research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Distinct coordination geometries in bis­­[N,N-bis­­(2-meth­­oxy­eth­yl)di­thio­carbamato-κ2S,S′]di­phenyltin(IV) and bis­­[N-(2-meth­­oxy­eth­yl)-N-methyl­di­thio­carbamato-κ2S,S′]di­phenyl­tin(IV): crystal structures and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aBiomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, bEnvironmental Health and Industrial Safety Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and dResearch Centre for Chemical Crystallography, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 July 2016; accepted 13 July 2016; online 19 July 2016)

The crystal and mol­ecular structures of two di­phenyl­tin bis­(di­thio­carbamate)s, [Sn(C6H5)2(C5H10NOS2)2], (I), and [Sn(C6H5)2(C7H14NO2S2)2], (II), are described. In (I), in which the metal atom lies on a twofold rotation axis, the di­thio­carbamate ligand coordinates with approximately equal Sn—S bond lengths and the ipso-C atoms of the Sn-bound phenyl groups occupy cis-positions in the resulting octa­hedral C2S4 donor set. A quite distinct coordination geometry is noted in (II), arising as a result of quite disparate Sn—S bond lengths. Here, the four S-donors define a trapezoidal plane with the ipso-C atoms lying over the weaker of the Sn—S bonds so that the C2S4 donor set defines a skewed trapezoidal bipyramid. The packing of (I) features supra­molecular layers in the ab plane sustained by methyl­ene-C—H⋯π(Sn–ar­yl) inter­actions; these stack along the c-axis direction with no specific inter­actions between them. In (II), supra­molecular chains along the b-axis direction are formed by methyl­ene-C—O(ether) inter­actions; these pack with no directional inter­actions between them. A Hirshfeld surface analysis was conducted on both (I) and (II) and revealed the dominance of H⋯H inter­actions contributing to the respective surfaces, i.e. >60% in each case, and other features consistent with the description of the mol­ecular packing above.

1. Chemical context

In a review of the applications and structures of tin/organotin di­thio­carbamates (di­thio­carbamate is S2CNRR'; R, R′ = alkyl, ar­yl), two applications were highlighted, namely, their potential biological activity and their utility as single-source precursors for tin sulfide nanoparticles (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]). Investigations in both fields continue, e.g. as anti-cancer agents (Khan et al., 2014[Khan, N., Farina, Y., Lo, K. M., Rajab, N. F. & Awang, N. (2014). J. Mol. Struct. 1076, 403-410.], 2015[Khan, N., Farina, Y., Lo, K. M., Rajab, N. F. & Awang, N. (2015). Polyhedron, 85, 754-760.]; Kadu et al., 2015[Kadu, R., Roy, H. & Singh, V. K. (2015). Appl. Organomet. Chem. 29, 746-755.]), as anti-microbials (Zia-ur-Rehman et al., 2011[Zia-ur-Rehman, Muhammad, N., Ali, S., Butler, I. S. & Meetsma, A. (2011). Inorg. Chim. Acta, 376, 381-388.]; Ferreira et al., 2012[Ferreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2012). Eur. J. Med. Chem. 58, 493-503.], 2014[Ferreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2014). Polyhedron, 79, 161-169.]) and as fungicides (Yu et al., 2014[Yu, Y., Yang, H., Wei, Z.-W. & Tang, L.-F. (2014). Heteroat. Chem. 25, 274-281.]). The use of various tin di­thio­carbamate species as precursors for tin sulfide materials also continues to attract significant attention (Ramasamy et al., 2013[Ramasamy, K., Kuznetsov, V. L., Gopal, K., Malik, M. A., Raftery, J., Edwards, P. P. & O'Brien, P. (2013). Chem. Mater. 25, 266-276.]; Lewis et al., 2014[Lewis, D. J., Kevin, P., Bakr, O., Muryn, C. A., Malik, M. A. & O'Brien, P. (2014). Inorg. Chem. Front. 1, 577-598.]; Kevin et al., 2015[Kevin, P., Lewis, D. J., Raftery, J., Malik, M. A. & O'Brien, P. (2015). J. Cryst. Growth, 415, 93-99.]). It was during the course of ongoing studies of the anti-tumour potential of organotin di­thio­carbamates (Khan et al., 2014[Khan, N., Farina, Y., Lo, K. M., Rajab, N. F. & Awang, N. (2014). J. Mol. Struct. 1076, 403-410.], 2015[Khan, N., Farina, Y., Lo, K. M., Rajab, N. F. & Awang, N. (2015). Polyhedron, 85, 754-760.]) that attention was directed towards (2-meth­oxy­eth­yl)di­thio­carbamate derivatives. Herein, the crystal and mol­ecular structures of two di­phenyl­tin derivatives, viz. [Sn(C6H5)2(C5H10NOS2)2], (I)[link], and [Sn(C6H5)2(C7H14NOS2)2], (II)[link], are reported that exhibit quite distinct coordination geometries, along with a Hirshfeld surface analysis to provide more details on the mol­ecular packing.

[Scheme 1]

1.1. Structural commentary

The asymmetric unit of (I)[link] comprises half a mol­ecule as the tin atom is located on a twofold rotation axis, Fig. 1[link]. The C2S4 donor set is defined by two chelating di­thio­carbamate ligands and the ipso-carbon atoms of the tin-bound phenyl substituents. The difference between the Sn—Sshort and Sn—Slong bond lengths, i.e. Δ(Sn—S), is relatively small at 0.06 Å, indicating an essentially symmetric coordination mode. This symmetry is reflected in the near equivalence of the associated C1—S bond lengths with the difference between them being 0.024 Å, Table 1[link]. The longer Sn—S2 bond is approximately trans to the ipso-carbon atom. The overall coordination geometry is based on an octa­hedron with the ipso-carbon atoms occupying mutually cis positions. The meth­oxy­ethyl group is approximately perpendicular to the S2CN core as seen in the value of the C1—N1—C3—C4 torsion angle of 93.8 (2)°. The residue itself is almost planar and adopts an extended conformation as seen in the C5—O1—C4—C3 torsion angle of 175.27 (19)°.

Table 1
Geometric data (Å, °) for (I)[link] and (II)

Parameter (I) (II)
Sn—S1 2.6071 (6) 2.5060 (6)
Sn—S2 2.6653 (6) 2.9875 (6)
Sn—S3 2.5230 (6)
Sn—S4 2.9800 (6)
Sn—C11 2.1677 (18)
Sn—C21 2.131 (2)
Sn—C31 2.124 (2)
C1—S1 1.7311 (19) 1.756 (2)
C1—S2 1.7067 (19) 1.692 (2)
C8—S3 1.752 (2)
C8—S4 1.692 (2)
S1i—Sn—S2i 67.742 (17) 64.922 (18)
S3—Sn—S4 64.591 (16)
S1—Sn—S1i 152.00 (2)
S2i—Sn—C11i 159.03 (5)
S1—Sn—S3 82.873 (18)
S2—Sn—S4 147.642 (17)
C—Sn—C 100.07 (10) 130.12 (9)
Symmetry code: (i) 1 − x, y, [{3\over 2}] − z.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Unlabelled atoms are related by the symmetry operation (1 − x, y, [{3\over 2}] − z).

The mol­ecule in (II)[link], Fig. 2[link], lies on a general position and has a quite distinct coordination geometry. As for (I)[link], the tin atom is located within a C2S4 donor set. However, the di­thio­carbamate ligand is coordinating with significantly greater values of ΔS, i.e. 0.48 and 0.46 Å for the S1- and S3-ligands, respectively, with the Sn—Sshort bonds in (II)[link] being shorter than the equivalent bonds in (I)[link] and at the same time, the Sn—Slong bonds in (II)[link] being longer than those in (I)[link]. An inter­esting consequence of the different modes of coordination of the di­thio­carbamate ligands in the two structures is that the Sn—Cbond lengths in (II)[link] are considerably shorter than those in (I)[link], Table 1[link]. As the di­thio­carbamate anions are approximately co-planar and the more tightly bound S1 and S3 atoms lie to the same side of the mol­ecule, the S4 donor atoms define a trapezoidal plane. The tin-bound ipso-carbon atoms are disposed over the weaker Sn—S bonds so that the coordination geometry is skewed trapezoidal bipyramidal. Reflecting the significant disparity in the Sn—S bonds, there are large differences in the associated C—S bonds with the shorter of these being associated with the weakly coordinating sulfur atoms, Table 1[link]. As for (I)[link], the meth­oxy­ethyl groups lie almost perpendicular to the plane through the S2CN atoms with the greatest deviation being for the O1-containing residue, i.e. the C1—N1—C5—C6 torsion angle is −81.5 (3)°. For each di­thio­carbamate ligand, the residues lie to either side of the S2CN plane, and each is as for (I)[link], adopting an almost planar and extended conformation with the O4-residue showing the greatest deviation, albeit marginally, as seen in the C14—O4—C13—C12 torsion angle of 176.3 (2)°.

[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

2. Supra­molecular features

Geometric parameters characterizing the inter­molecular inter­actions operating in the crystal structures of (I)[link] and (II)[link] are collected in Tables 2[link] and 3[link], respectively. Based on the distance criteria in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), the only significant inter­molecular contact in the mol­ecular packing of (I)[link] is a methyl­ene-C—H⋯π(Sn–ar­yl) inter­action. From symmetry, there are four such inter­actions per mol­ecule so that a two-dimensional supra­molecular layer in the ab plane ensues, Fig. 3[link]a. These stack along the c axis being separated by hydro­phobic inter­actions, Fig. 3[link]b.

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C11–C16 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4ACg1i 0.97 2.86 3.730 (3) 150
Symmetry code: (i) [x+1, -y, z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O2i 0.97 2.52 3.404 (4) 151
Symmetry code: (i) x, y-1, z.
[Figure 3]
Figure 3
Mol­ecular packing in (I)[link], showing (a) a supra­molecular layer in the ab plane sustained by methyl­ene-C—H⋯π(Sn-phen­yl) inter­actions (purple dashed lines) and (b) a view of the unit-cell contents in projection down the b axis.

In the mol­ecular packing of (II)[link], methyl­ene-C—H⋯O inter­actions lead to linear supra­molecular chains along the b axis, Fig. 4[link]a. These pack into the three-dimensional architecture of the crystal with no directional inter­molecular inter­actions between them, Fig. 4[link]b.

[Figure 4]
Figure 4
Mol­ecular packing in (II)[link], showing (a) a supra­molecular chain along the b axis sustained by methyl­ene-C—H⋯O inter­actions (orange dashed lines) and (b) a view of the unit-cell contents in projection down the a axis.

A more detailed analysis of the mol­ecular packing in (I)[link] and (II)[link] is given below in Hirshfeld surface analysis.

3. Hirshfeld surface analysis

Hirshfeld surfaces for (I)[link] and (II)[link] were mapped over dnorm, de, shape-index, curvedness and electrostatic potential with the aid of Crystal Explorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]). The electrostatic potentials were calculated using TONTO (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylo, C., Wolff, S. K., Chenai, C. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]), integrated into Crystal Explorer, and were mapped on the Hirshfeld surfaces using the STO-3G basis set at Hartree–Fock level of theory over the range ±0.12 au. The contact distances de and di from the Hirshfeld surface to the nearest atom inside and outside, respectively, enables the analysis of the inter­molecular inter­actions through the mapping of dnorm. The combination of de and di in the form of two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) provides a visual summary of inter­molecular contacts in the crystal.

As evident from Fig. 5[link], the Hirshfeld surfaces for (I)[link] and (II)[link] have quite different shapes reflecting the distinctive coordination geometries, and the dark-red and dark-blue regions assigned to negative and positive potentials are localized near the respective functional groups. The absence of conventional hydrogen bonds in the crystal of (I)[link] is consistent with the non-appearance of characteristic red spots in the calculated Hirshfeld surface mapped over dnorm (not shown). By contrast, in (II)[link], the weak C—H⋯O interaction gives rise to red spots as evident in Fig. 6[link].

[Figure 5]
Figure 5
View of Hirshfeld surfaces mapped over the electrostatic potential (the red and blue regions represent negative and positive electrostatic potentials, respectively): (a) for (I)[link] and (b) for (II)[link].
[Figure 6]
Figure 6
Views of Hirshfeld surfaces mapped over dnorm for (II)[link].

The overall two-dimensional fingerprint plots for (I)[link] and (II)[link] and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and S⋯H/H⋯S contacts are illustrated in Fig. 7[link]; their relative contributions are summarized in Table 4[link]. The different distribution of points in the overall fingerprint plots for (I)[link] and (II)[link] are due to their different mol­ecular conformations. Also, it is noted that the points are distributed in different (de, di) ranges, i.e. 1.2 to 2.7 Å for (I)[link] and 1.2 to 2.9 Å for (II)[link].

Table 4
Percentage contribution of the different inter­molecular contacts to the Hirshfeld surface in (I)[link] and (II)[link]

Contact % contribution in (I) % contribution in (II)
H⋯H 61.8 66.1
C⋯H/H⋯C 15.6 11.4
O⋯H/H⋯O 4.7 7.4
S⋯H/H⋯S 15.6 13.5
C⋯S/S⋯C 1.3 0.0
N⋯H/H⋯N 1.0 0.4
C⋯C 0.0 1.0
S⋯S 0.0 0.1
C⋯O/O⋯C 0.0 0.1
[Figure 7]
Figure 7
Comparison of the (a) complete Hirshfeld surface and full two-dimensional fingerprint plots between (I)[link] and (II)[link], and the plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) S⋯H/H⋯S contacts.

As evident from the data in Table 4[link] and the fingerprint plots in Fig. 7[link]b, H⋯H contacts clearly make the most significant contributions to the Hirshfeld surfaces of both (I)[link] and (II)[link]. In the fingerprint plot of (I)[link] delineated into H⋯H contacts (Fig. 7[link]b), all the points are situated at (de, di) distances equal to or greater than their van der Waals separations i.e. 1.2 Å, reflecting zero propensity to form such inter­molecular contacts. By contrast, for (II)[link], points at (de, di) distances less than 1.2 Å, with the peak at de = di ∼1.2 Å, resulting from short inter­atomic H⋯H contacts, Table 5[link]. The 7.4% contribution from O⋯H/H⋯O contacts to the Hirshfeld surface of (II)[link] reflects the presence of an inter­molecular C—H⋯O inter­action and a short inter­atomic O⋯H/H⋯O contact (Table 5[link]), showing a forceps-like distribution of points with the tips at de + di ∼2.5 Å in Fig. 7[link]c. The small contribution, i.e. 4.7%, due to analogous inter­actions in (I)[link] have a low density of points that are generally masked by other contacts in the plot consistent with a low propensity to form.

Table 5
Short inter­atomic contacts in (II)[link]

Contact distance symmetry operation
O4⋯H6B 2.69 −1 − x, y, z
H7C⋯H14B 2.37 1 + x, y, z
H10B⋯H34 2.36 1 − x, −y, −z

The pair of characteristics wings with the edges at de + di ∼2.9 Å in the fingerprint plot delineated into C⋯H/H⋯C contacts for (I)[link] is due to the contribution of methyl­ene-C—H⋯π(Sn–ar­yl) inter­actions, Fig. 7[link]d. The presence of these inter­actions are also indicated through the pale-orange spots present on the Hirshfeld surface mapped over de, shown within the blue circle in Fig. 8[link]a, and bright-red spots over the front side of shape-indexed surfaces identified with arrows in Fig. 8[link]b. The reciprocal of these C—H⋯π contacts, i.e. π⋯H—C contacts, are seen as blue spots near the ring in Fig. 8[link]b. The fingerprint plot for (II)[link] delineated into C⋯H/H⋯C contacts has a distinct distribution of points with the (de, di) distances greater than their van der Waals separations, confirming the absence of these inter­actions, Fig. 7[link]d. The conformations of di­thio­carbamate ligands in both (I)[link] and (II)[link] limit the sulfur atoms' ability to form significant S⋯H inter­molecular inter­actions; these atoms are separated at distances greater than their van der Waals radii, i.e. 3.0 Å. This observation is despite the nearly symmetrical distributions of points in the respective plots for both (I)[link] and (II)[link], Fig. 7[link]e, and the significant percentage contributions to their Hirshfeld surfaces (Table 5[link]).

[Figure 8]
Figure 8
View of the Hirshfeld surfaces for (I)[link], showing (a) mapped over de with the pale-orange spot within the blue circle indicating the involvement of the aryl ring in C—H⋯π inter­actions and (b) mapped with the shape-index property with the bright-red spot, identified with an arrow, indicating the C—H⋯π inter­action and the blue spots indicating complementary π⋯H—C inter­actions.

4. Database survey

Given the various applications found for tin di­thio­carbamates, it is not surprising that there exists a relatively large number of structures for this class of compound. Indeed, a search of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), reveals over 300 `hits'. Structural surveys have revealed that very different coordination geometries can arise in the solid state and, even when a common structural motif is adopted, non-systematic variations in geometric parameters are observed (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]; Muthalib et al., 2014[Muthalib, A. F. A., Baba, I., Khaledi, H., Ali, H. M. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 39-46.]). Mononuclear diorganotin bis­(di­thio­carbamate)s, i.e. directly related to (I)[link] and (II)[link] described herein, are well represented, there being about 90 examples. Four distinct structural motifs have been noted previously (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]), and these are illustrated in Fig. 9[link]. The two most common motifs are skewed trapezoidal bipyramidal as in (II)[link], Fig. 9[link]a, and distorted octa­hedral, as in (I)[link], Fig. 9[link]c. Less common are five-coordinate, trigonal–bipyramidal species, arising as one di­thio­carbamate ligand is monodentate, Fig. 9[link]b, are found, for example, in the structure of (t-Bu)2Sn(S2CNMe2)2 (Kim et al., 1987[Kim, K., Ibers, J. A., Jung, O.-S. & Sohn, Y. S. (1987). Acta Cryst. C43, 2317-2319.]) and correlated with bulky tin-bound groups, and seven-coordinate species, penta­gonal–bipyramidal, owing to additional coordination by a heteroatom of the tin-bound residue, Fig. 9[link]d, as for example in the structure of [MeOC(=O)CH2CH2]2Sn(S2CNMe)2 (Ng et al., 1989[Ng, S. W., Wei, C., Kumar Das, V. G., Jameson, G. B. & Butcher, R. J. (1989). J. Organomet. Chem. 365, 75-82.]).

[Figure 9]
Figure 9
Four structural motifs for mol­ecules of the general composition R2Sn(S2CNRR′′)2: (a) skew trapezoidal bipyramidal, (b) five-coordinate trigonal–bipyramidal owing to a monodentate di­thio­carbamate ligand, (c) cis-octa­hedral and (d) seven-coordinate penta­gonal–bipyramidal owing to additional coordination by a heteroatom of the tin-bound residue. In all images, H atoms have been omitted, only the α-C atoms bound to nitro­gen included and, in all but (d), only the α-C atom of the tin-bound residues shown.

There are 16 di­phenyl­tin bis­(di­thio­carbamate) structures included in the CSD and eight of these adopt the motif shown in Fig. 9[link]c, including both the monoclinic (Lindley & Carr, 1974[Lindley, P. F. & Carr, P. (1974). J. Cryst. Mol. Struct. 4, 173-185.]) and twofold symmetric tetra­gonal (Hook et al., 1994[Hook, J. M., Linahan, B. M., Taylor, R. L., Tiekink, E. R. T., van Gorkom, L. & Webster, L. K. (1994). Main Group Met. Chem. 17, 293-311.]) polymorphs of the archetype compound Ph2Sn(S2CNEt2)2, and eight adopt the motif shown in Fig. 9[link]a, including both independent mol­ecules of Ph2Sn[S2CN(Me)Hex]2 (Ramasamy et al., 2013[Ramasamy, K., Kuznetsov, V. L., Gopal, K., Malik, M. A., Raftery, J., Edwards, P. P. & O'Brien, P. (2013). Chem. Mater. 25, 266-276.]); the remaining structures are single phase and have one independent mol­ecule. Such an even split suggests a fine energy balance between the adoption of one geometry over the other.

5. Synthesis and crystallization

Synthesis of (I)[link]. (2-Meth­oxy­eth­yl)methyl­amine (2 mmol) dissolved in ethanol (10 ml) was stirred in an ice-bath for 30 min. A 25% ammonia solution (1–2 ml) was added to generate a basic solution. Then, a cold ethano­lic solution of carbon di­sulfide (2 mmol) was added to the solution and stirred for about 2 h. Next, di­phenyl­tin(IV) dichloride (1 mmol) dissolved in ethanol was added into the solution and further stirred for 2 h. The precipitate that formed was filtered off and washed a few times with cold ethanol to remove impurities. Finally, the precipitate was dried in a desiccator. Recrystallization was by dissolving the compound with chloro­form and ethanol (2:1 v/v) ratio. This mixture was allowed to slowly evaporate at room temperature yielding colourless crystals of (I)[link]. m.p. 382–384 K. Yield: 78%. IR (cm−1): 1,497 ν(C—N), 988 ν(C—S), 523 ν(Sn—C), 389 ν(Sn—S). 1H NMR (CDCl3): δ 7.28–8.00 (5H, Sn–Ph), 3.97 (2H, OCH2), 3.69 (2H, NCH2), 3.44 (3H, NMe), 3.36 (3H, OCH3). 13C NMR (CDCl3): δ 199.88 (S2C), 128.24–151.24 (Sn–Ar), 69.96 (OCH2), 59.06 (NCH2), 57.84 (OCH3), 45.45 (NCH3).

Compound (II)[link] was prepared and recrystallized in essentially the same manner but using bis­(2-meth­oxy­eth­yl)amine (10 mmol) in place of (2-meth­oxy­eth­yl)methyl­amine. m.p. 333–335 K. Yield: 76%. IR (cm−1): 1,482 ν(C—N), 985 ν(C—S), 571 ν(Sn—C), 381 ν(Sn—S). 1H NMR (CDCl3): 7.38–7.89 (5H, Sn–Ph), 4.07 (2H, OCH2), 3.77 (2H, NCH2), 3.35 (OCH3). 13C NMR (CDCl3): δ 200.16 (S2C), 128.26–150.89 (Sn–Ar), 69.90 (OCH2), 59.02 (NCH2), 56.72 (OCH3).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

Table 6
Experimental details

  (I) (II)
Crystal data
Chemical formula [Sn(C6H5)2(C5H10NOS2)2] [Sn(C6H5)2(C7H14NO2S2)2]
Mr 601.41 689.51
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 293 293
a, b, c (Å) 18.3808 (14), 8.2809 (4), 19.083 (3) 7.4386 (4), 14.3334 (8), 16.5398 (10)
α, β, γ (°) 90, 118.071 (8), 90 110.320 (5), 91.282 (5), 101.865 (4)
V3) 2562.9 (5) 1609.93 (17)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.34 1.09
Crystal size (mm) 0.25 × 0.25 × 0.20 0.30 × 0.25 × 0.25
 
Data collection
Diffractometer Agilent Technologies SuperNova Dual diffractometer with Atlas detector Agilent Technologies SuperNova Dual diffractometer with Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Multi-scan (CrysAlis PRO; Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.815, 1.000 0.756, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7357, 3383, 3051 17063, 8354, 6973
Rint 0.025 0.035
(sin θ/λ)max−1) 0.712 0.712
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.063, 1.07 0.031, 0.078, 1.06
No. of reflections 3383 8354
No. of parameters 143 338
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.30 0.66, −0.56
Computer programs: CrysAlis PRO (Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2015); cell refinement: CrysAlis PRO (Agilent, 2015); data reduction: CrysAlis PRO (Agilent, 2015); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006). Software used to prepare material for publication: publCIF (Westrip, 2010) for (I); SHELXL2014 (Sheldrick, 2015) for (II).

(I) Bis[N,N-bis(2-methoxyethyl)dithiocarbamato-κ2S,S']diphenyltin(IV) top
Crystal data top
[Sn(C6H5)2(C5H10NOS2)2]F(000) = 1224
Mr = 601.41Dx = 1.559 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.3808 (14) ÅCell parameters from 3633 reflections
b = 8.2809 (4) Åθ = 4.2–29.9°
c = 19.083 (3) ŵ = 1.34 mm1
β = 118.071 (8)°T = 293 K
V = 2562.9 (5) Å3Block, colourless
Z = 40.25 × 0.25 × 0.20 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
3383 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3051 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.4041 pixels mm-1θmax = 30.4°, θmin = 4.0°
ω scanh = 2618
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2015)
k = 1111
Tmin = 0.815, Tmax = 1.000l = 2526
7357 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0284P)2 + 0.8262P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3383 reflectionsΔρmax = 0.47 e Å3
143 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.50000.56549 (2)0.75000.03252 (7)
S10.65567 (3)0.64166 (6)0.82876 (3)0.04210 (12)
S20.52661 (3)0.81055 (7)0.84973 (4)0.04728 (13)
O10.77790 (11)1.16594 (19)0.88988 (10)0.0563 (4)
N10.68188 (11)0.90857 (19)0.91561 (10)0.0391 (4)
C10.62737 (11)0.8001 (2)0.87001 (11)0.0350 (4)
C20.65719 (17)1.0454 (3)0.94849 (16)0.0568 (6)
H2A0.62271.11700.90630.068*
H2B0.70541.10240.98580.068*
H2C0.62731.00630.97490.068*
C30.76876 (13)0.9020 (3)0.93400 (13)0.0458 (5)
H3A0.78360.79050.93160.055*
H3B0.80250.93980.98790.055*
C40.78779 (13)1.0011 (3)0.87883 (13)0.0464 (5)
H4A0.84400.98080.88930.056*
H4B0.75110.97090.82430.056*
C50.80091 (16)1.2685 (3)0.84467 (16)0.0630 (7)
H5A0.85891.25700.86200.095*
H5B0.78901.37840.85160.095*
H5C0.77051.23980.78960.095*
C110.52133 (11)0.3974 (2)0.67451 (11)0.0337 (4)
C120.57526 (14)0.2710 (3)0.71091 (13)0.0470 (5)
H120.60020.26050.76590.056*
C130.59275 (15)0.1597 (3)0.66667 (15)0.0552 (6)
H130.62940.07580.69200.066*
C140.55615 (14)0.1732 (3)0.58582 (15)0.0525 (6)
H140.56790.09860.55610.063*
C150.50225 (14)0.2964 (3)0.54873 (13)0.0512 (5)
H150.47710.30520.49370.061*
C160.48494 (13)0.4085 (3)0.59275 (12)0.0425 (4)
H160.44830.49230.56690.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.03241 (10)0.03268 (10)0.03421 (10)0.0000.01712 (7)0.000
S10.0349 (2)0.0430 (3)0.0492 (3)0.0002 (2)0.0205 (2)0.0098 (2)
S20.0413 (3)0.0423 (3)0.0667 (4)0.0031 (2)0.0324 (3)0.0114 (2)
O10.0732 (11)0.0438 (8)0.0706 (11)0.0030 (8)0.0492 (9)0.0028 (7)
N10.0423 (9)0.0359 (8)0.0404 (9)0.0064 (7)0.0205 (7)0.0038 (7)
C10.0380 (9)0.0340 (9)0.0363 (9)0.0004 (8)0.0202 (8)0.0018 (7)
C20.0753 (17)0.0458 (12)0.0653 (15)0.0149 (12)0.0464 (14)0.0188 (11)
C30.0362 (10)0.0428 (11)0.0470 (12)0.0037 (9)0.0102 (8)0.0021 (9)
C40.0399 (10)0.0475 (11)0.0539 (12)0.0014 (10)0.0238 (9)0.0044 (10)
C50.0649 (16)0.0613 (15)0.0704 (17)0.0060 (13)0.0381 (13)0.0137 (13)
C110.0331 (9)0.0349 (9)0.0345 (9)0.0020 (8)0.0171 (7)0.0019 (7)
C120.0529 (12)0.0457 (11)0.0374 (10)0.0098 (10)0.0169 (9)0.0000 (9)
C130.0552 (13)0.0432 (12)0.0634 (15)0.0122 (11)0.0248 (11)0.0053 (10)
C140.0552 (13)0.0515 (13)0.0627 (14)0.0112 (11)0.0377 (11)0.0230 (11)
C150.0549 (13)0.0636 (14)0.0371 (11)0.0127 (12)0.0234 (9)0.0111 (10)
C160.0391 (10)0.0483 (11)0.0371 (10)0.0014 (9)0.0153 (8)0.0016 (8)
Geometric parameters (Å, º) top
Sn—C112.1677 (18)C3—H3B0.9700
Sn—C11i2.1678 (18)C4—H4A0.9700
Sn—S12.6071 (6)C4—H4B0.9700
Sn—S1i2.6071 (6)C5—H5A0.9600
Sn—S2i2.6653 (6)C5—H5B0.9600
Sn—S22.6653 (6)C5—H5C0.9600
S1—C11.7311 (19)C11—C161.381 (3)
S2—C11.7067 (19)C11—C121.383 (3)
O1—C41.406 (3)C12—C131.386 (3)
O1—C51.410 (3)C12—H120.9300
N1—C11.322 (2)C13—C141.367 (3)
N1—C31.466 (3)C13—H130.9300
N1—C21.467 (3)C14—C151.365 (3)
C2—H2A0.9600C14—H140.9300
C2—H2B0.9600C15—C161.386 (3)
C2—H2C0.9600C15—H150.9300
C3—C41.500 (3)C16—H160.9300
C3—H3A0.9700
C11—Sn—C11i100.07 (10)N1—C3—H3B108.9
C11—Sn—S192.63 (5)C4—C3—H3B108.9
C11i—Sn—S1105.36 (5)H3A—C3—H3B107.7
C11—Sn—S1i105.36 (5)O1—C4—C3109.68 (18)
C11i—Sn—S1i92.63 (5)O1—C4—H4A109.7
S1—Sn—S1i152.00 (2)C3—C4—H4A109.7
C11—Sn—S2i92.54 (5)O1—C4—H4B109.7
C11i—Sn—S2i159.03 (5)C3—C4—H4B109.7
S1—Sn—S2i90.591 (19)H4A—C4—H4B108.2
S1i—Sn—S2i67.742 (17)O1—C5—H5A109.5
C11—Sn—S2159.03 (5)O1—C5—H5B109.5
C11i—Sn—S292.54 (5)H5A—C5—H5B109.5
S1—Sn—S267.744 (17)O1—C5—H5C109.5
S1i—Sn—S290.590 (19)H5A—C5—H5C109.5
S2i—Sn—S280.82 (3)H5B—C5—H5C109.5
C1—S1—Sn87.84 (6)C16—C11—C12118.01 (18)
C1—S2—Sn86.46 (7)C16—C11—Sn124.38 (14)
C4—O1—C5113.31 (18)C12—C11—Sn117.61 (14)
C1—N1—C3122.35 (17)C11—C12—C13120.9 (2)
C1—N1—C2121.01 (18)C11—C12—H12119.5
C3—N1—C2116.62 (18)C13—C12—H12119.5
N1—C1—S2121.35 (15)C14—C13—C12120.1 (2)
N1—C1—S1121.16 (14)C14—C13—H13120.0
S2—C1—S1117.49 (11)C12—C13—H13120.0
N1—C2—H2A109.5C15—C14—C13119.87 (19)
N1—C2—H2B109.5C15—C14—H14120.1
H2A—C2—H2B109.5C13—C14—H14120.1
N1—C2—H2C109.5C14—C15—C16120.3 (2)
H2A—C2—H2C109.5C14—C15—H15119.9
H2B—C2—H2C109.5C16—C15—H15119.9
N1—C3—C4113.51 (17)C11—C16—C15120.8 (2)
N1—C3—H3A108.9C11—C16—H16119.6
C4—C3—H3A108.9C15—C16—H16119.6
C3—N1—C1—S2179.88 (15)C5—O1—C4—C3175.27 (19)
C2—N1—C1—S22.0 (3)N1—C3—C4—O167.0 (2)
C3—N1—C1—S10.0 (3)C16—C11—C12—C130.5 (3)
C2—N1—C1—S1178.13 (16)Sn—C11—C12—C13179.24 (17)
Sn—S2—C1—N1173.67 (16)C11—C12—C13—C140.4 (4)
Sn—S2—C1—S16.47 (10)C12—C13—C14—C150.1 (3)
Sn—S1—C1—N1173.53 (16)C13—C14—C15—C160.4 (3)
Sn—S1—C1—S26.60 (10)C12—C11—C16—C150.2 (3)
C1—N1—C3—C493.8 (2)Sn—C11—C16—C15179.59 (16)
C2—N1—C3—C484.4 (2)C14—C15—C16—C110.3 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cg1ii0.972.863.730 (3)150
Symmetry code: (ii) x+1, y, z+1/2.
(II) Bis[N-(2-methoxyethyl)-N-methyldithiocarbamato-κ2S,S']diphenyltin(IV) top
Crystal data top
[Sn(C6H5)2(C7H14NO2S2)2]Z = 2
Mr = 689.51F(000) = 708
Triclinic, P1Dx = 1.422 Mg m3
a = 7.4386 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.3334 (8) ÅCell parameters from 6877 reflections
c = 16.5398 (10) Åθ = 3.8–29.7°
α = 110.320 (5)°µ = 1.09 mm1
β = 91.282 (5)°T = 293 K
γ = 101.865 (4)°Block, colourless
V = 1609.93 (17) Å30.30 × 0.25 × 0.25 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
8354 independent reflections
Radiation source: SuperNova (Mo) X-ray Source6973 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.4041 pixels mm-1θmax = 30.4°, θmin = 3.3°
ω scanh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2015)
k = 1919
Tmin = 0.756, Tmax = 1.000l = 2218
17063 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0316P)2 + 0.0774P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
8354 reflectionsΔρmax = 0.66 e Å3
338 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.53321 (2)0.25616 (2)0.25381 (2)0.04036 (6)
S10.34463 (8)0.37273 (4)0.23099 (4)0.05095 (14)
S20.75066 (8)0.44734 (5)0.23709 (5)0.05550 (15)
S30.22105 (8)0.15139 (4)0.26109 (4)0.04817 (14)
S40.53671 (8)0.06041 (4)0.27883 (4)0.04702 (13)
O10.3430 (3)0.61622 (18)0.10117 (16)0.1049 (8)
O20.6103 (3)0.75288 (15)0.38247 (15)0.0899 (7)
O30.0963 (3)0.19679 (12)0.15238 (12)0.0705 (5)
O40.1455 (3)0.09606 (15)0.42343 (13)0.0737 (5)
N10.5046 (3)0.55831 (13)0.23494 (13)0.0504 (4)
N20.1846 (2)0.03099 (12)0.27492 (12)0.0426 (4)
C10.5361 (3)0.46932 (15)0.23417 (14)0.0437 (5)
C20.3173 (4)0.57560 (18)0.22800 (18)0.0601 (6)
H2A0.32020.64690.26040.072*
H2B0.23580.53480.25420.072*
C30.2400 (4)0.5493 (2)0.1363 (2)0.0750 (8)
H3A0.24460.47960.10220.090*
H3B0.11210.55440.13490.090*
C40.2821 (6)0.5939 (3)0.0126 (3)0.1359 (18)
H4A0.28690.52490.02110.204*
H4B0.36090.64000.00900.204*
H4C0.15750.60160.00820.204*
C50.6601 (4)0.64484 (18)0.24329 (19)0.0653 (7)
H5A0.61780.69110.22020.078*
H5B0.75600.61940.20930.078*
C60.7398 (4)0.70258 (18)0.3363 (2)0.0707 (8)
H6A0.76950.65550.36200.085*
H6B0.85260.75200.33870.085*
C70.6699 (6)0.8058 (3)0.4717 (3)0.1109 (13)
H7A0.71570.76150.49510.166*
H7B0.56800.82710.50180.166*
H7C0.76650.86470.47870.166*
C80.3058 (3)0.05076 (14)0.27243 (13)0.0379 (4)
C90.0177 (3)0.03932 (16)0.27130 (16)0.0485 (5)
H9A0.04070.02880.29310.058*
H9B0.06870.07440.30920.058*
C100.1160 (3)0.09513 (17)0.18215 (17)0.0562 (6)
H10A0.24590.09400.18330.067*
H10B0.06460.06170.14320.067*
C110.1881 (5)0.2554 (2)0.0696 (2)0.0932 (10)
H11A0.31850.26030.07150.140*
H11B0.16420.32260.05160.140*
H11C0.14450.22350.02930.140*
C120.2468 (3)0.11869 (16)0.28315 (16)0.0517 (6)
H12A0.35210.12910.25030.062*
H12B0.14850.17960.25810.062*
C130.3001 (4)0.10467 (19)0.37586 (18)0.0602 (6)
H13A0.34630.16260.37750.072*
H13B0.39770.04360.40170.072*
C140.1853 (5)0.0891 (3)0.5099 (2)0.0997 (11)
H14A0.21970.15030.50950.150*
H14B0.07790.08120.54040.150*
H14C0.28520.03130.53830.150*
C210.6777 (3)0.32313 (15)0.38043 (14)0.0465 (5)
C220.5984 (5)0.3759 (3)0.4491 (2)0.0928 (11)
H220.47910.38390.44110.111*
C230.6951 (7)0.4189 (3)0.5326 (2)0.1190 (14)
H230.63890.45460.57950.143*
C240.8694 (6)0.4084 (3)0.5450 (2)0.0970 (11)
H240.93300.43620.60010.116*
C250.9485 (5)0.3575 (3)0.4769 (2)0.0938 (10)
H251.06920.35140.48460.113*
C260.8533 (4)0.3138 (2)0.3950 (2)0.0783 (8)
H260.91020.27730.34890.094*
C310.6273 (3)0.18363 (15)0.13244 (14)0.0434 (5)
C320.7940 (4)0.1564 (2)0.12717 (18)0.0705 (7)
H320.86820.16990.17770.085*
C330.8533 (5)0.1092 (2)0.0478 (2)0.0849 (9)
H330.96800.09260.04520.102*
C340.7435 (5)0.0869 (2)0.0269 (2)0.0854 (10)
H340.78270.05410.08020.102*
C350.5772 (5)0.1128 (3)0.02322 (19)0.0885 (9)
H350.50300.09790.07410.106*
C360.5176 (4)0.1613 (2)0.05655 (17)0.0679 (7)
H360.40370.17880.05880.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.04240 (9)0.04311 (9)0.03293 (9)0.01125 (6)0.00010 (6)0.00979 (6)
S10.0453 (3)0.0431 (3)0.0648 (4)0.0074 (2)0.0022 (3)0.0219 (3)
S20.0474 (3)0.0555 (3)0.0646 (4)0.0082 (3)0.0016 (3)0.0251 (3)
S30.0418 (3)0.0453 (3)0.0620 (4)0.0144 (2)0.0033 (3)0.0225 (3)
S40.0401 (3)0.0506 (3)0.0527 (3)0.0140 (2)0.0016 (2)0.0195 (3)
O10.1032 (17)0.1125 (17)0.1005 (19)0.0200 (14)0.0375 (14)0.0683 (15)
O20.0898 (15)0.0732 (12)0.0901 (16)0.0321 (12)0.0235 (13)0.0031 (11)
O30.0802 (13)0.0559 (9)0.0617 (12)0.0067 (9)0.0153 (10)0.0105 (8)
O40.0601 (11)0.1001 (13)0.0594 (12)0.0032 (10)0.0044 (9)0.0357 (11)
N10.0556 (11)0.0430 (9)0.0524 (12)0.0066 (9)0.0052 (9)0.0202 (8)
N20.0421 (9)0.0402 (8)0.0448 (11)0.0111 (8)0.0011 (8)0.0136 (7)
C10.0486 (12)0.0456 (11)0.0344 (11)0.0073 (10)0.0027 (9)0.0136 (9)
C20.0646 (16)0.0489 (12)0.0689 (18)0.0157 (12)0.0036 (13)0.0227 (12)
C30.0669 (17)0.0748 (17)0.086 (2)0.0054 (15)0.0199 (16)0.0403 (16)
C40.133 (4)0.164 (4)0.107 (3)0.033 (3)0.053 (3)0.087 (3)
C50.0717 (17)0.0493 (13)0.077 (2)0.0013 (12)0.0020 (15)0.0326 (13)
C60.0644 (16)0.0480 (13)0.090 (2)0.0012 (13)0.0163 (16)0.0221 (13)
C70.108 (3)0.094 (2)0.100 (3)0.030 (2)0.032 (2)0.003 (2)
C80.0403 (10)0.0401 (10)0.0314 (10)0.0118 (9)0.0005 (8)0.0090 (8)
C90.0394 (11)0.0484 (11)0.0567 (15)0.0088 (10)0.0086 (10)0.0182 (10)
C100.0425 (12)0.0621 (14)0.0610 (16)0.0094 (11)0.0017 (11)0.0205 (12)
C110.112 (3)0.0767 (19)0.065 (2)0.0041 (19)0.0185 (19)0.0101 (15)
C120.0549 (13)0.0387 (11)0.0620 (16)0.0134 (10)0.0037 (12)0.0172 (10)
C130.0572 (15)0.0578 (13)0.0698 (18)0.0119 (12)0.0072 (13)0.0296 (13)
C140.091 (2)0.139 (3)0.065 (2)0.006 (2)0.0112 (18)0.051 (2)
C210.0552 (13)0.0422 (10)0.0364 (12)0.0048 (10)0.0065 (10)0.0113 (9)
C220.078 (2)0.129 (3)0.0483 (18)0.027 (2)0.0008 (16)0.0015 (18)
C230.134 (4)0.152 (4)0.0401 (19)0.031 (3)0.005 (2)0.002 (2)
C240.120 (3)0.095 (2)0.053 (2)0.011 (2)0.034 (2)0.0211 (17)
C250.085 (2)0.103 (2)0.083 (3)0.008 (2)0.038 (2)0.032 (2)
C260.0730 (18)0.093 (2)0.0608 (19)0.0302 (17)0.0145 (15)0.0118 (15)
C310.0480 (12)0.0468 (11)0.0353 (11)0.0125 (10)0.0057 (9)0.0135 (9)
C320.0602 (16)0.102 (2)0.0458 (16)0.0309 (16)0.0052 (13)0.0150 (14)
C330.0707 (19)0.113 (2)0.070 (2)0.0390 (19)0.0278 (18)0.0204 (18)
C340.099 (2)0.102 (2)0.0453 (18)0.026 (2)0.0291 (18)0.0118 (16)
C350.097 (2)0.124 (3)0.0359 (16)0.029 (2)0.0013 (16)0.0161 (16)
C360.0669 (16)0.0914 (19)0.0438 (15)0.0282 (15)0.0009 (13)0.0169 (13)
Geometric parameters (Å, º) top
Sn—C312.124 (2)C7—H7C0.9600
Sn—C212.131 (2)C9—C101.497 (3)
Sn—S12.5060 (6)C9—H9A0.9700
Sn—S32.5230 (6)C9—H9B0.9700
Sn—S42.9800 (6)C10—H10A0.9700
Sn—S22.9875 (6)C10—H10B0.9700
S1—C11.756 (2)C11—H11A0.9600
S2—C11.692 (2)C11—H11B0.9600
S3—C81.752 (2)C11—H11C0.9600
S4—C81.692 (2)C12—C131.508 (4)
O1—C31.396 (3)C12—H12A0.9700
O1—C41.428 (4)C12—H12B0.9700
O2—C61.403 (3)C13—H13A0.9700
O2—C71.416 (4)C13—H13B0.9700
O3—C111.403 (3)C14—H14A0.9600
O3—C101.407 (3)C14—H14B0.9600
O4—C131.410 (3)C14—H14C0.9600
O4—C141.419 (3)C21—C221.351 (4)
N1—C11.339 (3)C21—C261.364 (4)
N1—C21.474 (3)C22—C231.410 (5)
N1—C51.476 (3)C22—H220.9300
N2—C81.337 (2)C23—C241.355 (5)
N2—C121.472 (3)C23—H230.9300
N2—C91.483 (3)C24—C251.335 (5)
C2—C31.499 (4)C24—H240.9300
C2—H2A0.9700C25—C261.383 (4)
C2—H2B0.9700C25—H250.9300
C3—H3A0.9700C26—H260.9300
C3—H3B0.9700C31—C321.370 (3)
C4—H4A0.9600C31—C361.383 (3)
C4—H4B0.9600C32—C331.381 (4)
C4—H4C0.9600C32—H320.9300
C5—C61.509 (4)C33—C341.367 (5)
C5—H5A0.9700C33—H330.9300
C5—H5B0.9700C34—C351.359 (5)
C6—H6A0.9700C34—H340.9300
C6—H6B0.9700C35—C361.392 (4)
C7—H7A0.9600C35—H350.9300
C7—H7B0.9600C36—H360.9300
C31—Sn—C21130.12 (9)N2—C9—H9A108.8
C31—Sn—S1106.70 (6)C10—C9—H9A108.8
C21—Sn—S1109.72 (6)N2—C9—H9B108.8
C31—Sn—S3108.44 (6)C10—C9—H9B108.8
C21—Sn—S3108.85 (6)H9A—C9—H9B107.7
S1—Sn—S382.873 (18)O3—C10—C9109.5 (2)
C31—Sn—S483.63 (5)O3—C10—H10A109.8
C21—Sn—S483.60 (6)C9—C10—H10A109.8
S1—Sn—S4147.433 (18)O3—C10—H10B109.8
S3—Sn—S464.591 (16)C9—C10—H10B109.8
C31—Sn—S283.87 (5)H10A—C10—H10B108.2
C21—Sn—S281.92 (6)O3—C11—H11A109.5
S1—Sn—S264.922 (18)O3—C11—H11B109.5
S3—Sn—S2147.742 (18)H11A—C11—H11B109.5
S4—Sn—S2147.642 (17)O3—C11—H11C109.5
C1—S1—Sn94.83 (7)H11A—C11—H11C109.5
C1—S2—Sn80.40 (7)H11B—C11—H11C109.5
C8—S3—Sn95.15 (7)N2—C12—C13112.95 (19)
C8—S4—Sn81.36 (7)N2—C12—H12A109.0
C3—O1—C4113.0 (3)C13—C12—H12A109.0
C6—O2—C7113.3 (2)N2—C12—H12B109.0
C11—O3—C10113.3 (2)C13—C12—H12B109.0
C13—O4—C14112.2 (2)H12A—C12—H12B107.8
C1—N1—C2122.75 (19)O4—C13—C12109.9 (2)
C1—N1—C5120.5 (2)O4—C13—H13A109.7
C2—N1—C5116.75 (18)C12—C13—H13A109.7
C8—N2—C12121.08 (17)O4—C13—H13B109.7
C8—N2—C9123.23 (17)C12—C13—H13B109.7
C12—N2—C9115.69 (17)H13A—C13—H13B108.2
N1—C1—S2122.83 (17)O4—C14—H14A109.5
N1—C1—S1117.81 (17)O4—C14—H14B109.5
S2—C1—S1119.36 (12)H14A—C14—H14B109.5
N1—C2—C3113.2 (2)O4—C14—H14C109.5
N1—C2—H2A108.9H14A—C14—H14C109.5
C3—C2—H2A108.9H14B—C14—H14C109.5
N1—C2—H2B108.9C22—C21—C26117.7 (3)
C3—C2—H2B108.9C22—C21—Sn121.2 (2)
H2A—C2—H2B107.8C26—C21—Sn121.12 (19)
O1—C3—C2109.5 (2)C21—C22—C23120.5 (3)
O1—C3—H3A109.8C21—C22—H22119.7
C2—C3—H3A109.8C23—C22—H22119.7
O1—C3—H3B109.8C24—C23—C22120.3 (3)
C2—C3—H3B109.8C24—C23—H23119.8
H3A—C3—H3B108.2C22—C23—H23119.8
O1—C4—H4A109.5C25—C24—C23119.1 (3)
O1—C4—H4B109.5C25—C24—H24120.5
H4A—C4—H4B109.5C23—C24—H24120.5
O1—C4—H4C109.5C24—C25—C26120.8 (3)
H4A—C4—H4C109.5C24—C25—H25119.6
H4B—C4—H4C109.5C26—C25—H25119.6
N1—C5—C6112.0 (2)C21—C26—C25121.5 (3)
N1—C5—H5A109.2C21—C26—H26119.2
C6—C5—H5A109.2C25—C26—H26119.2
N1—C5—H5B109.2C32—C31—C36118.6 (2)
C6—C5—H5B109.2C32—C31—Sn121.56 (18)
H5A—C5—H5B107.9C36—C31—Sn119.81 (17)
O2—C6—C5109.2 (2)C31—C32—C33120.9 (3)
O2—C6—H6A109.8C31—C32—H32119.5
C5—C6—H6A109.8C33—C32—H32119.5
O2—C6—H6B109.8C34—C33—C32120.0 (3)
C5—C6—H6B109.8C34—C33—H33120.0
H6A—C6—H6B108.3C32—C33—H33120.0
O2—C7—H7A109.5C35—C34—C33120.1 (3)
O2—C7—H7B109.5C35—C34—H34120.0
H7A—C7—H7B109.5C33—C34—H34120.0
O2—C7—H7C109.5C34—C35—C36120.1 (3)
H7A—C7—H7C109.5C34—C35—H35119.9
H7B—C7—H7C109.5C36—C35—H35119.9
N2—C8—S4122.77 (15)C31—C36—C35120.2 (3)
N2—C8—S3118.40 (15)C31—C36—H36119.9
S4—C8—S3118.83 (11)C35—C36—H36119.9
N2—C9—C10113.64 (18)
C2—N1—C1—S2176.85 (18)C8—N2—C9—C1095.7 (2)
C5—N1—C1—S23.4 (3)C12—N2—C9—C1085.3 (2)
C2—N1—C1—S13.7 (3)C11—O3—C10—C9178.7 (2)
C5—N1—C1—S1176.03 (18)N2—C9—C10—O363.3 (2)
Sn—S2—C1—N1173.13 (19)C8—N2—C12—C1384.5 (3)
Sn—S2—C1—S16.27 (11)C9—N2—C12—C1394.4 (2)
Sn—S1—C1—N1172.02 (16)C14—O4—C13—C12176.3 (2)
Sn—S1—C1—S27.40 (13)N2—C12—C13—O462.5 (3)
C1—N1—C2—C390.2 (3)C26—C21—C22—C230.4 (5)
C5—N1—C2—C390.0 (3)Sn—C21—C22—C23179.4 (3)
C4—O1—C3—C2177.9 (3)C21—C22—C23—C240.4 (6)
N1—C2—C3—O166.0 (3)C22—C23—C24—C250.6 (7)
C1—N1—C5—C681.5 (3)C23—C24—C25—C261.6 (6)
C2—N1—C5—C698.3 (3)C22—C21—C26—C250.6 (5)
C7—O2—C6—C5177.4 (2)Sn—C21—C26—C25179.6 (2)
N1—C5—C6—O268.2 (3)C24—C25—C26—C211.7 (5)
C12—N2—C8—S40.3 (3)C36—C31—C32—C331.1 (4)
C9—N2—C8—S4178.62 (16)Sn—C31—C32—C33179.9 (2)
C12—N2—C8—S3179.16 (16)C31—C32—C33—C341.5 (5)
C9—N2—C8—S32.0 (3)C32—C33—C34—C351.1 (5)
Sn—S4—C8—N2177.09 (18)C33—C34—C35—C360.4 (5)
Sn—S4—C8—S32.32 (11)C32—C31—C36—C350.4 (4)
Sn—S3—C8—N2176.72 (15)Sn—C31—C36—C35179.3 (2)
Sn—S3—C8—S42.72 (13)C34—C35—C36—C310.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O2i0.972.523.404 (4)151
Symmetry code: (i) x, y1, z.
Geometric data (Å, °) for (I) and (II) top
Parameter(I)(II)
Sn—S12.6071 (6)2.5060 (6)
Sn—S22.6653 (6)2.9875 (6)
Sn—S32.5230 (6)
Sn—S42.9800 (6)
Sn—C112.1677 (18)
Sn—C212.131 (2)
Sn—C312.124 (2)
C1—S11.7311 (19)1.756 (2)
C1—S21.7067 (19)1.692 (2)
C8—S31.752 (2)
C8—S41.692 (2)
S1i—Sn—S2i67.742 (17)64.922 (18)
S3—Sn—S464.591 (16)
S1—Sn—S1i152.00 (2)
S2i—Sn—C11i159.03 (5)
S1—Sn—S382.873 (18)
S2—Sn—S4147.642 (17)
C—Sn—C100.07 (10)130.12 (9)
Symmetry code: (i) 1 - x, y, 3/2-z.
Percentage contribution of the different intermolecular contacts to the Hirshfeld surface in (I) and (II). top
Contact% contribution in (I)% contribution in (II)
H···H61.866.1
C···H/H···C15.611.4
O···H/H···O4.77.4
S···H/H···S15.613.5
C···S/S···C1.30.0
N···H/H···N1.00.4
C···C0.01.0
S···S0.00.1
C···O/O···C0.00.1
Short interatomic contacts in (II). top
Contactdistancesymmetry operation
O4···H6B2.69-1 - x, y, z
H7C···H14B2.371 + x, y, z
H10B···H342.361 - x, -y, -z
 

Footnotes

Additional correspondence author, e-mail: awang_normah@yahoo.com.

Acknowledgements

This work was supported by grant FRGS/2/2013/SKK10/UKM/02/1. We gratefully acknowledge the School of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia for providing the essential laboratory facilities. We would also like to thank the laboratory assistants of the Faculty Science and Technology, Universiti Kebangsaan Malaysia for technical support. Intensity data were collected in the University of Malaya Crystallographic Laboratory.

References

First citationAgilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2012). Eur. J. Med. Chem. 58, 493–503.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFerreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2014). Polyhedron, 79, 161–169.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHook, J. M., Linahan, B. M., Taylor, R. L., Tiekink, E. R. T., van Gorkom, L. & Webster, L. K. (1994). Main Group Met. Chem. 17, 293–311.  CrossRef CAS Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylo, C., Wolff, S. K., Chenai, C. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKadu, R., Roy, H. & Singh, V. K. (2015). Appl. Organomet. Chem. 29, 746–755.  Web of Science CrossRef CAS Google Scholar
First citationKevin, P., Lewis, D. J., Raftery, J., Malik, M. A. & O'Brien, P. (2015). J. Cryst. Growth, 415, 93–99.  CrossRef CAS Google Scholar
First citationKhan, N., Farina, Y., Lo, K. M., Rajab, N. F. & Awang, N. (2014). J. Mol. Struct. 1076, 403–410.  CSD CrossRef CAS Google Scholar
First citationKhan, N., Farina, Y., Lo, K. M., Rajab, N. F. & Awang, N. (2015). Polyhedron, 85, 754–760.  CSD CrossRef CAS Google Scholar
First citationKim, K., Ibers, J. A., Jung, O.-S. & Sohn, Y. S. (1987). Acta Cryst. C43, 2317–2319.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLewis, D. J., Kevin, P., Bakr, O., Muryn, C. A., Malik, M. A. & O'Brien, P. (2014). Inorg. Chem. Front. 1, 577–598.  CrossRef CAS Google Scholar
First citationLindley, P. F. & Carr, P. (1974). J. Cryst. Mol. Struct. 4, 173–185.  CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMuthalib, A. F. A., Baba, I., Khaledi, H., Ali, H. M. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 39–46.  Google Scholar
First citationNg, S. W., Wei, C., Kumar Das, V. G., Jameson, G. B. & Butcher, R. J. (1989). J. Organomet. Chem. 365, 75–82.  CSD CrossRef CAS Web of Science Google Scholar
First citationRamasamy, K., Kuznetsov, V. L., Gopal, K., Malik, M. A., Raftery, J., Edwards, P. P. & O'Brien, P. (2013). Chem. Mater. 25, 266–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationYu, Y., Yang, H., Wei, Z.-W. & Tang, L.-F. (2014). Heteroat. Chem. 25, 274–281.  Web of Science CSD CrossRef CAS Google Scholar
First citationZia-ur-Rehman, Muhammad, N., Ali, S., Butler, I. S. & Meetsma, A. (2011). Inorg. Chim. Acta, 376, 381–388.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds