research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second triclinic polymorph of azimsulfuron

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 September 2016; accepted 20 September 2016; online 23 September 2016)

The title compound, C13H16N10O5S (systematic name: 1-(4,6-di­meth­oxypyrimidin-2-yl)-3-{[1-methyl-4-(2-methyl-2H-tetra­zol-5-yl)pyrazol-5-yl]sulfonyl}urea), is a second triclinic polymorph of this crystal [for the other, see: Jeon et al., (2015[Jeon, Y., Kim, J., Kwon, E. & Kim, T. H. (2015). Acta Cryst. E71, o470-o471.]). Acta Cryst. E71, o470–o471]. There are two mol­ecules, A and B, in the asymmetric unit; the dihedral angles between the pyrazole ring and the tetra­zole and di­meth­oxy­pyrimidine ring planes are 72.84 (10) and 37.24 (14)°, respectively (mol­ecule A) and 84.38 (9) and 26.09 (15)°, respectively (mol­ecule B). Each mol­ecule features an intra­molecular N—H⋯N hydrogen bond. In the crystal, aromatic ππ stacking inter­actions [centroid–centroid separations = 3.9871 (16), 3.4487 (14) and 3.5455 (16) Å] link the mol­ecules into [001] chains. In addition, N—H⋯N, N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds occur, forming a three-dimensional architecture. We propose that the dimorphism results from differences in conformations and packing owing to different inter­molecular inter­actions, especially aromatic ππ stacking.

1. Chemical context

Sulfonyl­urea herbicides are well known as being highly beneficial for controlling undesirable vegetation in agronomic­ally desirable crops including corn and cereals such as wheat and barley. Azimsulfuron is a recently introduced highly selective sulfonyl­urea herbicide (Valle et al., 2006[Valle, A., Boschin, G., Negri, M., Abbruscato, P., Sorlini, C., D'Agostina, A. & Zanardini, E. (2006). J. Appl. Microbiol. 101, 443-452.]) and has been found to be particularly useful as a post-emergent herbicide for weed control in rice paddies and suppression of barnyard grass in rice (Venkatesh et al., 2016[Venkatesh, P. M., Pardhasaradhi, V., Dhayanithi, V., Avinash, M., Palimkar, S., Subhash, K. R. & Mohan, H. R. (2016). Chem. Sci. Trans. 5, 41-55.]). The crystal structure of azimsulfuron (dimorph I) has already been reported in our previous study (Jeon et al., 2015[Jeon, Y., Kim, J., Kwon, E. & Kim, T. H. (2015). Acta Cryst. E71, o470-o471.]). We now report the crystal structure of a second triclinic polymorph, grown under different conditions, as observed for other systems (Schmidt & Jansen, 2012[Schmidt, C. L. & Jansen, M. (2012). Z. Anorg. Allg. Chem. 638, 275-278.]; Ebenezer & Mu­thiah, 2010[Ebenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o2574.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the new dimorph II (Fig. 1[link]), consists of two independent mol­ecules, A and B, which are curved and form a `boxing glove' shape around the pyrazole ring. The dihedral angles between the pyrazole ring and the tetra­zole and di­meth­oxy­pyrimidine ring planes are 72.84 (10) and 37.24 (14)°, respectively, in mol­ecule A and 84.38 (9) and 26.09 (15)°, respectively, in mol­ecule B. All bond lengths and bond angles are normal and comparable to those observed in similar crystal structures (Chopra et al., 2004[Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2418-o2420.]; Kwon et al., 2015[Kwon, E., Kim, J., Kang, G. & Kim, T. H. (2015). Acta Cryst. E71, o1033-o1034.]). Each mol­ecule features an intra­molecular N—H⋯N hydrogen bond (Table 1[link]), which closes an S(6) ring.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N11i 0.88 2.65 3.494 (3) 162
N4—H4N⋯N2 0.88 1.89 2.611 (3) 138
N13—H13N⋯O3i 0.88 2.04 2.844 (2) 151
N14—H14N⋯N12 0.88 1.95 2.636 (3) 134
C1—H1C⋯O8ii 0.98 2.58 3.559 (3) 178
C11—H11B⋯O3 0.98 2.38 3.236 (3) 146
C11—H11B⋯O8i 0.98 2.57 3.278 (3) 129
C11—H11C⋯N10iii 0.98 2.58 3.290 (4) 130
C13—H13A⋯O9iv 0.98 2.40 3.374 (4) 175
C14—H14A⋯O5v 0.98 2.39 3.335 (3) 162
C22—H22⋯N17vi 0.95 2.57 3.435 (3) 152
C24—H24B⋯O8 0.98 2.33 3.080 (3) 133
C26—H26B⋯N16vi 0.98 2.52 3.376 (3) 146
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z; (iv) -x+2, -y, -z+1; (v) x+1, y, z; (vi) -x+1, -y, -z+2.
[Figure 1]
Figure 1
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

3. Supra­molecular features

In the crystal, aromatic ππ stacking inter­actions, Cg1⋯Cg1iii = 3.9817 (16), Cg3⋯Cg6vii = 3.4487 (14) and Cg4⋯Cg4viii = 3.5455 (16) Å occur [Cg1, Cg3, Cg4 and Cg6 are the centroids of the N5/N6/C8–C10, N1/N2/C2–C5, N15/N16/C21–C23 and N11/N12/C15–C18 rings, respectively; symmetry codes: (vii) x, y, z, (viii) −x + 2, −y, −z + 2]. Together, these link adjacent mol­ecules, forming chains propagating along the c axis. (Fig. 2[link]). In addition, there are N—H⋯N, N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds in dimorph II (Table 1[link]), which generate a three-dimensional architecture.

[Figure 2]
Figure 2
The crystal packing, viewed along the b axis. H atoms have been omitted for clarity.

The previous dimorph has only one ππ inter­action between the tetra­zole rings of neighboring mol­ecules, while the present dimorph has three ππ inter­actions between di­meth­oxy­pyrimidine rings in the asymmetric unit, and between the pyrazole rings of neighboring A or B mol­ecules.

4. Synthesis and crystallization

In the previous report, crystals were obtained by using CH3CN solvent, whereas colourless needles of the title polymorph were prepared by slow evaporation of a methanol solution.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, Uiso = 1.2Ueq(C) for N—H groups, d(C—H) = 0.88 Å, Uiso = 1.2Ueq(C) for Csp2—H and d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C13H16N10O5S
Mr 424.42
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 7.6451 (2), 15.1102 (4), 17.0314 (5)
α, β, γ (°) 67.1562 (18), 80.5936 (17), 84.0996 (17)
V3) 1787.08 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.30 × 0.04 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.686, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25718, 6265, 4741
Rint 0.060
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.114, 1.07
No. of reflections 6265
No. of parameters 531
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

1-(4,6-Dimethoxypyrimidin-2-yl)-3-{[1-methyl-4-(2-methyl-2H-tetrazol-5-yl)pyrazol-5-yl]sulfonyl}urea top
Crystal data top
C13H16N10O5SZ = 4
Mr = 424.42F(000) = 880
Triclinic, P1Dx = 1.577 Mg m3
a = 7.6451 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.1102 (4) ÅCell parameters from 3336 reflections
c = 17.0314 (5) Åθ = 2.3–24.2°
α = 67.1562 (18)°µ = 0.24 mm1
β = 80.5936 (17)°T = 173 K
γ = 84.0996 (17)°Needle, colourless
V = 1787.08 (9) Å30.30 × 0.04 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
4741 reflections with I > 2σ(I)
φ and ω scansRint = 0.060
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.0°, θmin = 1.5°
Tmin = 0.686, Tmax = 0.746h = 89
25718 measured reflectionsk = 1717
6265 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.2151P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
6265 reflectionsΔρmax = 0.38 e Å3
531 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29659 (8)0.39202 (4)0.20930 (4)0.02210 (17)
S21.16721 (9)0.10185 (4)0.78289 (4)0.02695 (18)
O10.6095 (2)0.23247 (11)0.66818 (10)0.0267 (4)
O20.5902 (2)0.10067 (11)0.46454 (10)0.0295 (4)
O30.2038 (2)0.50940 (11)0.31822 (10)0.0260 (4)
O40.3602 (2)0.30534 (11)0.19780 (11)0.0288 (4)
O50.1186 (2)0.42651 (12)0.19829 (11)0.0294 (4)
O60.7598 (2)0.48627 (11)0.37801 (10)0.0260 (4)
O71.0204 (2)0.17015 (12)0.45730 (11)0.0315 (4)
O81.0811 (2)0.30423 (11)0.75749 (11)0.0285 (4)
O91.1625 (2)0.01909 (11)0.76253 (12)0.0346 (5)
O101.3265 (2)0.12288 (12)0.80359 (12)0.0360 (5)
N10.4586 (3)0.31656 (13)0.55273 (12)0.0217 (5)
N20.4580 (3)0.25049 (13)0.44580 (12)0.0214 (5)
N30.3252 (3)0.40128 (13)0.43281 (12)0.0210 (5)
H3N0.28960.44050.45980.025*
N40.3313 (3)0.37078 (13)0.30805 (12)0.0212 (5)
H4N0.38670.31610.33560.025*
N50.3879 (3)0.57663 (15)0.10476 (13)0.0327 (6)
N60.5224 (4)0.62778 (16)0.05092 (15)0.0458 (7)
N70.7561 (3)0.31962 (15)0.20532 (14)0.0311 (5)
N80.8972 (3)0.26823 (15)0.18460 (16)0.0357 (6)
N90.9657 (4)0.3035 (2)0.10352 (18)0.0519 (7)
N100.8695 (3)0.3815 (2)0.06687 (16)0.0466 (7)
N110.8673 (3)0.41362 (13)0.50271 (12)0.0219 (5)
N121.0024 (3)0.25495 (13)0.54475 (12)0.0215 (5)
N130.9852 (3)0.34673 (13)0.62868 (12)0.0218 (5)
H13N0.95510.40350.63110.026*
N141.1044 (3)0.19100 (13)0.69852 (12)0.0242 (5)
H14N1.09870.18050.65170.029*
N151.0132 (3)0.13158 (14)0.92857 (13)0.0293 (5)
N160.8644 (3)0.11937 (15)0.98511 (14)0.0350 (6)
N170.6174 (3)0.04932 (14)0.89155 (12)0.0247 (5)
N180.5689 (3)0.07811 (14)0.83420 (13)0.0241 (5)
N190.6566 (3)0.03852 (15)0.75612 (13)0.0298 (5)
N200.7690 (3)0.01978 (15)0.76081 (13)0.0295 (5)
C10.5501 (4)0.30726 (18)0.70047 (16)0.0298 (6)
H1A0.58590.36960.65660.045*
H1B0.60360.29520.75240.045*
H1C0.42060.30780.71430.045*
C20.5514 (3)0.23781 (16)0.59675 (15)0.0218 (6)
C30.5963 (3)0.16081 (16)0.57120 (15)0.0229 (6)
H30.65700.10420.60510.028*
C40.5473 (3)0.17177 (16)0.49379 (15)0.0224 (6)
C50.4184 (3)0.31774 (16)0.47966 (15)0.0200 (5)
C60.5328 (4)0.11182 (18)0.38456 (16)0.0336 (7)
H6A0.40320.12010.38960.050*
H6B0.57050.05450.37150.050*
H6C0.58580.16840.33830.050*
C70.2806 (3)0.43161 (16)0.35078 (15)0.0200 (5)
C80.4391 (4)0.48225 (17)0.14203 (15)0.0241 (6)
C90.6598 (4)0.5660 (2)0.05491 (18)0.0427 (8)
H90.77360.58320.02300.051*
C100.6187 (4)0.47261 (18)0.11140 (15)0.0281 (6)
C110.2159 (4)0.62701 (19)0.11317 (18)0.0393 (8)
H11A0.22860.69640.08240.059*
H11B0.17410.61330.17410.059*
H11C0.12980.60500.08870.059*
C120.7435 (3)0.38992 (18)0.12941 (16)0.0272 (6)
C130.9717 (4)0.1819 (2)0.2470 (2)0.0522 (9)
H13A0.93610.12500.24040.078*
H13B0.92770.17910.30530.078*
H13C1.10150.18370.23740.078*
C140.7391 (4)0.49082 (18)0.29395 (15)0.0278 (6)
H14A0.85620.48690.26170.042*
H14B0.67740.55160.26310.042*
H14C0.66970.43700.29980.042*
C150.8417 (3)0.40702 (16)0.42896 (15)0.0217 (6)
C160.8940 (3)0.32688 (17)0.40905 (16)0.0239 (6)
H160.87810.32400.35600.029*
C170.9710 (3)0.25142 (17)0.47177 (16)0.0233 (6)
C180.9502 (3)0.33713 (16)0.55572 (15)0.0211 (6)
C191.0937 (4)0.09138 (17)0.52594 (18)0.0334 (7)
H19A1.19710.11260.54010.050*
H19B1.12980.03760.50740.050*
H19C1.00380.07060.57680.050*
C201.0601 (3)0.28177 (16)0.69881 (16)0.0221 (6)
C210.9977 (3)0.09825 (16)0.86629 (15)0.0249 (6)
C220.7537 (4)0.07751 (18)0.95834 (16)0.0313 (7)
H220.63710.06040.98650.038*
C230.8294 (4)0.06179 (17)0.88397 (16)0.0259 (6)
C241.1580 (4)0.17922 (19)0.94119 (18)0.0367 (7)
H24A1.12040.19800.99060.055*
H24B1.18800.23650.88950.055*
H24C1.26230.13490.95190.055*
C250.7428 (3)0.01230 (16)0.84415 (15)0.0246 (6)
C260.4366 (4)0.14953 (17)0.85757 (17)0.0297 (6)
H26A0.41990.16090.80650.044*
H26B0.32400.12630.88110.044*
H26C0.47670.20970.90090.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0221 (4)0.0230 (3)0.0234 (3)0.0007 (3)0.0029 (3)0.0116 (3)
S20.0239 (4)0.0192 (3)0.0317 (4)0.0031 (3)0.0010 (3)0.0051 (3)
O10.0284 (11)0.0289 (9)0.0222 (9)0.0028 (8)0.0049 (8)0.0096 (8)
O20.0415 (12)0.0205 (9)0.0287 (10)0.0040 (8)0.0094 (9)0.0113 (8)
O30.0347 (11)0.0193 (9)0.0233 (9)0.0069 (8)0.0078 (8)0.0077 (7)
O40.0290 (11)0.0271 (9)0.0368 (10)0.0005 (8)0.0028 (8)0.0199 (8)
O50.0214 (11)0.0373 (10)0.0323 (10)0.0059 (8)0.0076 (8)0.0165 (8)
O60.0316 (11)0.0263 (9)0.0235 (9)0.0038 (8)0.0092 (8)0.0121 (7)
O70.0377 (12)0.0265 (9)0.0370 (11)0.0034 (8)0.0042 (9)0.0208 (8)
O80.0362 (12)0.0238 (9)0.0264 (10)0.0031 (8)0.0085 (8)0.0099 (8)
O90.0368 (12)0.0196 (9)0.0421 (11)0.0040 (8)0.0031 (9)0.0105 (8)
O100.0221 (11)0.0329 (10)0.0472 (12)0.0008 (8)0.0071 (9)0.0086 (9)
N10.0205 (12)0.0218 (10)0.0205 (11)0.0026 (9)0.0011 (9)0.0058 (9)
N20.0213 (12)0.0178 (10)0.0232 (11)0.0003 (8)0.0016 (9)0.0066 (9)
N30.0238 (12)0.0198 (10)0.0197 (11)0.0026 (8)0.0019 (9)0.0093 (8)
N40.0246 (13)0.0171 (10)0.0196 (10)0.0053 (8)0.0032 (9)0.0057 (8)
N50.0399 (15)0.0255 (11)0.0251 (12)0.0036 (10)0.0017 (11)0.0037 (10)
N60.0538 (19)0.0303 (13)0.0362 (14)0.0034 (12)0.0064 (13)0.0013 (11)
N70.0271 (14)0.0277 (12)0.0424 (14)0.0009 (10)0.0050 (11)0.0173 (11)
N80.0252 (14)0.0316 (12)0.0614 (17)0.0047 (10)0.0119 (12)0.0288 (12)
N90.0380 (17)0.0719 (19)0.0605 (19)0.0015 (14)0.0009 (14)0.0443 (16)
N100.0320 (16)0.0691 (18)0.0476 (16)0.0033 (13)0.0005 (12)0.0354 (14)
N110.0210 (12)0.0222 (10)0.0233 (11)0.0020 (9)0.0005 (9)0.0102 (9)
N120.0188 (12)0.0194 (10)0.0277 (12)0.0023 (8)0.0000 (9)0.0112 (9)
N130.0262 (13)0.0164 (10)0.0257 (11)0.0031 (8)0.0074 (9)0.0105 (9)
N140.0302 (13)0.0196 (10)0.0196 (11)0.0033 (9)0.0006 (9)0.0066 (9)
N150.0332 (15)0.0229 (11)0.0283 (12)0.0032 (9)0.0063 (10)0.0046 (9)
N160.0431 (16)0.0301 (12)0.0271 (12)0.0043 (11)0.0035 (11)0.0083 (10)
N170.0276 (13)0.0261 (11)0.0213 (11)0.0023 (9)0.0047 (9)0.0103 (9)
N180.0244 (13)0.0236 (11)0.0244 (12)0.0058 (9)0.0062 (10)0.0097 (9)
N190.0337 (15)0.0309 (12)0.0215 (12)0.0039 (10)0.0019 (10)0.0085 (10)
N200.0323 (14)0.0287 (12)0.0223 (12)0.0013 (10)0.0022 (10)0.0055 (9)
C10.0329 (17)0.0333 (14)0.0283 (14)0.0024 (12)0.0032 (12)0.0171 (12)
C20.0183 (14)0.0257 (13)0.0189 (13)0.0025 (10)0.0006 (10)0.0064 (10)
C30.0201 (15)0.0198 (12)0.0239 (13)0.0000 (10)0.0025 (11)0.0033 (10)
C40.0208 (15)0.0191 (12)0.0242 (13)0.0038 (10)0.0013 (11)0.0057 (10)
C50.0153 (14)0.0200 (12)0.0221 (13)0.0055 (10)0.0001 (10)0.0049 (10)
C60.048 (2)0.0288 (14)0.0254 (14)0.0016 (13)0.0055 (13)0.0130 (12)
C70.0187 (14)0.0172 (12)0.0224 (13)0.0037 (10)0.0002 (10)0.0061 (10)
C80.0308 (16)0.0236 (13)0.0180 (13)0.0003 (11)0.0026 (11)0.0086 (10)
C90.045 (2)0.0371 (16)0.0341 (17)0.0085 (14)0.0087 (14)0.0040 (13)
C100.0319 (17)0.0302 (14)0.0207 (13)0.0044 (12)0.0026 (12)0.0098 (11)
C110.047 (2)0.0314 (15)0.0322 (16)0.0151 (13)0.0080 (14)0.0075 (13)
C120.0226 (16)0.0330 (14)0.0294 (15)0.0038 (11)0.0002 (12)0.0164 (12)
C130.042 (2)0.0348 (16)0.085 (3)0.0064 (14)0.0173 (18)0.0268 (17)
C140.0323 (17)0.0321 (14)0.0224 (14)0.0030 (12)0.0082 (12)0.0133 (11)
C150.0157 (14)0.0254 (13)0.0256 (14)0.0040 (10)0.0009 (11)0.0119 (11)
C160.0229 (15)0.0280 (13)0.0238 (13)0.0051 (11)0.0001 (11)0.0133 (11)
C170.0185 (15)0.0240 (13)0.0304 (14)0.0047 (10)0.0028 (11)0.0151 (11)
C180.0177 (14)0.0198 (12)0.0241 (13)0.0023 (10)0.0003 (11)0.0074 (10)
C190.0363 (18)0.0193 (13)0.0460 (17)0.0026 (11)0.0045 (14)0.0150 (12)
C200.0192 (15)0.0191 (12)0.0249 (14)0.0002 (10)0.0002 (11)0.0063 (11)
C210.0276 (16)0.0201 (12)0.0225 (13)0.0031 (11)0.0040 (11)0.0040 (10)
C220.0332 (18)0.0277 (14)0.0291 (15)0.0044 (12)0.0031 (13)0.0085 (12)
C230.0269 (16)0.0213 (12)0.0249 (14)0.0015 (11)0.0010 (11)0.0053 (11)
C240.0420 (19)0.0344 (15)0.0341 (16)0.0048 (13)0.0132 (14)0.0096 (13)
C250.0243 (16)0.0198 (12)0.0245 (14)0.0037 (11)0.0008 (11)0.0050 (11)
C260.0312 (17)0.0281 (14)0.0329 (15)0.0003 (12)0.0039 (12)0.0154 (12)
Geometric parameters (Å, º) top
S1—O51.4212 (18)N15—C211.364 (3)
S1—O41.4238 (16)N15—C241.467 (4)
S1—N41.647 (2)N16—C221.336 (4)
S1—C81.745 (3)N17—N181.327 (3)
S2—O101.420 (2)N17—C251.336 (3)
S2—O91.4267 (18)N18—N191.323 (3)
S2—N141.6431 (19)N18—C261.451 (3)
S2—C211.747 (3)N19—N201.324 (3)
O1—C21.333 (3)N20—C251.362 (3)
O1—C11.443 (3)C1—H1A0.9800
O2—C41.342 (3)C1—H1B0.9800
O2—C61.441 (3)C1—H1C0.9800
O3—C71.222 (3)C2—C31.387 (3)
O6—C151.340 (3)C3—C41.373 (3)
O6—C141.440 (3)C3—H30.9500
O7—C171.349 (3)C6—H6A0.9800
O7—C191.447 (3)C6—H6B0.9800
O8—C201.211 (3)C6—H6C0.9800
N1—C51.323 (3)C8—C101.400 (4)
N1—C21.338 (3)C9—C101.398 (4)
N2—C51.338 (3)C9—H90.9500
N2—C41.345 (3)C10—C121.455 (3)
N3—C71.380 (3)C11—H11A0.9800
N3—C51.399 (3)C11—H11B0.9800
N3—H3N0.8800C11—H11C0.9800
N4—C71.370 (3)C13—H13A0.9800
N4—H4N0.8800C13—H13B0.9800
N5—N61.341 (3)C13—H13C0.9800
N5—C81.361 (3)C14—H14A0.9800
N5—C111.465 (3)C14—H14B0.9800
N6—C91.324 (4)C14—H14C0.9800
N7—C121.328 (3)C15—C161.384 (3)
N7—N81.344 (3)C16—C171.382 (3)
N8—N91.310 (3)C16—H160.9500
N8—C131.458 (4)C19—H19A0.9800
N9—N101.312 (3)C19—H19B0.9800
N10—C121.350 (3)C19—H19C0.9800
N11—C181.333 (3)C21—C231.393 (4)
N11—C151.345 (3)C22—C231.400 (3)
N12—C171.326 (3)C22—H220.9500
N12—C181.338 (3)C23—C251.449 (4)
N13—C181.376 (3)C24—H24A0.9800
N13—C201.384 (3)C24—H24B0.9800
N13—H13N0.8800C24—H24C0.9800
N14—C201.380 (3)C26—H26A0.9800
N14—H14N0.8800C26—H26B0.9800
N15—N161.343 (3)C26—H26C0.9800
O5—S1—O4120.08 (11)O3—C7—N3121.2 (2)
O5—S1—N4110.06 (10)N4—C7—N3116.2 (2)
O4—S1—N4103.25 (10)N5—C8—C10107.4 (2)
O5—S1—C8108.81 (11)N5—C8—S1124.3 (2)
O4—S1—C8107.74 (11)C10—C8—S1128.17 (18)
N4—S1—C8105.99 (11)N6—C9—C10112.4 (3)
O10—S2—O9119.77 (11)N6—C9—H9123.8
O10—S2—N14110.51 (11)C10—C9—H9123.8
O9—S2—N14103.83 (11)C9—C10—C8103.2 (2)
O10—S2—C21108.05 (13)C9—C10—C12124.8 (3)
O9—S2—C21109.42 (12)C8—C10—C12132.0 (2)
N14—S2—C21104.16 (11)N5—C11—H11A109.5
C2—O1—C1117.82 (19)N5—C11—H11B109.5
C4—O2—C6117.94 (19)H11A—C11—H11B109.5
C15—O6—C14117.12 (18)N5—C11—H11C109.5
C17—O7—C19116.6 (2)H11A—C11—H11C109.5
C5—N1—C2114.6 (2)H11B—C11—H11C109.5
C5—N2—C4114.8 (2)N7—C12—N10112.7 (2)
C7—N3—C5129.9 (2)N7—C12—C10126.6 (2)
C7—N3—H3N115.0N10—C12—C10120.5 (2)
C5—N3—H3N115.0N8—C13—H13A109.5
C7—N4—S1125.14 (16)N8—C13—H13B109.5
C7—N4—H4N117.4H13A—C13—H13B109.5
S1—N4—H4N117.4N8—C13—H13C109.5
N6—N5—C8111.0 (2)H13A—C13—H13C109.5
N6—N5—C11118.1 (2)H13B—C13—H13C109.5
C8—N5—C11130.9 (2)O6—C14—H14A109.5
C9—N6—N5105.9 (2)O6—C14—H14B109.5
C12—N7—N8100.5 (2)H14A—C14—H14B109.5
N9—N8—N7114.3 (2)O6—C14—H14C109.5
N9—N8—C13122.4 (2)H14A—C14—H14C109.5
N7—N8—C13123.2 (2)H14B—C14—H14C109.5
N8—N9—N10106.2 (2)O6—C15—N11112.2 (2)
N9—N10—C12106.2 (2)O6—C15—C16124.5 (2)
C18—N11—C15115.0 (2)N11—C15—C16123.3 (2)
C17—N12—C18115.4 (2)C17—C16—C15115.3 (2)
C18—N13—C20130.6 (2)C17—C16—H16122.3
C18—N13—H13N114.7C15—C16—H16122.3
C20—N13—H13N114.7N12—C17—O7118.0 (2)
C20—N14—S2122.10 (18)N12—C17—C16123.7 (2)
C20—N14—H14N119.0O7—C17—C16118.3 (2)
S2—N14—H14N119.0N11—C18—N12127.2 (2)
N16—N15—C21111.3 (2)N11—C18—N13114.6 (2)
N16—N15—C24117.3 (2)N12—C18—N13118.2 (2)
C21—N15—C24131.4 (2)O7—C19—H19A109.5
C22—N16—N15105.5 (2)O7—C19—H19B109.5
N18—N17—C25102.1 (2)H19A—C19—H19B109.5
N19—N18—N17113.8 (2)O7—C19—H19C109.5
N19—N18—C26124.1 (2)H19A—C19—H19C109.5
N17—N18—C26122.0 (2)H19B—C19—H19C109.5
N18—N19—N20106.5 (2)O8—C20—N14122.8 (2)
N19—N20—C25105.9 (2)O8—C20—N13120.8 (2)
O1—C1—H1A109.5N14—C20—N13116.4 (2)
O1—C1—H1B109.5N15—C21—C23107.4 (2)
H1A—C1—H1B109.5N15—C21—S2123.5 (2)
O1—C1—H1C109.5C23—C21—S2129.0 (2)
H1A—C1—H1C109.5N16—C22—C23112.2 (3)
H1B—C1—H1C109.5N16—C22—H22123.9
O1—C2—N1119.3 (2)C23—C22—H22123.9
O1—C2—C3117.0 (2)C21—C23—C22103.6 (2)
N1—C2—C3123.7 (2)C21—C23—C25132.5 (2)
C4—C3—C2115.6 (2)C22—C23—C25123.8 (2)
C4—C3—H3122.2N15—C24—H24A109.5
C2—C3—H3122.2N15—C24—H24B109.5
O2—C4—N2118.3 (2)H24A—C24—H24B109.5
O2—C4—C3118.6 (2)N15—C24—H24C109.5
N2—C4—C3123.1 (2)H24A—C24—H24C109.5
N1—C5—N2128.1 (2)H24B—C24—H24C109.5
N1—C5—N3114.3 (2)N17—C25—N20111.8 (2)
N2—C5—N3117.5 (2)N17—C25—C23119.4 (2)
O2—C6—H6A109.5N20—C25—C23128.8 (2)
O2—C6—H6B109.5N18—C26—H26A109.5
H6A—C6—H6B109.5N18—C26—H26B109.5
O2—C6—H6C109.5H26A—C26—H26B109.5
H6A—C6—H6C109.5N18—C26—H26C109.5
H6B—C6—H6C109.5H26A—C26—H26C109.5
O3—C7—N4122.6 (2)H26B—C26—H26C109.5
O5—S1—N4—C746.2 (2)N5—C8—C10—C12179.0 (3)
O4—S1—N4—C7175.6 (2)S1—C8—C10—C125.2 (5)
C8—S1—N4—C771.3 (2)N8—N7—C12—N100.2 (3)
C8—N5—N6—C90.8 (3)N8—N7—C12—C10176.4 (3)
C11—N5—N6—C9179.6 (3)N9—N10—C12—N70.2 (3)
C12—N7—N8—N90.2 (3)N9—N10—C12—C10176.7 (3)
C12—N7—N8—C13178.5 (3)C9—C10—C12—N7140.6 (3)
N7—N8—N9—N100.1 (3)C8—C10—C12—N739.5 (5)
C13—N8—N9—N10178.4 (3)C9—C10—C12—N1035.4 (4)
N8—N9—N10—C120.1 (3)C8—C10—C12—N10144.6 (3)
O10—S2—N14—C2062.4 (2)C14—O6—C15—N11174.7 (2)
O9—S2—N14—C20167.96 (19)C14—O6—C15—C165.5 (3)
C21—S2—N14—C2053.4 (2)C18—N11—C15—O6179.3 (2)
C21—N15—N16—C220.2 (3)C18—N11—C15—C160.9 (3)
C24—N15—N16—C22178.3 (2)O6—C15—C16—C17177.9 (2)
C25—N17—N18—N190.3 (2)N11—C15—C16—C171.9 (4)
C25—N17—N18—C26177.8 (2)C18—N12—C17—O7179.8 (2)
N17—N18—N19—N200.2 (3)C18—N12—C17—C161.6 (3)
C26—N18—N19—N20177.7 (2)C19—O7—C17—N123.8 (3)
N18—N19—N20—C250.0 (2)C19—O7—C17—C16177.5 (2)
C1—O1—C2—N17.6 (3)C15—C16—C17—N123.2 (4)
C1—O1—C2—C3174.1 (2)C15—C16—C17—O7178.2 (2)
C5—N1—C2—O1175.3 (2)C15—N11—C18—N122.9 (4)
C5—N1—C2—C32.9 (3)C15—N11—C18—N13176.3 (2)
O1—C2—C3—C4174.8 (2)C17—N12—C18—N111.7 (4)
N1—C2—C3—C43.4 (4)C17—N12—C18—N13177.5 (2)
C6—O2—C4—N21.9 (3)C20—N13—C18—N11176.5 (2)
C6—O2—C4—C3178.0 (2)C20—N13—C18—N124.2 (4)
C5—N2—C4—O2179.3 (2)S2—N14—C20—O87.5 (3)
C5—N2—C4—C30.6 (3)S2—N14—C20—N13171.02 (17)
C2—C3—C4—O2178.6 (2)C18—N13—C20—O8179.7 (2)
C2—C3—C4—N21.5 (4)C18—N13—C20—N141.8 (4)
C2—N1—C5—N20.5 (4)N16—N15—C21—C230.4 (3)
C2—N1—C5—N3178.47 (19)C24—N15—C21—C23178.2 (2)
C4—N2—C5—N11.2 (4)N16—N15—C21—S2179.42 (17)
C4—N2—C5—N3179.9 (2)C24—N15—C21—S22.8 (4)
C7—N3—C5—N1171.6 (2)O10—S2—C21—N1513.3 (2)
C7—N3—C5—N27.5 (4)O9—S2—C21—N15145.26 (19)
S1—N4—C7—O30.4 (4)N14—S2—C21—N15104.2 (2)
S1—N4—C7—N3178.80 (17)O10—S2—C21—C23165.5 (2)
C5—N3—C7—O3177.1 (2)O9—S2—C21—C2333.5 (3)
C5—N3—C7—N41.4 (4)N14—S2—C21—C2377.0 (2)
N6—N5—C8—C101.2 (3)N15—N16—C22—C230.1 (3)
C11—N5—C8—C10179.8 (3)N15—C21—C23—C220.4 (3)
N6—N5—C8—S1174.8 (2)S2—C21—C23—C22179.38 (19)
C11—N5—C8—S13.8 (4)N15—C21—C23—C25175.6 (2)
O5—S1—C8—N516.9 (3)S2—C21—C23—C253.4 (4)
O4—S1—C8—N5148.5 (2)N16—C22—C23—C210.3 (3)
N4—S1—C8—N5101.5 (2)N16—C22—C23—C25176.1 (2)
O5—S1—C8—C10158.3 (2)N18—N17—C25—N200.2 (3)
O4—S1—C8—C1026.6 (3)N18—N17—C25—C23179.0 (2)
N4—S1—C8—C1083.4 (3)N19—N20—C25—N170.1 (3)
N5—N6—C9—C100.1 (3)N19—N20—C25—C23179.0 (2)
N6—C9—C10—C80.5 (3)C21—C23—C25—N17151.6 (3)
N6—C9—C10—C12179.5 (3)C22—C23—C25—N1723.7 (4)
N5—C8—C10—C91.0 (3)C21—C23—C25—N2029.3 (4)
S1—C8—C10—C9174.8 (2)C22—C23—C25—N20155.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N11i0.882.653.494 (3)162
N4—H4N···N20.881.892.611 (3)138
N13—H13N···O3i0.882.042.844 (2)151
N14—H14N···N120.881.952.636 (3)134
C1—H1C···O8ii0.982.583.559 (3)178
C11—H11B···O30.982.383.236 (3)146
C11—H11B···O8i0.982.573.278 (3)129
C11—H11C···N10iii0.982.583.290 (4)130
C13—H13A···O9iv0.982.403.374 (4)175
C14—H14A···O5v0.982.393.335 (3)162
C22—H22···N17vi0.952.573.435 (3)152
C24—H24B···O80.982.333.080 (3)133
C26—H26B···N16vi0.982.523.376 (3)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+2, y, z+1; (v) x+1, y, z; (vi) x+1, y, z+2.
 

Acknowledgements

This research was supported by the Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2014R1A1A4A01009105).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2418–o2420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEbenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o2574.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeon, Y., Kim, J., Kwon, E. & Kim, T. H. (2015). Acta Cryst. E71, o470–o471.  CSD CrossRef IUCr Journals Google Scholar
First citationKwon, E., Kim, J., Kang, G. & Kim, T. H. (2015). Acta Cryst. E71, o1033–o1034.  CSD CrossRef IUCr Journals Google Scholar
First citationSchmidt, C. L. & Jansen, M. (2012). Z. Anorg. Allg. Chem. 638, 275–278.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationValle, A., Boschin, G., Negri, M., Abbruscato, P., Sorlini, C., D'Agostina, A. & Zanardini, E. (2006). J. Appl. Microbiol. 101, 443–452.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVenkatesh, P. M., Pardhasaradhi, V., Dhayanithi, V., Avinash, M., Palimkar, S., Subhash, K. R. & Mohan, H. R. (2016). Chem. Sci. Trans. 5, 41–55.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds