research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of three pyrazine-2,5-dicarb­oxamides: three-dimensional supra­molecular structures

CROSSMARK_Color_square_no_text.svg

aDebiopharm International S.A., Chemin Messidor 5-7, CP 5911, CH-1002 Lausanne, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 April 2017; accepted 19 April 2017; online 21 April 2017)

The complete mol­ecules of the title compounds, N2,N5-bis­(pyridin-2-ylmeth­yl)pyrazine-2,5-dicarboxamide, C18H16N6O2 (I), 3,6-dimethyl-N2,N5-bis­(pyridin-2-yl­meth­yl)pyrazine-2,5-dicarboxamide, C20H20N6O2 (II), and N2,N5-bis­(pyridin-4-ylmeth­yl)pyrazine-2,5-dicarboxamide, C18H16N6O2 (III), are generated by inversion symmetry, with the pyrazine rings being located about centres of inversion. Each mol­ecule has an extended conformation with the pyridine rings inclined to the pyrazine ring by 89.17 (7)° in (I), 75.83 (8)° in (II) and by 82.71 (6)° in (III). In the crystal of (I), mol­ecules are linked by N—H⋯N hydrogen bonds, forming layers lying parallel to the bc plane. The layers are linked by C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular structure. In the crystal of (II), mol­ecules are also linked by N—H⋯N hydrogen bonds, forming layers lying parallel to the (10-1) plane. As in (I), the layers are linked by C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular structure. In the crystal of (III), mol­ecules are again linked by N—H⋯N hydrogen bonds, but here form corrugated sheets lying parallel to the bc plane. Within the sheets, neighbouring pyridine rings are linked by offset ππ inter­actions [inter­centroid distance = 3.739 (1) Å]. The sheets are linked by C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular structure. Compound (I) crystallizes in the monoclinic space group P21/c. Another monoclinic polymorph, space group C2/c, has been reported on by Cockriel et al. [Inorg. Chem. Commun. (2008), 11, 1–4]. The mol­ecular structures of the two polymorphs are compared.

1. Chemical context

The title compounds are part of a series of pyrazine mono- and di- and tetra­kis­carboxamide derivatives synthesized to study their coordination chemistry with essentially first-row trans­ition metals (Cati, 2002[Cati, D. (2002). PhD thesis, University of Neuchâtel, Switzerland.]). Compound (I)[link] crystallizes in the monoclinic space group P21/c. Another monoclinic polymorph, space group C2/c, has been described by Cockriel et al. (2008[Cockriel, D. L., McClain, J. M., Patel, K. C., Ullom, R., Hasley, T. R., Archibald, S. J. & Hubin, T. J. (2008). Inorg. Chem. Commun. 11, 1-4.]).

2. Structural commentary

The mol­ecular structures of the title compounds, (I)[link], (II)[link] and (III)[link], are illustrated in Figs. 1[link], 2[link] and 3[link], respectively. The whole mol­ecule of each compound is generated by inversion symmetry, with the pyrazine rings being located about centers of inversion. Each mol­ecule has an extended conformation with the pyridine rings inclined to the pyrazine ring by 89.17 (7)° in (I)[link], by 75.83 (8)° in (II)[link] and by 82.71 (6)° in (III)[link]. The methyl­carboxamide units (C4—N2—C3=O1) are inclined to the pyrazine ring by 4.24 (9), 3.13 (10) and 9.32 (8)° in (I)[link], (II)[link] and (III)[link], respectively.

[Scheme 1]
[Figure 1]
Figure 1
A view of the mol­ecular structure of compound (I)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The unlabelled atoms are related to the labelled atoms by inversion symmetry (symmetry operation: −x, −y, −z + 2).
[Figure 2]
Figure 2
A view of the mol­ecular structure of compound (II)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The unlabelled atoms are related to the labelled atoms by inversion symmetry (symmetry operation: −x, −y, −z).
[Figure 3]
Figure 3
A view of the mol­ecular structure of compound (III)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The unlabelled atoms are related to the labelled atoms by inversion symmetry (symmetry operation: −x + 1, −y + 1, −z + 2).

In the monoclinic C2/c polymorph of (I)[link] (Cockriel et al., 2008[Cockriel, D. L., McClain, J. M., Patel, K. C., Ullom, R., Hasley, T. R., Archibald, S. J. & Hubin, T. J. (2008). Inorg. Chem. Commun. 11, 1-4.]), the whole mol­ecule is also generated by inversion symmetry (Fig. 4[link]). However, here the mol­ecule is almost planar with the pyridine rings being inclined to the pyrazine ring by only 5.70 (7)°. The pyridine ring is orientated in such a manner that the NH hydrogen atom forms short contacts with both the adjacent pyrazine and pyridine N atoms, as shown in Fig. 4[link]. The carbonyl O atom also accepts a short contact from a pyrazine H atom (Fig. 4[link]).

[Figure 4]
Figure 4
A view of the mol­ecular structure of the monoclinic C2/c polymorph (Cockriel et al., 2008[Cockriel, D. L., McClain, J. M., Patel, K. C., Ullom, R., Hasley, T. R., Archibald, S. J. & Hubin, T. J. (2008). Inorg. Chem. Commun. 11, 1-4.]) of compound (I)[link], with the atom labelling. The unlabelled atoms are related to the labelled atoms by inversion symmetry (symmetry operation: −x + [{1\over 2}], −y − [{1\over 2}], −z + 1).

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules are linked by N—H⋯N hydrogen bonds, forming layers lying parallel to the bc plane (Table 1[link] and Fig. 5[link]). The layers are linked by C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular structure (Table 1[link] and Fig. 6[link])

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N3i 0.88 (2) 2.209 (17) 3.0657 (18) 164 (2)
C7—H7⋯O1ii 0.95 2.53 3.292 (2) 137
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x-1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 5]
Figure 5
A view along the a axis of the crystal pack of compound (I)[link]. The N—H⋯N hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, in this and subsequent figures, only the H atoms involved in hydrogen bonding have been included.
[Figure 6]
Figure 6
A view along the b axis of the crystal pack of compound (I)[link]. The hydrogen bonds are shown as dashed lines (see Table 1[link]).

In the crystal of (II)[link], mol­ecules are linked by N—H⋯N hydrogen bonds, forming layers lying parallel to the (10[\overline{1}]) plane (Table 2[link] and Fig. 7[link]). As in the crystal of (I)[link], the layers are linked by C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular structure (Table 2[link] and Fig. 8[link])

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N3i 0.85 (2) 2.35 (2) 3.097 (2) 147.4 (18)
C7—H7⋯O1ii 0.93 2.59 3.263 (2) 130
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 7]
Figure 7
A view along the normal to plane (10[\overline{1}]), of the crystal pack of compound (II)[link]. The N—H⋯N hydrogen bonds are shown as dashed lines (see Table 2[link]).
[Figure 8]
Figure 8
A view along the b axis of the crystal pack of compound (II)[link]. The hydrogen bonds are shown as dashed lines (see Table 2[link]).

In the crystal of (III)[link], mol­ecules are linked by N—H⋯N hydrogen bonds, forming corrugated sheets lying parallel to the bc plane (Table 3[link] and Fig. 9[link]). The sheets are linked by C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular structure (Table 3[link] and Fig. 10[link]). Within the sheets, neighbouring pyridine rings are linked by offset ππ inter­actions [Cg2⋯Cg2iv = 3.739 (1) Å, Cg2 is the centroid of the pyridine ring (N3/C5–C9), α = 1.85 (7)°, inter­planar distances = 3.525 (1) and 3.552 (1) Å, slippage = 1.168 Å; symmetry code: (iv) x + 1, −y + [{1\over 2}], z + [{1\over 2}]].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N3i 0.93 (2) 2.50 (2) 3.2420 (19) 137.5 (16)
C2—H2⋯O1ii 0.95 2.33 3.2411 (18) 160
C4—H4B⋯O1iii 0.99 2.49 3.4636 (18) 166
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) x-1, y, z.
[Figure 9]
Figure 9
A partial view, normal to plane (10[\overline{1}]), of the crystal pack of compound (III)[link]. The N—H⋯N hydrogen bonds are shown as dashed lines (see Table 3[link]).
[Figure 10]
Figure 10
A view along the a axis of the crystal pack of compound (III)[link]. The hydrogen bonds are shown as dashed lines (see Table 3[link]).

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for pyrazine-2,5-dicarboxamides yielded three hits, viz. N,N′-bis­(4-pentyl­phen­yl)pyrazine-2,5-dicarboxamide (CSD refcode: DABDOC; Zhang et al., 2015[Zhang, Q.-C., Takeda, T., Hoshino, N., Noro, S., Nakamura, T. & Akutagawa, T. (2015). Cryst. Growth Des. 15, 5705-5711.]), N,N′-di­phenyl­pyrazine-2,5-dicarboxamide (HIYKEH; Cheng et al., 2014[Cheng, N., Yan, Q., Liu, S. & Zhao, D. (2014). CrystEngComm, 16, 4265-4273.]), and the monoclinic C2/c polymorph of compound (I)[link] (AFAPOV; Cockriel et al., 2008[Cockriel, D. L., McClain, J. M., Patel, K. C., Ullom, R., Hasley, T. R., Archibald, S. J. & Hubin, T. J. (2008). Inorg. Chem. Commun. 11, 1-4.]), mentioned above. All three compounds possess inversion symmetry and HIYKEH, like AFAPOV, has an almost planar conformation (cf. Fig. 4[link]).

5. Synthesis and crystallization

Pyrazine 2,5-di­carb­oxy­lic acid was prepared by oxidation of 2,5-di­methyl­pyrazine with selenium dioxide (Schut et al., 1961[Schut, W. J., Mager, H. I. X. & Berends, W. (1961). Recl Trav. Chim. Pays Bas, 80, 391-398.]).

Dimethyl 3,6-di­methyl­pyrazine-2,5-di­carboxyl­ate was prepared following reported procedures (Takeuchi et al., 1990[Takeuchi, R., Suzuki, K. & Sato, N. (1990). Synthesis, 1990, 923-924.]; Wang, 1996[Wang, Y. (1996). PhD thesis, University of Neuchâtel, Switzerland.]).

Dimethyl pyrazine-2,5-di­carboxyl­ate was obtained following the procedure described by (Schut et al., 1961[Schut, W. J., Mager, H. I. X. & Berends, W. (1961). Recl Trav. Chim. Pays Bas, 80, 391-398.]). A mixture of anhydrous pyrazine-2,5-di­carb­oxy­lic acid (5 g, 30 mmol), absolute methanol (190 ml) and 1.5 ml (ca 3 g) of conc. sulfuric acid were refluxed until a clear solution was obtained (ca 9 h). After standing overnight at 268 K, the crystalline product formed was filtered off, washed with ice-cold methanol (2 × 20 ml) then dried over PO5 [yield 90%, m.p. 441 (1) K].

Note: Both pyrazine 2,5-di­carb­oxy­lic acid and dimethyl pyrazine-2,5-di­carboxyl­ate are also available commercially.

Compound (I)[link]: was prepared by refluxing dimethyl pyrazine-2,5-di­carboxyl­ate (1.00 g, 5 mmol) and an excess of 2-(amino­meth­yl)pyridine (1.55g, 14.3 mmol) in 30 ml of methanol in a two-necked flask (100 ml). After 150 min a precipitate appeared, and after refluxing for 5 h the suspension was cooled to room temperature. A white solid was filtered off and washed with 10 ml of cold methanol. It was then recrystallized from di­chloro­methane solution to give colourless plate-like crystals of (I)[link] suitable for X-ray diffraction analysis (yield 81%, m.p. 479 K).

Spectroscopic and analytical data:

1H NMR (400 MHz, DMSO-d6): 9.51 (t, 1H, Jhg = 5.9, Hh); 9.28 (s, 1H, Hl = Hn); 8.54 (ddd, 1H, Jbc = 4.8, Jbd = 1.8, Jbe = 0.8, Hb); 7.76 (td, 1H, Jdc = 7.7, Jdb = 1.8, Hd); 7.38 (d, 1H, Jed = 7.8, He); 7.28 (m, 1H, Hc); 4.68 (d, 2H, Jgh = 5.9, Hg).

13C NMR (400 MHz, DMSO-d6): 163.4, 158.5, 149.7, 147.4, 143.0, 137.6, 123.1, 122.0, 45.2.

IR (KBr pellet, cm−1): 3335 (s), 3055 (m), 2916 (w), 1683 (vs), 1603 (s), 1593 (s), 1572 (s), 1522 (vs), 1483 (s), 1464 (vs), 1436 (vs), 1364 (m), 1328 (s), 1296 (m), 1255 (m), 1242 (m), 1210 (m), 1182 (m), 1148 (m), 1048 (m), 1028 (m), 1024 (m), 999 (m), 943 (w), 903 (s), 759 (vs), 728 (m), 668 (m), 506 (s), 461 (s).

Analysis for C18H16N6O2 (Mr = 348.36 g mol−1). Calculated (%) C: 62.06, H: 4.63, N: 24.12. Found (%) C: 62.00, H: 4.67, N: 24.30.

Compound (II)[link]: was prepared by refluxing dimethyl 3,6-di­methyl­pyrazine-2,5-di­carboxyl­ate (1.5 g, 5.92 mmol) and an excess of 2-(amino­meth­yl)pyridine (1.63 g, 15 mmol) in 25 ml of methanol, in a two-necked flask (100 ml) for 55 h. A colourless precipitate formed and this suspension was then cooled to room temperature. The solid that had formed was filtered off and washed with 10 ml of cold methanol. It was then recrystallized from ethyl acetate solution to give colourless rod-like crystals of (II)[link] [yield 90%, m.p. 470 K].

Spectroscopic and analytical data:

1H NMR (400 MHz, DMSO-d6): 9.39 (t, 1H, Jhg = 6.1, Hh); 8.54 (ddd, 1H, Jbc = 4.8, Jbd = 1.8, Jbe = 0.9, Hb); 7.79 (td, 1H, Jdc = 7.7, Jdb = 1.8, Hd); 7.37 (d, 1H, Jed = 7.9, He); 7.29 (m, 1H, Hc); 4.61 (d, 2H, Jgh = 6.1, Hg); 2.79 (s, 3H, CH3).

13C NMR (400 MHz, DMSO-d6): 165.5, 158.9, 149.8, 149.7, 145.3, 137.7, 123.1, 121.9, 45.2, 22.8.

IR (KBr pellet, cm−1): 3310 (s), 3090 (m), 3055 (m), 3011 (m), 2904 (m), 1673 (vs), 1609 (m), 1592 (vs), 1569 (s), 1506 (vs), 1474 (vs), 1435 (vs), 1411 (vs), 1372 (m), 1352 (s), 1275 (s), 1243 (s), 1185 (s), 1158 (s), 1092 (m), 1050 (m), 1033 (w), 1015 (s), 995 (s), 971 (m), 959 (w), 888 (w), 833 (m), 770 (m), 759 (s), 715 (s), 640 (m), 556 (m), 526 (s), 463 (m), 447 (m).

Analysis for C20H20N6O2 (Mr = 376.42 g mol−1). Calculated (%) C: 63.82, H: 5.36, N: 22.33. Found (%) C: 63.74, H: 5.46, N: 22.42.

Compound (III)[link]: was prepared by heating to reflux a mixture of dimethyl pyrazine-2,5-di­carboxyl­ate (1.00 g, 5 mmol) with an excess of 4-(amino­meth­yl)pyridine (1.55g, 14.3 mmol) in 35 ml of methanol in a two-necked flask (100 ml). After 6 h the white solid that had formed was filtered off and washed with 10 ml of cold methanol. It was then recrystallized from di­chloro­methane solution to give colourless block-like crystals of (III)[link] [yield 85%, m.p. 530 K (degradation)].

Spectroscopic and analytical data:

1H NMR (400 MHz, DMSO-d6): 9.80 (t, 1H, Jhg = 6.3, Hh); 9.25 (s, 1H, Hn = Hl); 8.50 (dd, 2H, Jba = 4.5, Jbe = 1.5, Hb = Hd); 7.33 (dd, 2H, Jab = 4.5, Jeb = 1.5, Ha = He); 4.55 (d, 2H, Jgh = 6.3, Hg).

13C NMR (400 MHz, DMSO-d6): 163.7, 150.4, 148.8, 147.4, 143.0, 123.1, 42.5.

IR (KBr pellet, cm−1): 3348 (s), 3089 (w), 3073 (w), 3032 (w), 2997 (w), 2934 (w), 2359 (w), 1949 (w), 1712 (m), 1662 (vs), 1604 (s), 1561 (s), 1533 (vs), 1496 (w), 1472 (m), 1427 (s), 1418 (vs), 1373 (m), 1317 (w), 1282 (s), 1233 (w), 1220 (w), 1204 (w), 1171 (s), 1135 (w), 1067 (w), 1028 (m), 991 (s), 970 (w), 824 (m), 777 (m), 726 (w), 671 (m), 662 (m), 607 (w), 511 (m), 457 (m).

Analysis for C18H16N6O2·0.5CH3OH (M2 = 364.39 g mol−1). Calculated (%) C: 60.98, H: 4.98, N: 23.06. Found (%) C: 61.12, H: 4.83, N: 22.85.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Intensity data for (I)[link] and (III)[link] were measured at 153 K on a one-circle image-plate diffractometer, while for (II)[link] intensity data were measured at 293 K on a four-circle diffractometer. For all three compounds, the NH H atoms were located in difference-Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.95–0.99 Å for (I)[link] and (III)[link] with Uiso(H) = 1.2Ueq(C); C—H = 0.93–0.96 Å for (II)[link], with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C18H16N6O2 C20H20N6O2 C18H16N6O2
Mr 348.37 376.42 348.37
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 153 293 153
a, b, c (Å) 8.0769 (9), 5.6076 (7), 18.3724 (18) 8.7271 (5), 5.2950 (4), 20.1403 (13) 5.8663 (6), 18.7539 (17), 7.2943 (8)
β (°) 100.781 (12) 99.834 (6) 101.606 (12)
V3) 817.44 (16) 917.01 (11) 786.08 (14)
Z 2 2 2
Radiation type Mo Kα Cu Kα Mo Kα
μ (mm−1) 0.10 0.75 0.10
Crystal size (mm) 0.45 × 0.25 × 0.15 0.46 × 0.19 × 0.19 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Stoe IPDS 1 Stoe–Siemens AED2 four-circle Stoe IPDS 1
Absorption correction Multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])
Tmin, Tmax 0.987, 1.000 0.955, 1.000 0.962, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5998, 1574, 1024 2576, 1345, 1226 5980, 1513, 1259
Rint 0.037 0.015 0.026
θmax (°) 25.9 59.6 25.9
(sin θ/λ)max−1) 0.615 0.559 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.076, 0.87 0.035, 0.095, 1.05 0.036, 0.097, 1.08
No. of reflections 1574 1345 1513
No. of parameters 123 133 122
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.15 0.18, −0.12 0.44, −0.19
Computer programs: EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 2004[Stoe & Cie (2004). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]), STADI4 (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 Software. Stoe & Cie GmbH, Damstadt, Germany.]), X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 Software. Stoe & Cie GmbH, Damstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 and SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2004) for (I), (III); STADI4 (Stoe & Cie, 1997) for (II). Cell refinement: CELL in IPDS-I (Stoe & Cie, 2004) for (I), (III); STADI4 (Stoe & Cie, 1997) for (II). Data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2004) for (I), (III); X-RED (Stoe & Cie, 1997) for (II). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015). Molecular graphics: Mercury (Macrae et al., 2008) for (I); PLATON (Spek, 2009) and Mercury (Macrae et al., 2008) for (II), (III). Software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010) for (I), (III); SHELXL2016 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010) for (II).

(I) N2,N5-Bis(pyridin-2-ylmethyl)pyrazine-2,5-dicarboxamide top
Crystal data top
C18H16N6O2F(000) = 364
Mr = 348.37Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.0769 (9) ÅCell parameters from 3344 reflections
b = 5.6076 (7) Åθ = 2.3–25.9°
c = 18.3724 (18) ŵ = 0.10 mm1
β = 100.781 (12)°T = 153 K
V = 817.44 (16) Å3Plate, colourless
Z = 20.45 × 0.25 × 0.15 mm
Data collection top
Stoe IPDS 1
diffractometer
1574 independent reflections
Radiation source: fine-focus sealed tube1024 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.037
φ rotation scansθmax = 25.9°, θmin = 2.3°
Absorption correction: multi-scan
(MULABS; Spek, 2009)
h = 99
Tmin = 0.987, Tmax = 1.000k = 66
5998 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0456P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
1574 reflectionsΔρmax = 0.16 e Å3
123 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.05799 (15)0.0574 (2)0.93513 (7)0.0261 (3)
N20.05730 (16)0.4484 (2)0.85602 (7)0.0274 (3)
H2N0.031 (2)0.366 (3)0.8485 (10)0.045 (5)*
N30.26574 (14)0.7526 (2)0.68676 (7)0.0274 (3)
O10.24558 (13)0.51737 (18)0.93146 (6)0.0336 (3)
C10.06037 (17)0.1872 (2)0.95909 (8)0.0232 (3)
C20.11771 (18)0.1299 (3)0.97651 (8)0.0262 (4)
H2A0.2017810.2267690.9614780.031*
C30.13034 (17)0.4004 (3)0.91401 (8)0.0253 (4)
C40.10976 (18)0.6452 (3)0.80607 (8)0.0283 (4)
H4A0.0094170.7096550.7890380.034*
H4B0.1550510.7732950.8338630.034*
C50.24122 (16)0.5825 (3)0.73894 (8)0.0223 (3)
C60.33024 (18)0.3704 (3)0.73168 (9)0.0278 (4)
H60.3088750.2523780.7693610.033*
C70.45098 (18)0.3331 (3)0.66858 (9)0.0317 (4)
H70.5136600.1888340.6623440.038*
C80.47904 (19)0.5068 (3)0.61521 (9)0.0323 (4)
H80.5619780.4859460.5716440.039*
C90.38401 (19)0.7125 (3)0.62623 (9)0.0332 (4)
H90.4032980.8322260.5890130.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0263 (6)0.0271 (7)0.0233 (7)0.0005 (5)0.0001 (5)0.0007 (6)
N20.0282 (7)0.0282 (7)0.0240 (7)0.0038 (6)0.0001 (6)0.0040 (6)
N30.0286 (7)0.0269 (7)0.0256 (7)0.0020 (6)0.0024 (6)0.0033 (6)
O10.0294 (6)0.0338 (6)0.0371 (7)0.0068 (5)0.0051 (5)0.0049 (5)
C10.0216 (7)0.0249 (8)0.0210 (8)0.0027 (6)0.0018 (6)0.0015 (6)
C20.0244 (7)0.0269 (8)0.0257 (8)0.0023 (6)0.0006 (6)0.0024 (7)
C30.0229 (7)0.0262 (8)0.0240 (8)0.0019 (6)0.0026 (6)0.0006 (7)
C40.0298 (8)0.0260 (8)0.0265 (9)0.0019 (6)0.0012 (7)0.0036 (7)
C50.0207 (7)0.0243 (8)0.0222 (8)0.0032 (6)0.0046 (6)0.0001 (6)
C60.0283 (8)0.0270 (8)0.0278 (9)0.0013 (6)0.0048 (6)0.0022 (7)
C70.0247 (8)0.0341 (9)0.0365 (10)0.0053 (7)0.0058 (7)0.0071 (8)
C80.0245 (8)0.0433 (10)0.0267 (9)0.0011 (7)0.0014 (6)0.0057 (8)
C90.0332 (9)0.0380 (9)0.0258 (9)0.0062 (7)0.0014 (7)0.0049 (7)
Geometric parameters (Å, º) top
N1—C21.3330 (19)C4—C51.5107 (19)
N1—C11.3397 (18)C4—H4A0.9900
N2—C31.338 (2)C4—H4B0.9900
N2—C41.4475 (19)C5—C61.383 (2)
N2—H2N0.879 (19)C6—C71.384 (2)
N3—C51.3405 (18)C6—H60.9500
N3—C91.3424 (19)C7—C81.370 (2)
O1—C31.2290 (17)C7—H70.9500
C1—C2i1.387 (2)C8—C91.380 (2)
C1—C31.503 (2)C8—H80.9500
C2—H2A0.9500C9—H90.9500
C2—N1—C1116.42 (13)C5—C4—H4B108.6
C3—N2—C4122.52 (13)H4A—C4—H4B107.6
C3—N2—H2N120.6 (12)N3—C5—C6122.56 (13)
C4—N2—H2N116.8 (12)N3—C5—C4113.93 (12)
C5—N3—C9117.41 (13)C6—C5—C4123.51 (13)
N1—C1—C2i121.83 (13)C5—C6—C7118.86 (14)
N1—C1—C3117.97 (13)C5—C6—H6120.6
C2i—C1—C3120.21 (13)C7—C6—H6120.6
N1—C2—C1i121.75 (13)C8—C7—C6119.23 (14)
N1—C2—H2A119.1C8—C7—H7120.4
C1i—C2—H2A119.1C6—C7—H7120.4
O1—C3—N2124.66 (14)C7—C8—C9118.44 (14)
O1—C3—C1120.38 (14)C7—C8—H8120.8
N2—C3—C1114.96 (13)C9—C8—H8120.8
N2—C4—C5114.69 (12)N3—C9—C8123.49 (15)
N2—C4—H4A108.6N3—C9—H9118.3
C5—C4—H4A108.6C8—C9—H9118.3
N2—C4—H4B108.6
C2—N1—C1—C2i0.0 (2)C9—N3—C5—C61.1 (2)
C2—N1—C1—C3179.79 (12)C9—N3—C5—C4178.26 (13)
C1—N1—C2—C1i0.0 (2)N2—C4—C5—N3168.30 (13)
C4—N2—C3—O11.0 (2)N2—C4—C5—C612.3 (2)
C4—N2—C3—C1179.29 (12)N3—C5—C6—C70.9 (2)
N1—C1—C3—O1175.99 (13)C4—C5—C6—C7178.46 (14)
C2i—C1—C3—O14.2 (2)C5—C6—C7—C80.0 (2)
N1—C1—C3—N24.33 (18)C6—C7—C8—C90.6 (2)
C2i—C1—C3—N2175.43 (12)C5—N3—C9—C80.5 (2)
C3—N2—C4—C592.36 (17)C7—C8—C9—N30.3 (2)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N3ii0.88 (2)2.209 (17)3.0657 (18)164 (2)
C7—H7···O1iii0.952.533.292 (2)137
Symmetry codes: (ii) x, y1/2, z+3/2; (iii) x1, y1/2, z+3/2.
(II) 3,6-Dimethyl-N2,N5-bis(pyridin-2-ylmethyl)pyrazine-2,5-dicarboxamide top
Crystal data top
C20H20N6O2F(000) = 396
Mr = 376.42Dx = 1.363 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54186 Å
a = 8.7271 (5) ÅCell parameters from 22 reflections
b = 5.2950 (4) Åθ = 20.4–32.0°
c = 20.1403 (13) ŵ = 0.75 mm1
β = 99.834 (6)°T = 293 K
V = 917.01 (11) Å3Rod, colourless
Z = 20.46 × 0.19 × 0.19 mm
Data collection top
Stoe–Siemens AED2 four-circle
diffractometer
1226 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Plane graphite monochromatorθmax = 59.6°, θmin = 4.5°
ω/2θ scansh = 99
Absorption correction: multi-scan
(MULABS; Spek, 2009)
k = 05
Tmin = 0.955, Tmax = 1.000l = 2222
2576 measured reflections2 standard reflections every 60 min
1345 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.2943P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1345 reflectionsΔρmax = 0.18 e Å3
133 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0124 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.12510 (14)0.4700 (3)0.90448 (6)0.0615 (4)
N10.88491 (14)0.9651 (3)0.94504 (6)0.0422 (4)
N20.89518 (17)0.6199 (3)0.85116 (7)0.0466 (4)
H2N0.818 (2)0.714 (4)0.8529 (10)0.061 (6)*
N30.94177 (16)0.3148 (3)0.69204 (7)0.0503 (4)
C11.01225 (18)0.8206 (3)0.95440 (8)0.0399 (4)
C20.86917 (18)1.1468 (3)0.98964 (8)0.0408 (4)
C31.01729 (18)0.6201 (3)0.90156 (8)0.0432 (4)
C40.87726 (19)0.4317 (3)0.79852 (8)0.0453 (4)
H4A0.7675870.4164930.7798650.054*
H4B0.9114900.2701680.8184610.054*
C50.96522 (17)0.4847 (3)0.74167 (8)0.0381 (4)
C61.06331 (19)0.6880 (3)0.74049 (9)0.0466 (5)
H61.0748670.8071920.7749090.056*
C71.14401 (19)0.7128 (4)0.68778 (9)0.0514 (5)
H71.2108270.8486390.6862340.062*
C81.1248 (2)0.5356 (4)0.63781 (9)0.0529 (5)
H81.1797110.5457970.6021640.064*
C91.0223 (2)0.3422 (4)0.64172 (9)0.0577 (5)
H91.0080010.2230160.6073030.069*
C100.7223 (2)1.3002 (4)0.97432 (9)0.0539 (5)
H10A0.6721211.2678300.9288840.081*
H10B0.7472881.4764750.9793890.081*
H10C0.6538301.2541801.0048920.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0552 (8)0.0691 (9)0.0594 (8)0.0208 (7)0.0074 (6)0.0159 (7)
N10.0423 (8)0.0466 (8)0.0392 (7)0.0049 (6)0.0106 (6)0.0015 (6)
N20.0454 (8)0.0516 (9)0.0439 (8)0.0066 (7)0.0105 (7)0.0085 (7)
N30.0541 (9)0.0501 (9)0.0494 (8)0.0114 (7)0.0165 (7)0.0128 (7)
C10.0403 (9)0.0436 (10)0.0380 (8)0.0016 (7)0.0132 (7)0.0003 (7)
C20.0405 (9)0.0431 (9)0.0406 (9)0.0035 (7)0.0125 (7)0.0016 (7)
C30.0435 (9)0.0483 (10)0.0403 (9)0.0035 (8)0.0141 (7)0.0024 (8)
C40.0480 (9)0.0456 (10)0.0437 (9)0.0039 (8)0.0119 (7)0.0069 (8)
C50.0342 (8)0.0384 (9)0.0410 (9)0.0028 (7)0.0047 (6)0.0026 (7)
C60.0479 (10)0.0429 (10)0.0486 (10)0.0050 (8)0.0071 (8)0.0064 (8)
C70.0442 (10)0.0527 (11)0.0577 (11)0.0086 (8)0.0101 (8)0.0047 (9)
C80.0491 (10)0.0644 (12)0.0482 (10)0.0025 (9)0.0167 (8)0.0022 (9)
C90.0668 (12)0.0616 (13)0.0495 (10)0.0104 (10)0.0232 (9)0.0164 (9)
C100.0476 (10)0.0573 (12)0.0553 (11)0.0116 (9)0.0047 (8)0.0047 (9)
Geometric parameters (Å, º) top
O1—C31.2255 (19)C4—H4B0.9700
N1—C11.336 (2)C5—C61.378 (2)
N1—C21.339 (2)C6—C71.377 (2)
N2—C31.340 (2)C6—H60.9300
N2—C41.444 (2)C7—C81.365 (3)
N2—H2N0.85 (2)C7—H70.9300
N3—C51.335 (2)C8—C91.371 (3)
N3—C91.336 (2)C8—H80.9300
C1—C2i1.404 (2)C9—H90.9300
C1—C31.509 (2)C10—H10A0.9600
C2—C101.504 (2)C10—H10B0.9600
C4—C51.510 (2)C10—H10C0.9600
C4—H4A0.9700
C1—N1—C2119.67 (13)N3—C5—C4114.19 (14)
C3—N2—C4121.93 (15)C6—C5—C4123.79 (14)
C3—N2—H2N120.4 (14)C7—C6—C5119.25 (16)
C4—N2—H2N116.7 (14)C7—C6—H6120.4
C5—N3—C9117.48 (15)C5—C6—H6120.4
N1—C1—C2i121.60 (14)C8—C7—C6119.26 (16)
N1—C1—C3115.29 (14)C8—C7—H7120.4
C2i—C1—C3123.11 (14)C6—C7—H7120.4
N1—C2—C1i118.73 (14)C7—C8—C9118.03 (16)
N1—C2—C10115.57 (14)C7—C8—H8121.0
C1i—C2—C10125.69 (15)C9—C8—H8121.0
O1—C3—N2122.72 (16)N3—C9—C8123.91 (17)
O1—C3—C1122.48 (15)N3—C9—H9118.0
N2—C3—C1114.80 (14)C8—C9—H9118.0
N2—C4—C5115.02 (14)C2—C10—H10A109.5
N2—C4—H4A108.5C2—C10—H10B109.5
C5—C4—H4A108.5H10A—C10—H10B109.5
N2—C4—H4B108.5C2—C10—H10C109.5
C5—C4—H4B108.5H10A—C10—H10C109.5
H4A—C4—H4B107.5H10B—C10—H10C109.5
N3—C5—C6122.01 (15)
C2—N1—C1—C2i0.3 (3)C9—N3—C5—C62.7 (2)
C2—N1—C1—C3179.38 (14)C9—N3—C5—C4176.51 (16)
C1—N1—C2—C1i0.3 (2)N2—C4—C5—N3177.14 (14)
C1—N1—C2—C10179.58 (15)N2—C4—C5—C63.6 (2)
C4—N2—C3—O13.9 (3)N3—C5—C6—C72.3 (3)
C4—N2—C3—C1176.38 (14)C4—C5—C6—C7176.86 (15)
N1—C1—C3—O1178.22 (15)C5—C6—C7—C80.1 (3)
C2i—C1—C3—O10.9 (3)C6—C7—C8—C91.4 (3)
N1—C1—C3—N22.0 (2)C5—N3—C9—C81.1 (3)
C2i—C1—C3—N2178.88 (15)C7—C8—C9—N31.0 (3)
C3—N2—C4—C583.2 (2)
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N3ii0.85 (2)2.35 (2)3.097 (2)147.4 (18)
C7—H7···O1iii0.932.593.263 (2)130
Symmetry codes: (ii) x+3/2, y+1/2, z+3/2; (iii) x+5/2, y+1/2, z+3/2.
(III) N2,N5-Bis(pyridin-4-ylmethyl)pyrazine-2,5-dicarboxamide top
Crystal data top
C18H16N6O2F(000) = 364
Mr = 348.37Dx = 1.472 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.8663 (6) ÅCell parameters from 5301 reflections
b = 18.7539 (17) Åθ = 2.2–25.9°
c = 7.2943 (8) ŵ = 0.10 mm1
β = 101.606 (12)°T = 153 K
V = 786.08 (14) Å3Block, colourless
Z = 20.35 × 0.30 × 0.25 mm
Data collection top
Stoe IPDS 1
diffractometer
1513 independent reflections
Radiation source: fine-focus sealed tube1259 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.026
φ rotation scansθmax = 25.9°, θmin = 2.2°
Absorption correction: multi-scan
(MULABS; Spek, 2009)
h = 77
Tmin = 0.962, Tmax = 1.000k = 2223
5980 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2467P]
where P = (Fo2 + 2Fc2)/3
1513 reflections(Δ/σ)max < 0.001
122 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.30168 (19)0.46198 (6)1.02233 (16)0.0173 (3)
N20.00374 (19)0.41317 (6)0.72012 (17)0.0187 (3)
H2N0.029 (3)0.4166 (10)0.841 (3)0.039 (5)*
N30.2298 (2)0.15345 (7)0.55300 (19)0.0293 (3)
O10.24963 (17)0.44020 (6)0.53216 (14)0.0265 (3)
C10.3536 (2)0.47275 (7)0.85410 (18)0.0160 (3)
C20.4500 (2)0.48929 (7)1.16888 (19)0.0178 (3)
H20.4208450.4826651.2912180.021*
C30.1942 (2)0.44098 (7)0.68574 (19)0.0172 (3)
C40.1807 (2)0.38348 (7)0.5713 (2)0.0203 (3)
H4A0.1487180.3992040.4493790.024*
H4B0.3340490.4030730.5824310.024*
C50.1943 (2)0.30298 (7)0.57217 (19)0.0188 (3)
C60.4033 (3)0.26981 (8)0.4972 (2)0.0243 (3)
H60.5388540.2971950.4507540.029*
C70.4112 (3)0.19603 (8)0.4913 (2)0.0300 (4)
H70.5559670.1741920.4396770.036*
C80.0300 (3)0.18638 (8)0.6274 (2)0.0263 (3)
H80.1022550.1576900.6746010.032*
C90.0045 (2)0.25969 (8)0.6396 (2)0.0233 (3)
H90.1416800.2801490.6936390.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0187 (6)0.0146 (5)0.0189 (6)0.0010 (4)0.0041 (5)0.0002 (4)
N20.0183 (6)0.0194 (6)0.0182 (6)0.0038 (5)0.0033 (5)0.0020 (5)
N30.0346 (7)0.0212 (6)0.0303 (7)0.0015 (5)0.0023 (6)0.0005 (6)
O10.0264 (5)0.0345 (6)0.0193 (5)0.0081 (4)0.0063 (4)0.0033 (4)
C10.0172 (6)0.0121 (6)0.0185 (7)0.0017 (5)0.0032 (5)0.0002 (5)
C20.0203 (7)0.0159 (7)0.0175 (7)0.0007 (5)0.0044 (5)0.0007 (5)
C30.0189 (6)0.0131 (6)0.0194 (7)0.0004 (5)0.0030 (5)0.0003 (5)
C40.0192 (7)0.0184 (7)0.0216 (7)0.0015 (5)0.0001 (5)0.0012 (6)
C50.0206 (7)0.0195 (7)0.0168 (7)0.0013 (5)0.0049 (5)0.0015 (5)
C60.0209 (7)0.0217 (7)0.0283 (8)0.0012 (6)0.0005 (6)0.0006 (6)
C70.0292 (8)0.0225 (8)0.0358 (9)0.0061 (6)0.0009 (7)0.0015 (6)
C80.0280 (8)0.0242 (8)0.0256 (8)0.0049 (6)0.0029 (6)0.0011 (6)
C90.0197 (7)0.0246 (8)0.0248 (7)0.0014 (6)0.0022 (6)0.0029 (6)
Geometric parameters (Å, º) top
N1—C21.3372 (18)C4—C51.5120 (19)
N1—C11.3378 (18)C4—H4A0.9900
N2—C31.3417 (18)C4—H4B0.9900
N2—C41.4536 (17)C5—C91.385 (2)
N2—H2N0.93 (2)C5—C61.386 (2)
N3—C71.334 (2)C6—C71.385 (2)
N3—C81.339 (2)C6—H60.9500
O1—C31.2278 (17)C7—H70.9500
C1—C2i1.3928 (19)C8—C91.384 (2)
C1—C31.5085 (18)C8—H80.9500
C2—H20.9500C9—H90.9500
C2—N1—C1116.35 (12)C5—C4—H4B108.7
C3—N2—C4121.62 (12)H4A—C4—H4B107.6
C3—N2—H2N117.3 (12)C9—C5—C6117.45 (13)
C4—N2—H2N120.9 (12)C9—C5—C4123.19 (12)
C7—N3—C8115.74 (13)C6—C5—C4119.32 (12)
N1—C1—C2i122.28 (12)C7—C6—C5118.82 (14)
N1—C1—C3117.96 (12)C7—C6—H6120.6
C2i—C1—C3119.75 (12)C5—C6—H6120.6
N1—C2—C1i121.37 (13)N3—C7—C6124.63 (14)
N1—C2—H2119.3N3—C7—H7117.7
C1i—C2—H2119.3C6—C7—H7117.7
O1—C3—N2124.33 (13)N3—C8—C9123.95 (14)
O1—C3—C1120.85 (12)N3—C8—H8118.0
N2—C3—C1114.80 (12)C9—C8—H8118.0
N2—C4—C5114.18 (11)C8—C9—C5119.40 (13)
N2—C4—H4A108.7C8—C9—H9120.3
C5—C4—H4A108.7C5—C9—H9120.3
N2—C4—H4B108.7
C2—N1—C1—C2i0.5 (2)N2—C4—C5—C929.1 (2)
C2—N1—C1—C3178.30 (11)N2—C4—C5—C6152.96 (13)
C1—N1—C2—C1i0.5 (2)C9—C5—C6—C70.8 (2)
C4—N2—C3—O14.5 (2)C4—C5—C6—C7177.20 (14)
C4—N2—C3—C1177.11 (11)C8—N3—C7—C61.0 (2)
N1—C1—C3—O1169.52 (12)C5—C6—C7—N30.1 (3)
C2i—C1—C3—O19.29 (19)C7—N3—C8—C91.0 (2)
N1—C1—C3—N28.95 (17)N3—C8—C9—C50.1 (2)
C2i—C1—C3—N2172.24 (12)C6—C5—C9—C80.8 (2)
C3—N2—C4—C5106.64 (15)C4—C5—C9—C8177.11 (14)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N3ii0.93 (2)2.50 (2)3.2420 (19)137.5 (16)
C2—H2···O1iii0.952.333.2411 (18)160
C4—H4B···O1iv0.992.493.4636 (18)166
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x1, y, z.
 

Funding information

Funding for this research was provided by: Swiss National Science Foundation; University of Neuchâtel.

References

First citationCati, D. (2002). PhD thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationCheng, N., Yan, Q., Liu, S. & Zhao, D. (2014). CrystEngComm, 16, 4265–4273.  Web of Science CSD CrossRef CAS Google Scholar
First citationCockriel, D. L., McClain, J. M., Patel, K. C., Ullom, R., Hasley, T. R., Archibald, S. J. & Hubin, T. J. (2008). Inorg. Chem. Commun. 11, 1–4.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchut, W. J., Mager, H. I. X. & Berends, W. (1961). Recl Trav. Chim. Pays Bas, 80, 391–398.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 Software. Stoe & Cie GmbH, Damstadt, Germany.  Google Scholar
First citationStoe & Cie (2004). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTakeuchi, R., Suzuki, K. & Sato, N. (1990). Synthesis, 1990, 923–924.  CrossRef Google Scholar
First citationWang, Y. (1996). PhD thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q.-C., Takeda, T., Hoshino, N., Noro, S., Nakamura, T. & Akutagawa, T. (2015). Cryst. Growth Des. 15, 5705–5711.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds