research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Tris{2-[(5-chloro-2-oxido­benzyl­­idene-κO)amino-κN]eth­yl}amine-κN)­ytterbium(III): crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aResearch Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 August 2016; accepted 27 August 2016; online 5 September 2016)

The YbIII atom in the title complex, [Yb(C27H24Cl3N4O3)] [systematic name: (2,2′,2′′-{(nitrilo)­tris­[ethane-2,1-di­yl(nitrilo)­methylyl­idene]}tris­(4-chloro­phenolato)ytterbium(III)], is coordinated by a trinegative, hepta­dentate ligand and exists within an N4O3 donor set, which defines a capped octa­hedral geometry whereby the amine N atom caps the triangular face defined by the three imine N atoms. The packing features supra­molecular layers that stack along the a axis, sustained by a combination of aryl-C—H⋯O, imine-C—H⋯O, methyl­ene-C—H⋯π(ar­yl) and end-on C—Cl⋯π(ar­yl) inter­actions. A Hirshfeld surface analysis points to the major contributions of C⋯H/ H⋯C and Cl⋯H/H⋯Cl inter­actions (along with H⋯H) to the overall surface but the Cl⋯H contacts are at distances greater than the sum of their van der Waals radii.

1. Chemical context

Despite being less studied than transition metal complexes, the crystal chemistry of lanthanides is rich and diverse as their complexes can display various coordination numbers and geometries that are not readily predicted (Salehzadeh et al., 2010[Salehzadeh, S., Bayat, M., Davoodi, L., Golbedaghi, R. & Izadkhah, V. (2010). Bull. Chem. Soc. Ethiop. 24, 59-66.]). In recent years, inter­est in the coordination chemistry of lanthanides has increased owing, for example, to the mol­ecular dynamics exhibited by their complexes (Pedersen et al., 2014[Pedersen, K. S., Ungur, L., Sigrist, M., Sundt, A., Schau-Magnussen, M., Vieru, V., Mutka, H., Rols, S., Weihe, H., Waldmann, O., Chibotaru, L. F., Bendix, J. & Dreiser, J. (2014). Chem. Sci. 5, 1650-1660.]). Further, lanthanide-based luminescent compounds are potentially useful materials for the fabrication of organic light-emitting devices (OLEDs) due to their ability to exhibit sharp emission bands, high colour purity and long-lived emission states (Ahmed et al., 2016[Ahmed, Z., Aderne, R. E., Kai, J., Resende, J. A. L. C. & Cremona, M. (2016). Polyhedron, 117, 518-525.]; Bünzli et al., 2015[Bünzli, J. G. (2015). Coord. Chem. Rev. 293-294, 19-47.]). In the context of the present report, tripodal and tri-anionic hepta­dentate ligands, having tertiary-amine, three neutral imine and three phenolate donors, leading to a potential N4O3 donor set, are of inter­est in coordination chemistry due to the cavity size they define and owing to the relative rigidity of the ligand. Being large and having seven potential donor atoms, these ligands are capable of coordinating lanthanides even if the atomic sizes of lanthanides are greater in comparison to their transition metal counterparts (Yang et al., 1995[Yang, L.-W., Liu, S., Rettig, S. J. & Orvig, C. (1995). Inorg. Chem. 34, 4921-4925.]). Indeed, from the literature, several tripodal lanthanide complexes have been successfully characterized and described (Liu et al., 1992[Liu, S., Gelmini, L., Rettig, S. J., Thompson, R. C. & Orvig, C. (1992). J. Am. Chem. Soc. 114, 6081-6087.]; Bernhardt et al., 2001[Bernhardt, P. V., Flanagan, B. M. & Riley, M. J. (2001). Aust. J. Chem. 54, 229-232.]; Kanesato et al., 2001a[Kanesato, M., Ngassapa, F. N. & Yokoyama, T. (2001a). Anal. Sci. 17, 473-474.],b[Kanesato, M., Ngassapa, F. N. & Yokoyama, T. (2001b). Anal. Sci. 17, 1359-1360.], 2004[Kanesato, M., Mizukami, S., Houjou, H., Tokuhisa, H., Koyama, E. & Nagawa, Y. (2004). J. Alloys Compd. 374, 307-310.]; Hu et al., 2015[Hu, X. M., Xue, L. W., Zhao, G. Q. & Yang, W. C. (2015). Russ. J. Coord. Chem. 41, 197-201.]). As part of an on-going study, the crystal and mol­ecular structures of the title hepta­dentate YbIII complex (I)[link] is described herein along with an analysis of its Hirshfeld surface.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link] and selected geometric parameters are collected in Table 1[link]. The tris{[5-chloro­salicyl­idene)amino]­eth­yl}amine) tri-anion coordinates in a hepta­dentate mode, utilizing the three phenolate-oxygen, three imine-nitro­gen and tertiary amine-nitro­gen atoms. The coordination geometry is based on a amine-N-capped octa­hedron with the amine-nitro­gen atom capping the triangular face defined by the three imine-nitro­gen atoms. Supporting this assignment are the observations that the Yb—O bond lengths are significantly shorter than the Yb—N(imine) bonds which, in turn, are shorter than the Yb—N(amine) bond length, Table 1[link]. The dihedral angle between the phenolate-O3 and imine-N3 faces is 3.86 (6)°, indicating a parallel disposition. There is a range in the Yb—O bond lengths, i.e. >0.02 Å, with the shortest Yb—O1 bond being trans to the most loosely bound imine-N4 atom, and the longest Yb—O2 bond being trans to most tightly held imine-N2 atom, Table 1[link]. The six-membered chelate rings adopt different conformations. Thus, the O1-chelate ring is essentially planar (r.m.s. deviation of the six fitted atoms = 0.0377 Å), with the maximum deviation of 0.0672 (14) Å being for atom O1. The O2-chelate ring is considerably less planar (r.m.s. deviation = 0.0551 Å) for the non-Yb atoms with the maximum deviation being 0.0850 (16) Å for the C12 atom, with the Yb atom, the flap atom in an envelope conformation, lying 0.762 (3) Å out of the least-squares plane defined by the remaining atoms. An inter­mediate geometry is found for the O3-chelate ring, also an envelope, with the Yb flap atom lying 0.524 (3) Å out of the plane of the remaining atoms (r.m.s. deviation = 0.0376 Å). When viewed down the amine-N–Yb vector, the ethyl­ene bridges are in the same orientation as are the benzene rings, and the organic residues splay outwards to define the shape of a capped cone.

Table 1
Selected geometric parameters (Å, °)

Yb—O1 2.1476 (16) Yb—N2 2.4331 (19)
Yb—O2 2.1715 (16) Yb—N3 2.439 (2)
Yb—O3 2.1608 (17) Yb—N4 2.442 (2)
Yb—N1 2.677 (2)    
       
O1—Yb—N2 75.38 (6) O1—Yb—N4 160.51 (7)
O2—Yb—N3 74.91 (6) O2—Yb—N2 164.04 (7)
O3—Yb—N4 74.67 (6) O3—Yb—N3 165.13 (7)
[Figure 1]
Figure 1
Mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

3. Supra­molecular features

In the absence of conventional hydrogen bonding, the packing in (I)[link] is sustained by a range of weak inter­actions, Table 2[link]. Aryl-C—H⋯O and imine-C—H⋯O inter­actions assemble mol­ecules into supra­molecular helical chains propagating along the b axis, Fig. 2[link]a. These are reinforced by methyl­ene-C—H⋯π(ar­yl) contacts, also shown in Fig. 2[link]a. Chains are connected into supra­molecular layers in the bc plane by end-on C—Cl⋯π(ar­yl) inter­actions, Fig. 2[link]b. Layers stack along the a axis with no directional inter­actions between them, Fig. 2[link]c (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.95 2.55 3.369 (3) 144
C23—H23⋯O2ii 0.95 2.60 3.413 (3) 144
C2—H2BCg1i 0.99 2.88 3.744 (3) 146
C24—Cl3⋯Cg1iii 1.74 (1) 3.48 (1) 5.109 (3) 155 (1)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 2]
Figure 2
The packing in (I)[link], showing (a) a helical supra­molecular chain along the b axis, (b) a supra­molecular layer in the bc plane and (c) a view in perspective down the b axis, The aryl-C—H⋯O, imine-C—H⋯O (orange), methyl­ene-C—H⋯π(ar­yl) (purple) and C—Cl⋯π(ar­yl) inter­actions (blue) are shown as dashed lines.

4. Analysis of the Hirshfeld surfaces

The close contacts present in the crystal of (I)[link] were studied by mapping the Hirshfeld surface over the dnorm contact distances within the range of −0.18 to 1.65 Å through calculation of the inter­nal (di) and external (de) distances of a particular Hirshfeld surface point to its nearest nucleus (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem Commun. pp. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), while the two-dimensional fingerprint plots of the corresponding close contacts were produced through the plot of de vs di (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). All analyses were performed using Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]). The distances involving hydrogen atoms were normalized to the standard neutron-diffraction bond lengths.

The Hirshfeld surface analysis was performed on (I)[link] in order to gain better understanding, on a qu­anti­tative basis, of the different close inter­molecular contacts. The percentage contributions to the overall Hirshfeld surface are summarized in Table 3[link]. Fig. 3[link]a shows a butterfish-like two-dimensional fingerprint plot for (I)[link]. In general, the diffuse region at the top-right corner of the plot may indicate relatively low packing efficiency which could be due to the absence of hydrogen bonding. A detailed analysis of the decomposed fingerprint plots reveals that close contacts resulting from C⋯H/H⋯C as well as O⋯H/H⋯O contacts are evident. These constitute ca 26 and 5%, respectively, of the overall inter­actions in the crystal, with de + di distances of ∼2.54 Å and ∼2.43 Å, respectively, Fig. 3[link]b and 3c. As seen from the images of Fig. 4[link], these inter­actions connect adjacent mol­ecules in such a way that the mol­ecules are arranged in a shape complementary array with an overall packing index of 69.6%. The end-on C—Cl⋯π(ar­yl) contacts appear as a focused area in the middle of the fingerprint plot delineated into Cl⋯C/C⋯Cl contacts, Fig. 3[link]d. Finally, the Cl⋯H/H⋯Cl inter­actions appear as the third most dominant inter­action, right after H⋯H and C⋯H/H⋯C, with an overall contribution of ca 24% to the Hirshfeld surface, despite the fact that these inter­actions are considered weak with contact distances greater than the sum of van der Waals radii. However, as seen from Fig. 3[link]e, these inter­actions are responsible for the appearance of the tails of the `butterfish-shape'.

Table 3
Percentage contribution of the different inter­molecular contacts to the Hirshfeld surface of (I)

Contact % Contribution
H⋯H 35.3
C⋯H/H⋯C 25.9
Cl⋯H/H⋯Cl 23.9
Cl⋯C/C⋯Cl 5.9
O⋯H/H⋯O 5.0
Other 4.0
[Figure 3]
Figure 3
Comparison of (a) the complete Hirshfeld surface and full fingerprint plots for (I)[link] and the corresponding dnorm surfaces and two-dimensional plots associated with (b) C⋯H/H⋯C, (c) O⋯H/H⋯O, (d) Cl⋯C/C⋯Cl and (e) Cl⋯H/H⋯Cl contacts.
[Figure 4]
Figure 4
Connection of adjacent mol­ecules by C⋯H/H⋯C and O⋯H/H⋯O contacts in a shape complementary array mapped over the (a) Hirshfeld surface and (b) curvedness.

5. Database survey

The structure of the unsubstituted YbIII complex has been the subject of two independent determinations (Bernhardt et al., 2001[Bernhardt, P. V., Flanagan, B. M. & Riley, M. J. (2001). Aust. J. Chem. 54, 229-232.]; Kanesato et al., 2004[Kanesato, M., Mizukami, S., Houjou, H., Tokuhisa, H., Koyama, E. & Nagawa, Y. (2004). J. Alloys Compd. 374, 307-310.]). The mol­ecule exhibits a very similar coordination geometry except that it adopts crystallographic threefold symmetry. The Yb—O, Yb—N(imine) and Yb—N(amine) bond lengths, taken from Kanesato et al. (2004[Kanesato, M., Mizukami, S., Houjou, H., Tokuhisa, H., Koyama, E. & Nagawa, Y. (2004). J. Alloys Compd. 374, 307-310.]), are 2.168 (5), 2.433 (6) and 2.700 (7) Å, respectively, and follow the same trends as in (I)[link], Table 1[link], and indeed are equal within experimental error.

A wider range of lanthanide (Ln) structures are available for comparison where the ligand is identical to that in (I)[link], and each conforms to the conformation found in (I)[link], approximating threefold symmetry. These fall into two crystal symmetries, i.e. P21/n, for Ln = Sm (Kanesato et al., 2001a[Kanesato, M., Ngassapa, F. N. & Yokoyama, T. (2001a). Anal. Sci. 17, 473-474.]), Tb (Hu et al., 2015[Hu, X. M., Xue, L. W., Zhao, G. Q. & Yang, W. C. (2015). Russ. J. Coord. Chem. 41, 197-201.]) and Er (Pedersen et al., 2014[Pedersen, K. S., Ungur, L., Sigrist, M., Sundt, A., Schau-Magnussen, M., Vieru, V., Mutka, H., Rols, S., Weihe, H., Waldmann, O., Chibotaru, L. F., Bendix, J. & Dreiser, J. (2014). Chem. Sci. 5, 1650-1660.]) [approximate reduced-cell parameters: a = 12.6 Å, b = 15.1 Å, c = 15.3 Å and γ = 110°] and P21/c, for Ln = Gd (Kanesato et al., 2001b[Kanesato, M., Ngassapa, F. N. & Yokoyama, T. (2001b). Anal. Sci. 17, 1359-1360.]) and Yb in (I)[link] [approximate reduced-cell parameters: a = 10.1 Å, b = 13.2 Å, c = 21.3 Å and β = 101°], having no obvious trends across the series. Salient bond-length data are collated in Table 4[link] for the five structures. As expected from the influence of the lanthanide contraction across the series Ln = Sm, Gd, Tb, Er and Yb, there is a systematic reduction in the Ln—O and Ln—N(imine) bond lengths. The only anomalous parameter might be the length of the Gd—N(amine) bond, i.e. 2.737 (8) Å, the relatively high standard uncertainty value notwithstanding.

Table 4
Geometric data (Å, °) for (I)[link] and literature analogues

Ln Ln—O Ln—N(imine) Ln—N(amine) Reference
Sm 2.237 (5)–2.243 (6) 2.545 (6)–2.562 (7) 2.778 (6) Kanesato et al. (2001a[Kanesato, M., Ngassapa, F. N. & Yokoyama, T. (2001a). Anal. Sci. 17, 473-474.])
Gd 2.216 (7)–2.235 (7) 2.529 (8)–2.542 (8) 2.737 (8) Kanesato et al. (2001b[Kanesato, M., Ngassapa, F. N. & Yokoyama, T. (2001b). Anal. Sci. 17, 1359-1360.])
Tb 2.206 (3)–2.218 (3) 2.495 (3)–2.510 (4) 2.748 (4) Hu et al. (2015[Hu, X. M., Xue, L. W., Zhao, G. Q. & Yang, W. C. (2015). Russ. J. Coord. Chem. 41, 197-201.])
Er 2.175 (2)–2.1878 (19) 2.444 (2)–2.465 (2) 2.696 (2) Pedersen et al. (2014[Pedersen, K. S., Ungur, L., Sigrist, M., Sundt, A., Schau-Magnussen, M., Vieru, V., Mutka, H., Rols, S., Weihe, H., Waldmann, O., Chibotaru, L. F., Bendix, J. & Dreiser, J. (2014). Chem. Sci. 5, 1650-1660.])
Yb 2.1476 (16)–2.1715 (16) 2.4331 (19)–2.442 (2) 2.677 (2) This work

6. Synthesis and crystallization

The Schiff base ligand, tris­{[(5-chloro­salicyl­idene)amino]­eth­yl}amine (Kanesato et al., 2000[Kanesato, M., Ngassapa, F. N. & Yokoyama, T. (2000). Anal. Sci. 16, 781-782.]; 0.56 g, 1 mmol) and tri­ethyl­amine (0.14 ml, 1.0 mmol) were taken in absolute ethanol (25 ml) and refluxed for 1 h. An ethano­lic solution (15 ml) of ytterbium(III) chloride hexa­hydrate (Sigma–Aldrich; 0.39 g, 1 mmol) was added to the mixture which was refluxed for 2 h and filtered. The filtrate was evaporated until a precipitate was obtained. The precipitate was recrystallized from ethanol solution and the by-product, tri­ethyl­ammonium chloride, was removed through filtration. Yellow needles of the title complex suitable for X-ray crystallographic studies were obtained from the slow evaporation of the filtrate. Yield: 0.55 g (75%). M.p.: 380– 382 K. IR (cm−1): 1628 (s) ν(C=N), 1517 (m), 1449 (m), 1392 (m) ν(–O—C=C–), 1158 (m) ν(C—O—C). Analysis calculated for C27H24Cl3N4O3Yb: C, 44.31; H, 3.31; N, 7.66%. Found: C, 44.63; H, 3.12; N, 7.92%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). Owing to poor agreement, one reflection, i.e. (7 0 4), was omitted from the final cycles of refinement. The maximum and minimum residual electron density peaks of 1.65 and 0.45 e Å−3, respectively, were located 0.84 and 1.51 Å from the Yb and N2 atoms, respectively.

Table 5
Experimental details

Crystal data
Chemical formula [Yb(C27H24Cl3N4O3)]
Mr 731.89
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.0452 (2), 13.1510 (2), 21.0926 (4)
β (°) 101.221 (1)
V3) 2733.16 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.75
Crystal size (mm) 0.37 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.337, 0.864
No. of measured, independent and observed [I > 2σ(I)] reflections 29037, 7882, 6584
Rint 0.028
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.055, 1.05
No. of reflections 7882
No. of parameters 343
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.65, −0.45
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-9, 609.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SMART (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(Tris{2-[(5-chloro-2-oxidobenzylidene-κO)amino-κN]ethyl}amine-κN)ytterbium(III) top
Crystal data top
C27H24Cl3N4O3YbF(000) = 1436
Mr = 731.89Dx = 1.779 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0452 (2) ÅCell parameters from 9874 reflections
b = 13.1510 (2) Åθ = 2.5–30.5°
c = 21.0926 (4) ŵ = 3.75 mm1
β = 101.221 (1)°T = 100 K
V = 2733.16 (9) Å3Needle, yellow
Z = 40.37 × 0.06 × 0.04 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7882 independent reflections
Radiation source: fine-focus sealed tube6584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 30.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.337, Tmax = 0.864k = 1818
29037 measured reflectionsl = 3030
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0236P)2 + 2.0547P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.004
7882 reflectionsΔρmax = 1.65 e Å3
343 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb0.46352 (2)0.75973 (2)0.57731 (2)0.01267 (3)
Cl10.12533 (9)1.28195 (5)0.58909 (5)0.0416 (2)
Cl20.02898 (6)0.51120 (5)0.75694 (3)0.02505 (14)
Cl30.36458 (6)0.53255 (4)0.23696 (3)0.01926 (12)
O10.29667 (17)0.85663 (12)0.58719 (8)0.0167 (3)
O20.33581 (17)0.62842 (12)0.58381 (8)0.0164 (3)
O30.38891 (18)0.76939 (12)0.47425 (8)0.0159 (3)
N10.7240 (2)0.76956 (14)0.63698 (10)0.0151 (4)
N20.5557 (2)0.93115 (14)0.58045 (10)0.0154 (4)
N30.4951 (2)0.72213 (14)0.69249 (10)0.0148 (4)
N40.6072 (2)0.64484 (14)0.52919 (10)0.0148 (4)
C10.7729 (2)0.87631 (18)0.64050 (12)0.0175 (5)
H1A0.87210.87730.64240.021*
H1B0.75460.90870.68030.021*
C20.7024 (2)0.93543 (18)0.58208 (13)0.0184 (5)
H2A0.73381.00690.58510.022*
H2B0.72340.90530.54220.022*
C30.4962 (3)1.01700 (17)0.58504 (12)0.0171 (5)
H30.55141.07620.58810.021*
C40.3547 (3)1.03227 (17)0.58600 (11)0.0164 (5)
C50.3105 (3)1.13402 (18)0.58747 (12)0.0208 (5)
H50.37431.18800.59000.025*
C60.1758 (3)1.15543 (19)0.58521 (14)0.0246 (6)
C70.0807 (3)1.0776 (2)0.58029 (14)0.0252 (6)
H70.01271.09320.57720.030*
C80.1222 (3)0.97781 (19)0.57992 (13)0.0217 (5)
H80.05620.92530.57660.026*
C90.2601 (2)0.95123 (17)0.58435 (11)0.0148 (4)
C100.7392 (3)0.72872 (18)0.70367 (12)0.0178 (5)
H10A0.82500.75380.73040.021*
H10B0.74320.65350.70260.021*
C110.6200 (3)0.76202 (18)0.73361 (12)0.0176 (5)
H11A0.63000.73470.77800.021*
H11B0.61630.83710.73570.021*
C120.4136 (2)0.67362 (17)0.72151 (12)0.0162 (5)
H120.43670.67020.76730.019*
C130.2894 (2)0.62359 (17)0.69055 (12)0.0158 (5)
C140.2018 (3)0.59174 (17)0.73117 (13)0.0177 (5)
H140.22430.60560.77620.021*
C150.0842 (3)0.54082 (18)0.70628 (13)0.0190 (5)
C160.0522 (2)0.51588 (17)0.64104 (13)0.0187 (5)
H160.02770.47820.62450.022*
C170.1368 (2)0.54595 (17)0.60038 (13)0.0176 (5)
H170.11410.52850.55590.021*
C180.2572 (2)0.60244 (16)0.62333 (12)0.0157 (5)
C190.8079 (3)0.70835 (18)0.60012 (12)0.0178 (5)
H19A0.89420.68910.62890.021*
H19B0.82970.74960.56420.021*
C200.7321 (3)0.61317 (18)0.57314 (12)0.0176 (5)
H20A0.78900.57190.54950.021*
H20B0.70980.57140.60870.021*
C210.5862 (2)0.60742 (17)0.47208 (12)0.0164 (5)
H210.64980.55860.46320.020*
C220.4753 (2)0.63213 (17)0.41975 (11)0.0137 (4)
C230.4692 (3)0.57793 (17)0.36155 (12)0.0164 (5)
H230.53540.52750.35860.020*
C240.3680 (3)0.59760 (17)0.30922 (12)0.0161 (5)
C250.2680 (3)0.66999 (18)0.31321 (12)0.0175 (5)
H250.19610.68130.27740.021*
C260.2742 (2)0.72490 (17)0.36935 (12)0.0159 (5)
H260.20580.77390.37160.019*
C270.3794 (2)0.71038 (17)0.42369 (12)0.0147 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb0.01552 (5)0.00985 (5)0.01280 (5)0.00054 (4)0.00315 (3)0.00017 (4)
Cl10.0456 (5)0.0175 (3)0.0678 (6)0.0137 (3)0.0262 (4)0.0038 (3)
Cl20.0180 (3)0.0273 (3)0.0318 (4)0.0009 (2)0.0095 (3)0.0094 (3)
Cl30.0252 (3)0.0186 (3)0.0143 (3)0.0015 (2)0.0047 (2)0.0031 (2)
O10.0187 (9)0.0123 (7)0.0203 (9)0.0016 (6)0.0065 (7)0.0012 (6)
O20.0189 (9)0.0128 (7)0.0184 (9)0.0011 (6)0.0058 (7)0.0016 (6)
O30.0211 (9)0.0139 (7)0.0124 (8)0.0029 (6)0.0027 (7)0.0000 (6)
N10.0164 (10)0.0133 (9)0.0157 (10)0.0005 (7)0.0031 (8)0.0004 (7)
N20.0172 (10)0.0142 (9)0.0151 (10)0.0007 (7)0.0037 (8)0.0014 (7)
N30.0163 (10)0.0128 (9)0.0146 (10)0.0001 (7)0.0016 (8)0.0007 (7)
N40.0137 (9)0.0132 (9)0.0171 (10)0.0015 (7)0.0018 (8)0.0007 (7)
C10.0164 (12)0.0174 (11)0.0182 (12)0.0035 (9)0.0022 (10)0.0022 (9)
C20.0178 (12)0.0159 (11)0.0231 (13)0.0014 (9)0.0078 (10)0.0006 (9)
C30.0248 (13)0.0125 (10)0.0146 (12)0.0014 (9)0.0052 (10)0.0024 (8)
C40.0231 (12)0.0147 (10)0.0115 (11)0.0031 (9)0.0033 (9)0.0024 (8)
C50.0295 (14)0.0144 (11)0.0202 (13)0.0020 (10)0.0093 (11)0.0018 (9)
C60.0335 (15)0.0140 (11)0.0283 (15)0.0103 (10)0.0112 (12)0.0022 (10)
C70.0219 (14)0.0266 (13)0.0283 (15)0.0096 (10)0.0077 (11)0.0020 (11)
C80.0218 (13)0.0210 (12)0.0235 (14)0.0016 (10)0.0078 (11)0.0022 (10)
C90.0206 (12)0.0146 (10)0.0099 (11)0.0028 (9)0.0044 (9)0.0001 (8)
C100.0170 (11)0.0192 (11)0.0162 (12)0.0001 (9)0.0008 (9)0.0014 (9)
C110.0177 (11)0.0182 (11)0.0157 (11)0.0056 (9)0.0001 (9)0.0004 (9)
C120.0196 (12)0.0135 (10)0.0160 (12)0.0026 (9)0.0042 (9)0.0000 (8)
C130.0169 (12)0.0115 (10)0.0190 (12)0.0012 (8)0.0038 (9)0.0022 (8)
C140.0195 (12)0.0146 (10)0.0202 (13)0.0024 (9)0.0066 (10)0.0023 (9)
C150.0176 (12)0.0145 (10)0.0270 (14)0.0038 (9)0.0096 (10)0.0071 (9)
C160.0133 (11)0.0133 (10)0.0285 (14)0.0009 (8)0.0021 (10)0.0015 (9)
C170.0172 (12)0.0132 (10)0.0222 (13)0.0035 (9)0.0030 (10)0.0017 (9)
C180.0153 (11)0.0085 (9)0.0236 (13)0.0025 (8)0.0043 (10)0.0001 (8)
C190.0151 (11)0.0197 (11)0.0189 (12)0.0020 (9)0.0039 (9)0.0003 (9)
C200.0181 (12)0.0167 (11)0.0165 (12)0.0047 (9)0.0000 (9)0.0007 (9)
C210.0163 (12)0.0136 (10)0.0195 (12)0.0022 (8)0.0037 (10)0.0006 (8)
C220.0138 (11)0.0135 (10)0.0142 (11)0.0007 (8)0.0034 (9)0.0002 (8)
C230.0191 (12)0.0133 (10)0.0173 (12)0.0018 (9)0.0049 (10)0.0012 (8)
C240.0231 (12)0.0131 (10)0.0128 (11)0.0029 (9)0.0052 (9)0.0018 (8)
C250.0197 (12)0.0168 (11)0.0152 (12)0.0003 (9)0.0014 (10)0.0019 (9)
C260.0167 (11)0.0141 (10)0.0160 (11)0.0026 (8)0.0008 (9)0.0011 (8)
C270.0171 (11)0.0120 (10)0.0163 (11)0.0015 (8)0.0059 (9)0.0010 (8)
Geometric parameters (Å, º) top
Yb—O12.1476 (16)C7—H70.9500
Yb—O22.1715 (16)C8—C91.414 (3)
Yb—O32.1608 (17)C8—H80.9500
Yb—N12.677 (2)C10—C111.522 (4)
Yb—N22.4331 (19)C10—H10A0.9900
Yb—N32.439 (2)C10—H10B0.9900
Yb—N42.442 (2)C11—H11A0.9900
Cl1—C61.746 (2)C11—H11B0.9900
Cl2—C151.749 (3)C12—C131.449 (3)
Cl3—C241.742 (2)C12—H120.9500
O1—C91.295 (3)C13—C141.406 (3)
O3—C271.307 (3)C13—C181.419 (3)
O2—C181.300 (3)C14—C151.371 (4)
N1—C11.484 (3)C14—H140.9500
N1—C101.485 (3)C15—C161.390 (4)
N1—C191.489 (3)C16—C171.378 (4)
N2—C31.290 (3)C16—H160.9500
N2—C21.469 (3)C17—C181.421 (3)
N3—C121.283 (3)C17—H170.9500
N3—C111.476 (3)C19—C201.517 (3)
N4—C211.280 (3)C19—H19A0.9900
N4—C201.468 (3)C19—H19B0.9900
C1—C21.511 (3)C20—H20A0.9900
C1—H1A0.9900C20—H20B0.9900
C1—H1B0.9900C21—C221.445 (3)
C2—H2A0.9900C21—H210.9500
C2—H2B0.9900C22—C231.410 (3)
C3—C41.440 (3)C22—C271.423 (3)
C3—H30.9500C23—C241.372 (3)
C4—C51.412 (3)C23—H230.9500
C4—C91.424 (3)C24—C251.398 (3)
C5—C61.374 (4)C25—C261.378 (3)
C5—H50.9500C25—H250.9500
C6—C71.390 (4)C26—C271.412 (3)
C7—C81.377 (4)C26—H260.9500
O1—Yb—N275.38 (6)O1—C9—C8120.4 (2)
O2—Yb—N374.91 (6)O1—C9—C4122.4 (2)
O3—Yb—N474.67 (6)C8—C9—C4117.2 (2)
O1—Yb—N4160.51 (7)N1—C10—C11110.14 (19)
O2—Yb—N2164.04 (7)N1—C10—H10A109.6
O3—Yb—N3165.13 (7)C11—C10—H10A109.6
O1—Yb—O386.46 (6)N1—C10—H10B109.6
O1—Yb—O289.08 (6)C11—C10—H10B109.6
O3—Yb—O290.96 (6)H10A—C10—H10B108.1
O3—Yb—N291.64 (6)N3—C11—C10107.5 (2)
O1—Yb—N388.64 (7)N3—C11—H11A110.2
N2—Yb—N3100.70 (7)C10—C11—H11A110.2
O2—Yb—N486.47 (6)N3—C11—H11B110.2
N2—Yb—N4109.39 (7)C10—C11—H11B110.2
N3—Yb—N4108.41 (7)H11A—C11—H11B108.5
O1—Yb—N1129.46 (6)N3—C12—C13125.8 (2)
O3—Yb—N1125.89 (6)N3—C12—H12117.1
O2—Yb—N1122.97 (6)C13—C12—H12117.1
N2—Yb—N167.08 (6)C14—C13—C18120.2 (2)
N3—Yb—N167.39 (7)C14—C13—C12116.5 (2)
N4—Yb—N167.84 (6)C18—C13—C12123.2 (2)
C9—O1—Yb141.74 (16)C15—C14—C13120.5 (2)
C27—O3—Yb137.88 (15)C15—C14—H14119.8
C18—O2—Yb133.58 (15)C13—C14—H14119.8
C1—N1—C10108.82 (19)C14—C15—C16120.7 (2)
C1—N1—C19108.78 (19)C14—C15—Cl2119.3 (2)
C10—N1—C19109.54 (18)C16—C15—Cl2120.01 (19)
C1—N1—Yb110.66 (14)C17—C16—C15119.8 (2)
C10—N1—Yb109.81 (14)C17—C16—H16120.1
C19—N1—Yb109.20 (14)C15—C16—H16120.1
C3—N2—C2116.2 (2)C16—C17—C18121.7 (2)
C3—N2—Yb129.32 (17)C16—C17—H17119.2
C2—N2—Yb114.26 (14)C18—C17—H17119.2
C12—N3—C11116.4 (2)O2—C18—C13122.7 (2)
C12—N3—Yb127.19 (17)O2—C18—C17120.1 (2)
C11—N3—Yb116.37 (15)C13—C18—C17117.1 (2)
C21—N4—C20116.7 (2)N1—C19—C20110.4 (2)
C21—N4—Yb128.79 (16)N1—C19—H19A109.6
C20—N4—Yb114.50 (15)C20—C19—H19A109.6
N1—C1—C2110.35 (19)N1—C19—H19B109.6
N1—C1—H1A109.6C20—C19—H19B109.6
C2—C1—H1A109.6H19A—C19—H19B108.1
N1—C1—H1B109.6N4—C20—C19107.91 (19)
C2—C1—H1B109.6N4—C20—H20A110.1
H1A—C1—H1B108.1C19—C20—H20A110.1
N2—C2—C1107.95 (19)N4—C20—H20B110.1
N2—C2—H2A110.1C19—C20—H20B110.1
C1—C2—H2A110.1H20A—C20—H20B108.4
N2—C2—H2B110.1N4—C21—C22126.4 (2)
C1—C2—H2B110.1N4—C21—H21116.8
H2A—C2—H2B108.4C22—C21—H21116.8
N2—C3—C4126.6 (2)C23—C22—C27120.1 (2)
N2—C3—H3116.7C23—C22—C21116.6 (2)
C4—C3—H3116.7C27—C22—C21123.2 (2)
C5—C4—C9119.9 (2)C24—C23—C22120.3 (2)
C5—C4—C3116.6 (2)C24—C23—H23119.8
C9—C4—C3123.5 (2)C22—C23—H23119.8
C6—C5—C4120.3 (2)C23—C24—C25120.6 (2)
C6—C5—H5119.8C23—C24—Cl3119.79 (19)
C4—C5—H5119.8C25—C24—Cl3119.66 (19)
C5—C6—C7120.6 (2)C26—C25—C24119.7 (2)
C5—C6—Cl1119.1 (2)C26—C25—H25120.1
C7—C6—Cl1120.2 (2)C24—C25—H25120.1
C8—C7—C6119.8 (3)C25—C26—C27121.9 (2)
C8—C7—H7120.1C25—C26—H26119.1
C6—C7—H7120.1C27—C26—H26119.1
C7—C8—C9121.9 (2)O3—C27—C26120.4 (2)
C7—C8—H8119.0O3—C27—C22122.3 (2)
C9—C8—H8119.0C26—C27—C22117.3 (2)
C10—N1—C1—C2153.1 (2)C13—C14—C15—Cl2174.95 (18)
C19—N1—C1—C287.6 (2)C14—C15—C16—C172.5 (4)
Yb—N1—C1—C232.3 (2)Cl2—C15—C16—C17175.23 (18)
C3—N2—C2—C1118.2 (2)C15—C16—C17—C180.0 (3)
Yb—N2—C2—C157.5 (2)Yb—O2—C18—C1336.9 (3)
N1—C1—C2—N258.5 (3)Yb—O2—C18—C17146.44 (17)
C2—N2—C3—C4178.6 (2)C14—C13—C18—O2178.7 (2)
Yb—N2—C3—C43.6 (4)C12—C13—C18—O21.5 (3)
N2—C3—C4—C5176.3 (2)C14—C13—C18—C171.9 (3)
N2—C3—C4—C92.5 (4)C12—C13—C18—C17175.2 (2)
C9—C4—C5—C62.1 (4)C16—C17—C18—O2179.0 (2)
C3—C4—C5—C6176.8 (2)C16—C17—C18—C132.2 (3)
C4—C5—C6—C71.2 (4)C1—N1—C19—C20158.2 (2)
C4—C5—C6—Cl1178.5 (2)C10—N1—C19—C2083.0 (2)
C5—C6—C7—C82.3 (4)Yb—N1—C19—C2037.3 (2)
Cl1—C6—C7—C8177.3 (2)C21—N4—C20—C19126.9 (2)
C6—C7—C8—C90.1 (4)Yb—N4—C20—C1954.7 (2)
Yb—O1—C9—C8165.02 (19)N1—C19—C20—N461.0 (3)
Yb—O1—C9—C415.5 (4)C20—N4—C21—C22176.0 (2)
C7—C8—C9—O1176.5 (2)Yb—N4—C21—C225.9 (4)
C7—C8—C9—C43.1 (4)N4—C21—C22—C23177.3 (2)
C5—C4—C9—O1175.4 (2)N4—C21—C22—C276.0 (4)
C3—C4—C9—O15.8 (4)C27—C22—C23—C242.4 (3)
C5—C4—C9—C84.1 (3)C21—C22—C23—C24179.2 (2)
C3—C4—C9—C8174.7 (2)C22—C23—C24—C251.4 (4)
C1—N1—C10—C1181.9 (2)C22—C23—C24—Cl3178.20 (18)
C19—N1—C10—C11159.25 (19)C23—C24—C25—C262.6 (4)
Yb—N1—C10—C1139.3 (2)Cl3—C24—C25—C26176.95 (19)
C12—N3—C11—C10129.8 (2)C24—C25—C26—C270.0 (4)
Yb—N3—C11—C1051.8 (2)Yb—O3—C27—C26151.26 (19)
N1—C10—C11—N359.8 (2)Yb—O3—C27—C2231.0 (4)
C11—N3—C12—C13176.5 (2)C25—C26—C27—O3174.3 (2)
Yb—N3—C12—C135.3 (3)C25—C26—C27—C223.6 (3)
N3—C12—C13—C14168.2 (2)C23—C22—C27—O3173.0 (2)
N3—C12—C13—C1814.6 (4)C21—C22—C27—O33.5 (4)
C18—C13—C14—C150.6 (3)C23—C22—C27—C264.8 (3)
C12—C13—C14—C15177.9 (2)C21—C22—C27—C26178.6 (2)
C13—C14—C15—C162.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.553.369 (3)144
C23—H23···O2ii0.952.603.413 (3)144
C2—H2B···Cg1i0.992.883.744 (3)146
C24—Cl3···Cg1iii1.74 (1)3.48 (1)5.109 (3)155 (1)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z3/2.
Percentage contribution of the different intermolecular contacts to the Hirshfeld surface of (I) top
Contact% Contribution
H···H35.3
C···H/H···C25.9
Cl···H/H···Cl23.9
Cl···C/C···Cl5.9
O···H/H···O5.0
Other4.0
Geometric data (Å, °) for (I) and literature analogues top
LnLn—OLn—N(imine)Ln—N(amine)Reference
Sm2.237 (5)-2.243 (6)2.545 (6)–2.562 (7)2.778 (6)Kanesato et al. (2001a)
Gd2.216 (7)–2.235 (7)2.529 (8)–2.542 (8)2.737 (8)Kanesato et al. (2001b)
Tb2.206 (3)–2.218 (3)2.495 (3)–2.510 (4)2.748 (4)Hu et al. (2015)
Er2.175 (2)–2.1878 (19)2.444 (2)–2.465 (2)2.696 (2)Pedersen et al. (2014)
Yb2.1476 (16)–2.1715 (16)2.4331 (19)–2.442 (2)2.677 (2)This work
 

Footnotes

Additional correspondence author, e-mail: annielee@sunway.edu.my.

Acknowledgements

The authors are grateful to Sunway University, to the University of Malaya (grant No. RP017B-14AFR) and to the Ministry of Higher Education of Malaysia (MOHE) Fundamental Research Grant Scheme (grant No. FP033-2014B) for supporting this work.

References

First citationAhmed, Z., Aderne, R. E., Kai, J., Resende, J. A. L. C. & Cremona, M. (2016). Polyhedron, 117, 518–525.  CSD CrossRef CAS Google Scholar
First citationBernhardt, P. V., Flanagan, B. M. & Riley, M. J. (2001). Aust. J. Chem. 54, 229–232.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBünzli, J. G. (2015). Coord. Chem. Rev. 293–294, 19–47.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–9, 609.  Google Scholar
First citationHu, X. M., Xue, L. W., Zhao, G. Q. & Yang, W. C. (2015). Russ. J. Coord. Chem. 41, 197–201.  Web of Science CrossRef CAS Google Scholar
First citationKanesato, M., Mizukami, S., Houjou, H., Tokuhisa, H., Koyama, E. & Nagawa, Y. (2004). J. Alloys Compd. 374, 307–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationKanesato, M., Ngassapa, F. N. & Yokoyama, T. (2000). Anal. Sci. 16, 781–782.  Web of Science CSD CrossRef CAS Google Scholar
First citationKanesato, M., Ngassapa, F. N. & Yokoyama, T. (2001a). Anal. Sci. 17, 473–474.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKanesato, M., Ngassapa, F. N. & Yokoyama, T. (2001b). Anal. Sci. 17, 1359–1360.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, S., Gelmini, L., Rettig, S. J., Thompson, R. C. & Orvig, C. (1992). J. Am. Chem. Soc. 114, 6081–6087.  CSD CrossRef CAS Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPedersen, K. S., Ungur, L., Sigrist, M., Sundt, A., Schau-Magnussen, M., Vieru, V., Mutka, H., Rols, S., Weihe, H., Waldmann, O., Chibotaru, L. F., Bendix, J. & Dreiser, J. (2014). Chem. Sci. 5, 1650–1660.  Web of Science CSD CrossRef CAS Google Scholar
First citationSalehzadeh, S., Bayat, M., Davoodi, L., Golbedaghi, R. & Izadkhah, V. (2010). Bull. Chem. Soc. Ethiop. 24, 59–66.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationYang, L.-W., Liu, S., Rettig, S. J. & Orvig, C. (1995). Inorg. Chem. 34, 4921–4925.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds