C0.1641040.5764210.0598620.123*
C150.58170 (17)0.61147 (10)0.42027 (11)0.0207 (3)
C160.46359 (18)0.65928 (10)0.40491 (11)0.0219 (4)
C170.46834 (19)0.72263 (10)0.46045 (12)0.0274 (4)
H170.3898820.7556410.4506330.033*
C180.5844 (2)0.73839 (11)0.52929 (12)0.0305 (4)
H180.5850620.7816260.5667440.037*
C190.6994 (2)0.69150 (10)0.54386 (12)0.0281 (4)
H190.7790390.7030160.5914300.034*
C200.70149 (18)0.62737 (10)0.49017 (11)0.0231 (4)
C210.33327 (18)0.64485 (11)0.32984 (12)0.0277 (4)
H210.3316950.5890360.3135400.033*
C220.2000 (2)0.66235 (13)0.35634 (17)0.0453 (6)
H22A0.1915220.7181590.3631680.068*
H22B0.2037320.6366910.4128190.068*
H22C0.1196510.6433960.3099920.068*
C230.3355 (2)0.69207 (13)0.24749 (14)0.0412 (5)
H23A0.2545210.6786560.1982520.062*
H23B0.4206020.6806390.2305570.062*
H23C0.3326470.7471410.2609290.062*
C240.83013 (19)0.57663 (11)0.51126 (12)0.0285 (4)
H240.8150470.5351430.4651490.034*
C250.8521 (2)0.53809 (13)0.60211 (14)0.0442 (5)
H25A0.7690900.5084860.6028230.066*
H25B0.8690850.5776840.6485990.066*
H25C0.9323070.5033980.6131130.066*
C260.9599 (2)0.62141 (13)0.50874 (16)0.0432 (5)
H26A0.9466500.6440860.4495500.065*
H26B1.0398220.5864190.5215930.065*
H26C0.9767940.6625180.5534680.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0210 (2)0.0213 (2)0.0179 (2)0.00023 (17)0.00470 (16)0.00068 (17)
N10.0236 (6)0.0394 (7)0.0296 (6)0.0011 (5)0.0017 (4)0.0038 (5)
N20.0236 (6)0.0394 (7)0.0296 (6)0.0011 (5)0.0017 (4)0.0038 (5)
N30.0390 (11)0.0744 (15)0.0439 (11)0.0083 (10)0.0201 (9)0.0003 (10)
N40.0268 (8)0.0214 (7)0.0180 (7)0.0014 (6)0.0070 (6)0.0002 (6)
N50.0271 (8)0.0186 (7)0.0191 (7)0.0007 (6)0.0078 (6)0.0005 (6)
C10.0801 (17)0.0260 (10)0.0300 (11)0.0088 (10)0.0293 (11)0.0024 (8)
C20.0631 (14)0.0236 (10)0.0229 (9)0.0099 (9)0.0125 (9)0.0016 (8)
C30.0262 (9)0.0233 (9)0.0200 (8)0.0019 (7)0.0067 (7)0.0023 (7)
C40.0286 (10)0.0290 (10)0.0239 (9)0.0018 (8)0.0060 (7)0.0042 (7)
C50.0395 (12)0.0490 (13)0.0339 (11)0.0079 (10)0.0077 (9)0.0162 (10)
C60.0501 (14)0.0641 (16)0.0275 (11)0.0046 (12)0.0009 (10)0.0212 (11)
C70.0367 (12)0.0535 (14)0.0277 (10)0.0043 (10)0.0050 (9)0.0066 (9)
C80.0265 (9)0.0280 (10)0.0285 (10)0.0009 (7)0.0029 (8)0.0011 (8)
C90.0325 (11)0.0347 (11)0.0301 (10)0.0094 (8)0.0027 (8)0.0077 (8)
C100.0661 (17)0.0387 (13)0.0538 (15)0.0155 (12)0.0002 (13)0.0041 (11)
C110.0322 (12)0.0669 (17)0.0542 (15)0.0099 (11)0.0081 (10)0.0126 (12)
C120.0262 (10)0.0320 (11)0.0448 (12)0.0055 (8)0.0022 (9)0.0070 (9)
C130.073 (2)0.065 (2)0.192 (4)0.0142 (17)0.086 (3)0.009 (2)
C140.098 (3)0.0568 (19)0.082 (2)0.0371 (17)0.0091 (19)0.0182 (16)
C150.0260 (9)0.0196 (8)0.0177 (8)0.0012 (7)0.0080 (7)0.0004 (6)
C160.0245 (9)0.0198 (8)0.0223 (9)0.0013 (7)0.0079 (7)0.0033 (7)
C170.0320 (10)0.0206 (9)0.0304 (10)0.0035 (7)0.0100 (8)0.0000 (7)
C180.0400 (11)0.0231 (9)0.0285 (10)0.0017 (8)0.0093 (8)0.0069 (8)
C190.0321 (10)0.0280 (10)0.0219 (9)0.0041 (8)0.0035 (7)0.0014 (7)
C200.0261 (9)0.0222 (9)0.0212 (8)0.0006 (7)0.0068 (7)0.0025 (7)
C210.0247 (9)0.0230 (9)0.0329 (10)0.0002 (7)0.0036 (8)0.0010 (8)
C220.0250 (11)0.0445 (13)0.0645 (15)0.0016 (9)0.0090 (10)0.0103 (11)
C230.0414 (12)0.0395 (12)0.0344 (11)0.0035 (9)0.0038 (9)0.0086 (9)
C240.0284 (10)0.0263 (9)0.0272 (10)0.0026 (8)0.0015 (7)0.0014 (8)
C250.0451 (13)0.0438 (13)0.0366 (12)0.0078 (10)0.0009 (10)0.0118 (10)
C260.0291 (11)0.0429 (13)0.0576 (14)0.0040 (9)0.0120 (10)0.0013 (11)
Geometric parameters (Å, º) top
P1—N41.6680 (15)C12—H121.0000
P1—N51.6684 (14)C13—H13A0.9800
P1—N11.8547 (16)C13—H13B0.9800
N1—N21.168 (2)C13—H13C0.9800
N2—N31.155 (2)C14—H14A0.9800
N4—C31.436 (2)C14—H14B0.9800
N4—C11.456 (2)C14—H14C0.9800
N5—C151.441 (2)C15—C161.410 (2)
N5—C21.463 (2)C15—C201.410 (2)
C1—C21.477 (3)C16—C171.393 (2)
C1—H1A0.9900C16—C211.517 (2)
C1—H1B0.9900C17—C181.377 (3)
C2—H2A0.9900C17—H170.9500
C2—H2B0.9900C18—C191.377 (3)
C3—C41.399 (2)C18—H180.9500
C3—C81.403 (2)C19—C201.397 (2)
C4—C51.393 (3)C19—H190.9500
C4—C91.521 (3)C20—C241.520 (2)
C5—C61.378 (3)C21—C231.531 (3)
C5—H50.9500C21—C221.532 (3)
C6—C71.372 (3)C21—H211.0000
C6—H60.9500C22—H22A0.9800
C7—C81.392 (3)C22—H22B0.9800
C7—H70.9500C22—H22C0.9800
C8—C121.519 (3)C23—H23A0.9800
C9—C101.525 (3)C23—H23B0.9800
C9—C111.528 (3)C23—H23C0.9800
C9—H91.0000C24—C261.524 (3)
C10—H10A0.9800C24—C251.529 (3)
C10—H10B0.9800C24—H241.0000
C10—H10C0.9800C25—H25A0.9800
C11—H11A0.9800C25—H25B0.9800
C11—H11B0.9800C25—H25C0.9800
C11—H11C0.9800C26—H26A0.9800
C12—C141.503 (3)C26—H26B0.9800
C12—C131.516 (4)C26—H26C0.9800
N4—P1—N591.14 (7)C12—C13—H13B109.5
N4—P1—N1102.14 (8)H13A—C13—H13B109.5
N5—P1—N1100.86 (7)C12—C13—H13C109.5
N2—N1—P1116.29 (14)H13A—C13—H13C109.5
N3—N2—N1176.6 (2)H13B—C13—H13C109.5
C3—N4—C1120.31 (14)C12—C14—H14A109.5
C3—N4—P1123.43 (11)C12—C14—H14B109.5
C1—N4—P1116.17 (12)H14A—C14—H14B109.5
C15—N5—C2120.53 (14)C12—C14—H14C109.5
C15—N5—P1125.17 (11)H14A—C14—H14C109.5
C2—N5—P1114.15 (12)H14B—C14—H14C109.5
N4—C1—C2107.20 (16)C16—C15—C20120.81 (15)
N4—C1—H1A110.3C16—C15—N5119.29 (15)
C2—C1—H1A110.3C20—C15—N5119.82 (15)
N4—C1—H1B110.3C17—C16—C15118.32 (16)
C2—C1—H1B110.3C17—C16—C21119.13 (16)
H1A—C1—H1B108.5C15—C16—C21122.54 (15)
N5—C2—C1107.95 (15)C18—C17—C16121.37 (17)
N5—C2—H2A110.1C18—C17—H17119.3
C1—C2—H2A110.1C16—C17—H17119.3
N5—C2—H2B110.1C17—C18—C19120.01 (17)
C1—C2—H2B110.1C17—C18—H18120.0
H2A—C2—H2B108.4C19—C18—H18120.0
C4—C3—C8121.38 (16)C18—C19—C20121.38 (17)
C4—C3—N4119.40 (15)C18—C19—H19119.3
C8—C3—N4119.21 (15)C20—C19—H19119.3
C5—C4—C3118.43 (17)C19—C20—C15118.11 (16)
C5—C4—C9118.87 (17)C19—C20—C24118.84 (16)
C3—C4—C9122.69 (16)C15—C20—C24123.02 (15)
C6—C5—C4120.59 (19)C16—C21—C23110.73 (15)
C6—C5—H5119.7C16—C21—C22112.73 (16)
C4—C5—H5119.7C23—C21—C22109.64 (17)
C7—C6—C5120.47 (19)C16—C21—H21107.9
C7—C6—H6119.8C23—C21—H21107.9
C5—C6—H6119.8C22—C21—H21107.9
C6—C7—C8121.22 (19)C21—C22—H22A109.5
C6—C7—H7119.4C21—C22—H22B109.5
C8—C7—H7119.4H22A—C22—H22B109.5
C7—C8—C3117.90 (17)C21—C22—H22C109.5
C7—C8—C12119.86 (17)H22A—C22—H22C109.5
C3—C8—C12122.18 (17)H22B—C22—H22C109.5
C4—C9—C10110.70 (18)C21—C23—H23A109.5
C4—C9—C11111.68 (17)C21—C23—H23B109.5
C10—C9—C11110.99 (19)H23A—C23—H23B109.5
C4—C9—H9107.8C21—C23—H23C109.5
C10—C9—H9107.8H23A—C23—H23C109.5
C11—C9—H9107.8H23B—C23—H23C109.5
C9—C10—H10A109.5C20—C24—C26112.19 (16)
C9—C10—H10B109.5C20—C24—C25110.59 (16)
H10A—C10—H10B109.5C26—C24—C25109.90 (17)
C9—C10—H10C109.5C20—C24—H24108.0
H10A—C10—H10C109.5C26—C24—H24108.0
H10B—C10—H10C109.5C25—C24—H24108.0
C9—C11—H11A109.5C24—C25—H25A109.5
C9—C11—H11B109.5C24—C25—H25B109.5
H11A—C11—H11B109.5H25A—C25—H25B109.5
C9—C11—H11C109.5C24—C25—H25C109.5
H11A—C11—H11C109.5H25A—C25—H25C109.5
H11B—C11—H11C109.5H25B—C25—H25C109.5
C14—C12—C13109.7 (2)C24—C26—H26A109.5
C14—C12—C8112.9 (2)C24—C26—H26B109.5
C13—C12—C8110.17 (19)H26A—C26—H26B109.5
C14—C12—H12108.0C24—C26—H26C109.5
C13—C12—H12108.0H26A—C26—H26C109.5
C8—C12—H12108.0H26B—C26—H26C109.5
C12—C13—H13A109.5
N4—P1—N1—N2113.83 (16)C3—C4—C9—C10113.2 (2)
N5—P1—N1—N2152.62 (15)C5—C4—C9—C1158.4 (3)
N5—P1—N4—C3169.76 (14)C3—C4—C9—C11122.6 (2)
N1—P1—N4—C388.87 (14)C7—C8—C12—C1448.6 (3)
N5—P1—N4—C16.93 (16)C3—C8—C12—C14134.2 (2)
N1—P1—N4—C194.44 (16)C7—C8—C12—C1374.3 (3)
N4—P1—N5—C15168.59 (14)C3—C8—C12—C13102.9 (3)
N1—P1—N5—C1588.82 (14)C2—N5—C15—C16103.4 (2)
N4—P1—N5—C215.88 (14)P1—N5—C15—C1681.30 (19)
N1—P1—N5—C286.71 (14)C2—N5—C15—C2073.4 (2)
C3—N4—C1—C2179.70 (17)P1—N5—C15—C20101.83 (17)
P1—N4—C1—C23.5 (2)C20—C15—C16—C170.1 (2)
C15—N5—C2—C1163.95 (17)N5—C15—C16—C17176.90 (15)
P1—N5—C2—C120.3 (2)C20—C15—C16—C21179.24 (16)
N4—C1—C2—N514.1 (3)N5—C15—C16—C213.9 (2)
C1—N4—C3—C479.8 (2)C15—C16—C17—C180.5 (3)
P1—N4—C3—C4103.69 (18)C21—C16—C17—C18179.74 (17)
C1—N4—C3—C899.4 (2)C16—C17—C18—C190.6 (3)
P1—N4—C3—C877.2 (2)C17—C18—C19—C200.2 (3)
C8—C3—C4—C50.6 (3)C18—C19—C20—C150.2 (3)
N4—C3—C4—C5179.73 (18)C18—C19—C20—C24178.33 (17)
C8—C3—C4—C9178.35 (18)C16—C15—C20—C190.3 (2)
N4—C3—C4—C90.8 (3)N5—C15—C20—C19176.51 (15)
C3—C4—C5—C60.1 (3)C16—C15—C20—C24178.31 (16)
C9—C4—C5—C6179.1 (2)N5—C15—C20—C241.5 (2)
C4—C5—C6—C70.6 (4)C17—C16—C21—C2384.6 (2)
C5—C6—C7—C80.4 (4)C15—C16—C21—C2394.5 (2)
C6—C7—C8—C30.3 (3)C17—C16—C21—C2238.6 (2)
C6—C7—C8—C12177.1 (2)C15—C16—C21—C22142.23 (18)
C4—C3—C8—C70.8 (3)C19—C20—C24—C2658.9 (2)
N4—C3—C8—C7179.90 (18)C15—C20—C24—C26123.11 (19)
C4—C3—C8—C12176.48 (18)C19—C20—C24—C2564.2 (2)
N4—C3—C8—C122.6 (3)C15—C20—C24—C25113.80 (19)
C5—C4—C9—C1065.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N41.002.432.926 (2)110
C12—H12···N41.002.442.913 (2)109
C21—H21···N51.002.492.932 (2)106
C24—H24···N11.002.663.443 (3)136
C24—H24···N51.002.462.955 (2)110
C22—H22C···N3i0.982.693.669 (3)174
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada (through the Discovery Grants Program to JDM). JDM also acknowledges support from the Canadian Foundation for Innovation, the Nova Scotia Research and Innovation Trust Fund and Saint Mary's University.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurck, S., Gudat, D., Nieger, M., Schalley, C. A. & Weilandt, T. (2008). Dalton Trans. pp. 3478–3485.  CrossRef Google Scholar
First citationCowley, A. H., Gabbaï, F. P., Bertrand, G., Carrano, C. J. & Bond, M. R. (1995). J. Organomet. Chem. 493, 95–99.  CrossRef CAS Google Scholar
First citationEnglert, U., Paetzold, P. & Eversheim, E. (1993). Z. Kristallogr. 208, 307–309.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGediga, M., Burck, S., Bender, J., Förster, D., Nieger, M. & Gudat, D. (2014). Eur. J. Inorg. Chem. pp. 1818–1825.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNieger, M., Niecke, E. & Larbig, M. (2016). Private communication (refcode YABVUV). CCDC, Cambridge, England.  Google Scholar
First citationOcando, E., Majid, S., Pierre Majoral, J., Baceiredo, A. & Bertrand, G. (1985). Polyhedron, 4, 1667–1668.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds