research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of N-(3-fluoro­benzo­yl)benzene­sulfonamide and N-(3-fluoro­benzo­yl)-4-methyl­benzene­sulfonamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572 103, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru-6, India, cDepartment of Physics, University of Mysore, Manasagangotri, Mysuru-6, India, and dUniversity College of Science, Tumkur, India
*Correspondence e-mail: pasuchetan@yahoo.co.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 February 2016; accepted 25 February 2016; online 2 March 2016)

The crystal structures of two N-(aryl­sulfon­yl)aryl­amides, namely N-(3-fluoro­benzo­yl)benzene­sulfonamide, C13H10FNO3S, (I), and N-(3-fluoro­benzo­yl)-4-methyl­benzene­sulfonamide, C14H12FNO3S, (II), are described and compared with related structures. The dihedral angle between the benzene rings is 82.73 (10)° in (I) compared to 72.60 (12)° in (II). In the crystal of (I), the mol­ecules are linked by C—H⋯O and C—H⋯π inter­actions, resulting in a three-dimensional grid-like architecture, while C—H⋯O inter­actions lead to one-dimensional ribbons in (II). The crystals of both (I) and (II) feature strong but non-structure-directing N—H⋯O hydrogen bonds with R22(8) ring motifs. The structure of (I) also features ππ stacking inter­actions.

1. Chemical context

N-(Aryl­sulfon­yl)aryl­amides have received much attention as they constitute an important class of drugs for Alzheimers disease (Hasegawa et al., 2000[Hasegawa, T. & Yamamoto, H. (2000). Bull. Chem. Soc. Jpn, 73, 423-428.]), anti­bacterial inhibitors of tRNA synthetases (Banwell et al., 2000[Banwell, M. G., Crasto, C. F., Easton, C. J., Forrest, A. K., Karoli, T., March, D. R., Mensah, L., Nairn, M. R., O'Hanlon, P. J., Oldham, M. D. & Yue, W. (2000). Bioorg. Med. Chem. Lett. 10, 2263-2266.]), antagonists for angiotensin II (Chang et al., 1994[Chang, L. L., Ashton, W. T., Flanagan, K. L., Chen, T. B., O'Malley, S. S., Zingaro, G. J., Siegl, P. K. S., Kivlighn, S. D., Lotti, V. J., Chang, R. S. L. & & Greenlee, W. J. (1994). J. Med. Chem. 37, 4464-4478.]) and as leukotriene D4-receptors (Musser et al., 1990[Musser, J. H., Kreft, A. F., Bender, R. H. W., Kubrak, D. M., Grimes, D., Carlson, R. P., Hand, J. M. & Chang, J. (1990). J. Med. Chem. 33, 240-245.]). Further, N-(aryl­sulfon­yl)aryl­amides are known to be potent anti­tumour agents against a broad spectrum of human tumour xenografts (colon, lung, breast, ovary and prostate) in nude mice (Mader et al., 2005[Mader, M., Shih, C., Considine, E., Dios, A. D., Grossman, C., Hipskind, P., Lin, H., Lobb, K., Lopez, B., Lopez, J., Cabrejas, L., Richett, M., White, W., Cheung, Y., Huang, Z., Reilly, J. & Dinn, S. (2005). Bioorg. Med. Chem. Lett. 15, 617-620.]). As part of our ongoing work on the synthesis and crystal structures of this class of compound (Gowda et al., 2009a[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o2516.],b[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2750.]; Sreenivasa et al., 2014[Sreenivasa, S., Mohan, N. R., Manojkumar, K. E. & Suchetan, P. A. (2014). J. Appl. Chem. 3, 551-559.]; Suchetan et al., 2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1039.], 2012[Suchetan, P. A., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o1327.]), compounds (I)[link] and (II)[link] were synthesized and their crystal structures were determined.

[Scheme 1]

2. Structural commentary

The meta-fluoro substitution on the benzoyl ring of (I)[link] (Fig. 1[link]) is syn to the N—H bond in the central –C—SO2—N—C(=O)– segment. By contrast, in (II)[link] (Fig. 2[link]), the conformation of the N—H bond is anti with respect to the meta-fluoro substitution on the benzoyl ring. The dihedral angle between the benzene rings is 82.73 (10)° in (I)[link], while, in (II)[link] the value is slightly less [72.60 (12)°]. Further, in (I)[link], the dihedral angle between the benzoic acid ring and the central C8—C7(O3)—N1—S1 segment is 16.54 (10)°, while that between the sulfonamide ring and the C7(O3)—N1—S1—C1 segment is 81.87 (12)°. The corresponding values in (II)[link] are slightly less than those observed in (I)[link], being 12.12 (12) and 57.58 (13)°, respectively.

[Figure 1]
Figure 1
A view of the mol­ecular structure of (I)[link], with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of the mol­ecular structure of (II)[link], with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal structure of (I)[link] features strong N1—H1⋯O1 hydrogen bonds (Table 1[link]) that connect the mol­ecules into R22(8) dimers (Fig. 3[link]). These dimers are further inter­connected by C9—H9⋯O1 inter­actions, forming R22(14) ring motifs. C6—H6⋯O3 inter­actions connect these dimers into C7 chains, forming columns propagating along the b-axis direction (Fig. 3[link]). In addition, C4—H4⋯πar­yl (π system of the fluoro­benzoyl ring) inter­actions link the mol­ecules into chains along the c axis. These chains are inter­connected via C2—H2⋯πar­yl (π system of the sulfonyl­benzene ring) and C11—H11⋯πar­yl (π system of the sulfonyl­benzene ring) inter­actions, forming a three-dimensional grid-like structure (Fig. 4[link]). The crystal structure also features ππ (π system of the fluoro­benzoyl ring) stacking inter­actions. It is notable that the N—H⋯O hydrogen bonds present in the crystal structure of (I)[link] has no structure-directing properties (leading only to dimers), while one of the C—H⋯O and the three C—H..πar­yl inter­actions have structure-directing characteristics.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of the sulfonyl and benzoyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.81 (3) 2.08 (3) 2.883 (2) 171 (3)
C9—H9⋯O1i 0.93 2.42 3.244 (3) 148
C6—H6⋯O3ii 0.93 2.50 3.294 (3) 143
C2—H2⋯Cg1iii 0.93 2.82 3.474 (2) 129
C4—H4⋯Cg2iv 0.93 2.84 3.582 (2) 137
C11—H11⋯Cg1v 0.93 2.97 3.756 (3) 143
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x, y+1, z; (iii) [x, -y-1, z-{\script{1\over 2}}]; (iv) [x, -y, z+{\script{1\over 2}}]; (v) -x, -y, -z.
[Figure 3]
Figure 3
Crystal packing of (I)[link], displaying N—H⋯O hydrogen bonds and C—H⋯O inter­actions, which result in columns along the b axis.
[Figure 4]
Figure 4
Three-dimensional grid-like architecture formed by various C—H⋯πar­yl inter­actions in (I)[link].

Similar to that observed in the crystal structure of (I)[link], in (II)[link] strong N1—H1⋯O1 hydrogen bonds (Table 2[link]) result in the formation of R22(8) dimers (Fig. 5[link]). The mol­ecules constituting these dimers are inter­connected into R22(14) ring motifs via C13—H13⋯O1 inter­actions, as observed in (I)[link]. Adjacent dimers are inter­connected via C5—H5⋯O3 inter­actions into R22(16) rings, thus forming ribbons along the diagonal of the ac plane (Fig. 5[link]). The overall supra­molecular architecture displayed in (II)[link] is one-dimensional, in contrast to the three-dimensional architecture displayed in (I)[link].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (4) 2.06 (4) 2.937 (3) 177 (3)
C5—H5⋯O3ii 0.93 2.46 3.375 (3) 168
C13—H13⋯O1i 0.93 2.47 3.285 (3) 147
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+1, -y+1, -z+1.
[Figure 5]
Figure 5
One-dimensional ribbons formed in the crystal structure of (II)[link] via N—H⋯O dimeric pairs and various C—H⋯O dimeric pairs.

4. Database survey

The crystal structures of five related N-(aryl­sulfon­yl)aryl­amides, namely N-(benzo­yl)benzene­sulfonamide (III), N-(3-chloro­benzo­yl)benzene­sulfonamide (IV), N-(3-methyl­benzo­yl)benzene­sulfonamide (V), N-(benzo­yl)-4-methyl­benzene­sulfon­amide (VI) and N-(3-methyl­benzo­yl)-4-meth­ylbenzene­sulfonamide (VII) have previously been reported. A comparison of the dihedral angle between the two benzene rings in these closely related structures indicates that introducing a methyl substituent into the para position of the benzene­sulfonyl ring lowers the dihedral angle with compound (VII) being an exception. The dihedral angle values are 80.3 (1)° in (III) (Gowda et al., 2009a[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o2516.]), 87.5 (1)° in (IV) (Gowda et al., 2009b[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2750.]), 83.3 (2), 84.4 (2) and 87.6 (2)° in the three mol­ecules of (V) (Suchetan et al., 2012[Suchetan, P. A., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o1327.]), 79.4 (1)° in (VI) (Suchetan et al., 2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1039.]) and 89.6 (2)° in (VII) (Sreenivasa et al., 2014[Banwell, M. G., Crasto, C. F., Easton, C. J., Forrest, A. K., Karoli, T., March, D. R., Mensah, L., Nairn, M. R., O'Hanlon, P. J., Oldham, M. D. & Yue, W. (2000). Bioorg. Med. Chem. Lett. 10, 2263-2266.]). This effect is the same as that observed in the present two structures (I)[link] and (II)[link]. Furthermore, in (I)–(VII) the conformation of the N—H bond in the central segment is anti to the meta substituent on the benzoyl ring in the presence of a methyl substituent either on the benzoyl ring or the benzene­sulfonyl ring. Otherwise, the conformation is syn as observed in (I)[link] and (IV). A comparison of the crystal structures of (I)[link] and (II)[link] with those previously reported shows that fluoro substitution on the benzoyl ring appears to have a significant effect on the supra­molecular architecture, and also on the type and nature of the inter­molecular inter­actions displayed. For instance, in all the reported structures except (VII), the mol­ecules are linked into one-dimensional infinite C(4) chains via strong structure-directing N—H⋯O hydrogen bonds. The structures do not feature any other type of inter­actions. However, in (I)[link] and (II)[link], the N—H⋯O hydrogen bonds lead to dimers and, in addition, both of them feature other structure-directing inter­actions of the type C—H⋯O or C—H⋯πar­yl. Furthermore, introducing the methyl substit­uent into the benzene­sulfonyl ring of (I)[link] to form (III) reduces the three-dimensional grid-like architecture into a one-dimensional ribbon architecture. However, in (III)–(VII), the introduction of a methyl substituent into the benzene­sulfonyl ring results in no change to the supra­molecular architecture.

5. Synthesis and crystallization

Compounds (I)[link] and (II)[link] were prepared by refluxing a mixture of 3-fluoro­benzoic acid, the corresponding substituted benzene­sulfonamides and phospho­rus oxychloride for 3 h on a water bath. The resultant mixtures were cooled and poured into ice-cold water. The solids obtained were filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solutions. The compounds were later reprecipitated by acidifying the filtered solutions with dilute HCl. They were filtered, dried and recrystallized; m.p = 442–444 K for (I)[link] and 422–423 K for (II)[link]. Prism-like, colourless single crystals of (I)[link] and (II)[link] were obtained by slow evaporation of the respective solutions of the compounds in methanol (with a few drops of water).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms of the NH groups in (I)[link] and (II)[link] were located in a difference map and later refined freely. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, and with Uiso = 1.2 or 1.5Ueq(parent atom). To improve considerably the values of R1, wR2 and GOOF, reflections with very bad agreement (−20 0 0), (−20 0 10) and (−19 1 15) in (I)[link] and (0 6 0) in (II)[link] were omitted from the final refinements.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C13H10FNO3S C14H12FNO3S
Mr 279.28 293.31
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/c
Temperature (K) 173 173
a, b, c (Å) 21.4036 (8), 5.7673 (2), 19.5525 (7) 9.0376 (4), 12.2912 (5), 12.1377 (5)
β (°) 92.135 (1) 105.107 (2)
V3) 2411.90 (15) 1301.70 (9)
Z 8 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 2.56 2.40
Crystal size (mm) 0.28 × 0.24 × 0.19 0.28 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.512, 0.614 0.557, 0.649
No. of measured, independent and observed [I > 2σ(I)] reflections 8647, 1985, 1846 8422, 2115, 1796
Rint 0.037 0.056
(sin θ/λ)max−1) 0.587 0.583
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.133, 0.98 0.050, 0.152, 1.05
No. of reflections 1985 2115
No. of parameters 176 186
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.38 0.45, −0.47
Computer programs: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

(I) N-(3-Fluorobenzoyl)benzenesulfonamide top
Crystal data top
C13H10FNO3SPrism
Mr = 279.28Dx = 1.538 Mg m3
Monoclinic, C2/cMelting point: 442 K
Hall symbol: -C 2ycCu Kα radiation, λ = 1.54178 Å
a = 21.4036 (8) ÅCell parameters from 123 reflections
b = 5.7673 (2) Åθ = 4.1–64.8°
c = 19.5525 (7) ŵ = 2.56 mm1
β = 92.135 (1)°T = 173 K
V = 2411.90 (15) Å3Prism, colourless
Z = 80.28 × 0.24 × 0.19 mm
F(000) = 1152
Data collection top
Bruker APEXII
diffractometer
1846 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 64.8°, θmin = 4.1°
phi and φ scansh = 2424
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 65
Tmin = 0.512, Tmax = 0.614l = 2222
8647 measured reflections1 standard reflections every 1 reflections
1985 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.105P)2 + 2.9874P]
where P = (Fo2 + 2Fc2)/3
1985 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26504 (2)0.47902 (9)0.41244 (2)0.0162 (2)
F10.46178 (7)0.8164 (3)0.66939 (7)0.0325 (4)
O20.24567 (7)0.2440 (3)0.40478 (8)0.0220 (4)
O10.21912 (7)0.6490 (3)0.42975 (8)0.0230 (4)
O30.38206 (7)0.2258 (3)0.43259 (8)0.0233 (4)
N10.31971 (9)0.5057 (3)0.47405 (10)0.0174 (4)
C80.41781 (9)0.4102 (4)0.53566 (11)0.0175 (5)
C70.37286 (10)0.3690 (3)0.47665 (11)0.0176 (5)
C30.33096 (10)0.4990 (4)0.22344 (12)0.0205 (5)
H30.33050.40480.18480.025*
C90.41783 (10)0.6094 (4)0.57623 (11)0.0195 (5)
H90.38850.72640.56840.023*
C50.36070 (10)0.8565 (4)0.27931 (12)0.0215 (5)
H50.38080.99940.27820.026*
C20.30217 (10)0.4254 (4)0.28191 (11)0.0180 (5)
H20.28280.28110.28310.022*
C60.33094 (9)0.7874 (4)0.33818 (11)0.0188 (5)
H60.33000.88400.37620.023*
C100.46279 (10)0.6266 (4)0.62832 (11)0.0215 (5)
C10.30264 (9)0.5700 (4)0.33854 (10)0.0153 (5)
C40.36042 (10)0.7129 (4)0.22245 (12)0.0217 (5)
H40.38020.76050.18330.026*
C110.50814 (11)0.4618 (4)0.64123 (12)0.0247 (5)
H110.53830.48200.67620.030*
C130.46262 (10)0.2394 (4)0.54849 (12)0.0228 (5)
H130.46230.10610.52170.027*
C120.50767 (11)0.2653 (4)0.60072 (13)0.0268 (6)
H120.53760.15040.60850.032*
H10.3091 (14)0.591 (5)0.5042 (17)0.035 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0155 (4)0.0201 (4)0.0130 (3)0.00064 (18)0.0003 (2)0.00239 (18)
F10.0361 (8)0.0312 (8)0.0295 (8)0.0004 (6)0.0089 (6)0.0093 (6)
O20.0238 (8)0.0243 (9)0.0178 (8)0.0059 (7)0.0004 (6)0.0001 (6)
O10.0178 (8)0.0339 (9)0.0173 (8)0.0065 (7)0.0013 (6)0.0070 (6)
O30.0233 (8)0.0233 (8)0.0233 (9)0.0036 (6)0.0000 (6)0.0069 (7)
N10.0185 (10)0.0213 (10)0.0124 (9)0.0031 (7)0.0009 (8)0.0035 (7)
C80.0152 (10)0.0203 (11)0.0171 (11)0.0004 (9)0.0026 (8)0.0027 (9)
C70.0187 (10)0.0160 (11)0.0183 (11)0.0003 (8)0.0029 (8)0.0014 (8)
C30.0194 (11)0.0257 (12)0.0165 (11)0.0020 (8)0.0009 (9)0.0024 (8)
C90.0170 (10)0.0211 (11)0.0205 (11)0.0006 (8)0.0015 (8)0.0021 (9)
C50.0194 (11)0.0164 (11)0.0286 (12)0.0014 (8)0.0020 (9)0.0040 (9)
C20.0182 (11)0.0167 (10)0.0190 (11)0.0022 (9)0.0024 (8)0.0022 (9)
C60.0183 (10)0.0172 (11)0.0208 (11)0.0026 (8)0.0023 (8)0.0026 (9)
C100.0224 (11)0.0218 (12)0.0203 (11)0.0042 (9)0.0008 (9)0.0006 (9)
C10.0132 (10)0.0178 (10)0.0149 (10)0.0041 (8)0.0007 (8)0.0006 (9)
C40.0166 (10)0.0281 (12)0.0207 (12)0.0027 (9)0.0018 (8)0.0084 (9)
C110.0172 (11)0.0336 (13)0.0229 (12)0.0031 (9)0.0037 (9)0.0070 (10)
C130.0193 (11)0.0223 (11)0.0268 (12)0.0024 (9)0.0020 (9)0.0001 (9)
C120.0189 (11)0.0288 (13)0.0323 (13)0.0066 (9)0.0032 (9)0.0041 (10)
Geometric parameters (Å, º) top
S1—O21.4238 (16)C9—H90.9300
S1—O11.4375 (16)C5—C41.386 (3)
S1—N11.6549 (19)C5—C61.394 (3)
S1—C11.760 (2)C5—H50.9300
F1—C101.358 (3)C2—C11.386 (3)
O3—C71.215 (3)C2—H20.9300
N1—C71.383 (3)C6—C11.392 (3)
N1—H10.81 (3)C6—H60.9300
C8—C131.391 (3)C10—C111.375 (3)
C8—C91.396 (3)C4—H40.9300
C8—C71.494 (3)C11—C121.383 (4)
C3—C21.385 (3)C11—H110.9300
C3—C41.386 (3)C13—C121.386 (3)
C3—H30.9300C13—H130.9300
C9—C101.378 (3)C12—H120.9300
O2—S1—O1118.36 (9)C3—C2—C1119.0 (2)
O2—S1—N1111.12 (9)C3—C2—H2120.5
O1—S1—N1103.67 (9)C1—C2—H2120.5
O2—S1—C1109.75 (10)C1—C6—C5118.3 (2)
O1—S1—C1109.12 (10)C1—C6—H6120.9
N1—S1—C1103.73 (9)C5—C6—H6120.9
C7—N1—S1122.13 (16)F1—C10—C11118.4 (2)
C7—N1—H1125 (2)F1—C10—C9117.97 (19)
S1—N1—H1112 (2)C11—C10—C9123.7 (2)
C13—C8—C9119.6 (2)C2—C1—C6121.9 (2)
C13—C8—C7116.5 (2)C2—C1—S1119.10 (17)
C9—C8—C7123.80 (19)C6—C1—S1119.01 (16)
O3—C7—N1121.08 (19)C3—C4—C5120.6 (2)
O3—C7—C8122.62 (19)C3—C4—H4119.7
N1—C7—C8116.29 (18)C5—C4—H4119.7
C2—C3—C4120.1 (2)C10—C11—C12118.1 (2)
C2—C3—H3120.0C10—C11—H11120.9
C4—C3—H3120.0C12—C11—H11120.9
C10—C9—C8117.7 (2)C8—C13—C12120.8 (2)
C10—C9—H9121.2C8—C13—H13119.6
C8—C9—H9121.2C12—C13—H13119.6
C4—C5—C6120.2 (2)C11—C12—C13120.0 (2)
C4—C5—H5119.9C11—C12—H12120.0
C6—C5—H5119.9C13—C12—H12120.0
O2—S1—N1—C751.25 (19)C5—C6—C1—C21.5 (3)
O1—S1—N1—C7179.42 (17)C5—C6—C1—S1179.79 (15)
C1—S1—N1—C766.61 (19)O2—S1—C1—C27.79 (19)
S1—N1—C7—O31.5 (3)O1—S1—C1—C2123.41 (16)
S1—N1—C7—C8179.26 (14)N1—S1—C1—C2126.59 (16)
C13—C8—C7—O316.3 (3)O2—S1—C1—C6173.49 (15)
C9—C8—C7—O3162.1 (2)O1—S1—C1—C655.31 (18)
C13—C8—C7—N1164.44 (19)N1—S1—C1—C654.69 (18)
C9—C8—C7—N117.2 (3)C2—C3—C4—C50.9 (3)
C13—C8—C9—C100.5 (3)C6—C5—C4—C30.3 (3)
C7—C8—C9—C10178.80 (19)F1—C10—C11—C12177.9 (2)
C4—C3—C2—C10.9 (3)C9—C10—C11—C121.6 (4)
C4—C5—C6—C11.5 (3)C9—C8—C13—C120.6 (3)
C8—C9—C10—F1177.86 (19)C7—C8—C13—C12177.9 (2)
C8—C9—C10—C111.6 (3)C10—C11—C12—C130.5 (4)
C3—C2—C1—C60.3 (3)C8—C13—C12—C110.6 (4)
C3—C2—C1—S1179.00 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the sulfonyl and benzoyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.81 (3)2.08 (3)2.883 (2)171 (3)
C9—H9···O1i0.932.423.244 (3)148
C6—H6···O3ii0.932.503.294 (3)143
C2—H2···Cg1iii0.932.823.474 (2)129
C4—H4···Cg2iv0.932.843.582 (2)137
C11—H11···Cg1v0.932.973.756 (3)143
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z; (iii) x, y1, z1/2; (iv) x, y, z+1/2; (v) x, y, z.
(II) N-(3-Fluorobenzoyl)-4-methylbenzenesulfonamide top
Crystal data top
C14H12FNO3SPrism
Mr = 293.31Dx = 1.497 Mg m3
Monoclinic, P21/cMelting point: 423 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 9.0376 (4) ÅCell parameters from 142 reflections
b = 12.2912 (5) Åθ = 5.1–64.1°
c = 12.1377 (5) ŵ = 2.40 mm1
β = 105.107 (2)°T = 173 K
V = 1301.70 (9) Å3Prism, colourless
Z = 40.28 × 0.22 × 0.18 mm
F(000) = 608
Data collection top
Bruker APEXII
diffractometer
1796 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 64.1°, θmin = 5.1°
phi and φ scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1414
Tmin = 0.557, Tmax = 0.649l = 1013
8422 measured reflections1 standard reflections every 1 reflections
2115 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1104P)2]
where P = (Fo2 + 2Fc2)/3
2115 reflections(Δ/σ)max = 0.023
186 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.47 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.86791 (7)0.55562 (5)0.81354 (5)0.0171 (3)
F10.17463 (17)0.30702 (14)0.94022 (13)0.0303 (4)
O11.0242 (2)0.55041 (16)0.88113 (15)0.0231 (5)
O20.7956 (2)0.65901 (15)0.79047 (14)0.0240 (5)
O30.5443 (2)0.48889 (17)0.75791 (15)0.0260 (5)
N10.7768 (2)0.47863 (18)0.88728 (19)0.0183 (5)
C80.5545 (3)0.3863 (2)0.9263 (2)0.0169 (5)
C20.9568 (3)0.4058 (2)0.6775 (2)0.0205 (6)
H21.02920.38270.74260.025*
C90.3950 (3)0.3781 (2)0.8985 (2)0.0199 (6)
H90.33460.41510.83600.024*
C130.6429 (3)0.3294 (2)1.0197 (2)0.0192 (6)
H130.74920.33511.03870.023*
C120.5722 (3)0.2640 (2)1.0844 (2)0.0206 (6)
H120.63180.22511.14570.025*
C50.7362 (3)0.4729 (2)0.4840 (2)0.0214 (6)
H50.66190.49470.41930.026*
C30.9501 (3)0.3593 (2)0.5727 (2)0.0204 (6)
H31.02000.30530.56720.024*
C100.3296 (3)0.3141 (2)0.9655 (2)0.0207 (6)
C40.8399 (3)0.3922 (2)0.4747 (2)0.0210 (6)
C110.4148 (3)0.2562 (2)1.0587 (2)0.0212 (6)
H110.36710.21341.10260.025*
C60.7415 (3)0.5214 (2)0.5878 (2)0.0189 (6)
H60.67180.57540.59310.023*
C70.6213 (3)0.4561 (2)0.8499 (2)0.0191 (6)
C10.8532 (3)0.4879 (2)0.6840 (2)0.0169 (6)
C140.8314 (4)0.3399 (2)0.3606 (2)0.0299 (7)
H14A0.78020.27100.35630.045*
H14B0.93310.32910.35240.045*
H14C0.77540.38640.30060.045*
H10.833 (4)0.469 (3)0.957 (3)0.033 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0170 (4)0.0203 (4)0.0131 (4)0.0036 (2)0.0024 (3)0.0003 (2)
F10.0154 (8)0.0438 (11)0.0311 (9)0.0039 (7)0.0050 (6)0.0043 (7)
O10.0181 (10)0.0340 (12)0.0153 (9)0.0082 (8)0.0011 (7)0.0010 (7)
O20.0298 (10)0.0223 (10)0.0204 (10)0.0003 (8)0.0075 (8)0.0008 (7)
O30.0173 (10)0.0386 (12)0.0184 (10)0.0005 (8)0.0019 (8)0.0092 (8)
N10.0152 (11)0.0245 (12)0.0127 (11)0.0033 (9)0.0006 (9)0.0027 (9)
C80.0159 (12)0.0170 (13)0.0172 (12)0.0003 (10)0.0032 (9)0.0031 (10)
C20.0161 (12)0.0251 (15)0.0181 (13)0.0024 (11)0.0004 (10)0.0029 (10)
C90.0175 (12)0.0233 (14)0.0169 (13)0.0008 (11)0.0012 (10)0.0015 (10)
C130.0164 (12)0.0210 (14)0.0192 (13)0.0010 (10)0.0030 (10)0.0021 (10)
C120.0250 (13)0.0183 (14)0.0167 (12)0.0011 (11)0.0020 (10)0.0015 (10)
C50.0216 (13)0.0255 (14)0.0141 (13)0.0027 (11)0.0005 (10)0.0027 (10)
C30.0204 (13)0.0188 (13)0.0227 (13)0.0006 (11)0.0070 (10)0.0005 (10)
C100.0128 (12)0.0273 (15)0.0215 (13)0.0009 (10)0.0035 (10)0.0044 (10)
C40.0242 (14)0.0212 (14)0.0186 (13)0.0070 (11)0.0074 (10)0.0004 (10)
C110.0252 (13)0.0207 (14)0.0201 (13)0.0025 (11)0.0101 (11)0.0010 (10)
C60.0183 (13)0.0199 (13)0.0170 (13)0.0014 (11)0.0020 (10)0.0008 (10)
C70.0176 (13)0.0224 (15)0.0173 (13)0.0005 (11)0.0048 (11)0.0018 (10)
C10.0165 (13)0.0187 (13)0.0161 (13)0.0044 (10)0.0054 (10)0.0001 (10)
C140.0428 (17)0.0295 (16)0.0189 (13)0.0069 (13)0.0103 (12)0.0024 (11)
Geometric parameters (Å, º) top
S1—O21.423 (2)C13—H130.9300
S1—O11.4383 (19)C12—C111.378 (4)
S1—N11.661 (2)C12—H120.9300
S1—C11.753 (2)C5—C61.383 (4)
F1—C101.356 (3)C5—C41.389 (4)
O3—C71.220 (3)C5—H50.9300
N1—C71.387 (3)C3—C41.398 (4)
N1—H10.87 (4)C3—H30.9300
C8—C131.393 (4)C10—C111.388 (4)
C8—C91.396 (4)C4—C141.510 (4)
C8—C71.500 (4)C11—H110.9300
C2—C31.382 (4)C6—C11.392 (4)
C2—C11.393 (4)C6—H60.9300
C2—H20.9300C14—H14A0.9600
C9—C101.371 (4)C14—H14B0.9600
C9—H90.9300C14—H14C0.9600
C13—C121.391 (4)
O2—S1—O1118.99 (11)C2—C3—C4120.9 (2)
O2—S1—N1110.36 (11)C2—C3—H3119.5
O1—S1—N1102.63 (11)C4—C3—H3119.5
O2—S1—C1108.91 (11)F1—C10—C9118.8 (2)
O1—S1—C1108.91 (11)F1—C10—C11118.2 (2)
N1—S1—C1106.26 (11)C9—C10—C11123.0 (2)
C7—N1—S1122.65 (19)C5—C4—C3118.9 (2)
C7—N1—H1125 (2)C5—C4—C14120.3 (2)
S1—N1—H1111 (2)C3—C4—C14120.8 (2)
C13—C8—C9119.8 (2)C12—C11—C10118.0 (2)
C13—C8—C7123.5 (2)C12—C11—H11121.0
C9—C8—C7116.7 (2)C10—C11—H11121.0
C3—C2—C1118.9 (2)C5—C6—C1118.9 (2)
C3—C2—H2120.5C5—C6—H6120.6
C1—C2—H2120.5C1—C6—H6120.6
C10—C9—C8118.5 (2)O3—C7—N1121.4 (2)
C10—C9—H9120.8O3—C7—C8121.9 (2)
C8—C9—H9120.8N1—C7—C8116.6 (2)
C12—C13—C8119.9 (2)C6—C1—C2121.1 (2)
C12—C13—H13120.0C6—C1—S1118.8 (2)
C8—C13—H13120.0C2—C1—S1120.01 (19)
C11—C12—C13120.8 (2)C4—C14—H14A109.5
C11—C12—H12119.6C4—C14—H14B109.5
C13—C12—H12119.6H14A—C14—H14B109.5
C6—C5—C4121.2 (2)C4—C14—H14C109.5
C6—C5—H5119.4H14A—C14—H14C109.5
C4—C5—H5119.4H14B—C14—H14C109.5
O2—S1—N1—C755.4 (2)C4—C5—C6—C10.1 (4)
O1—S1—N1—C7176.8 (2)S1—N1—C7—O32.7 (4)
C1—S1—N1—C762.5 (2)S1—N1—C7—C8179.31 (17)
C13—C8—C9—C100.6 (4)C13—C8—C7—O3166.5 (3)
C7—C8—C9—C10179.3 (2)C9—C8—C7—O312.1 (4)
C9—C8—C13—C120.4 (4)C13—C8—C7—N111.5 (4)
C7—C8—C13—C12178.2 (2)C9—C8—C7—N1169.9 (2)
C8—C13—C12—C111.3 (4)C5—C6—C1—C21.1 (4)
C1—C2—C3—C41.2 (4)C5—C6—C1—S1175.79 (19)
C8—C9—C10—F1179.0 (2)C3—C2—C1—C61.7 (4)
C8—C9—C10—C110.9 (4)C3—C2—C1—S1175.14 (18)
C6—C5—C4—C30.6 (4)O2—S1—C1—C619.8 (2)
C6—C5—C4—C14179.7 (2)O1—S1—C1—C6150.97 (19)
C2—C3—C4—C50.0 (4)N1—S1—C1—C699.1 (2)
C2—C3—C4—C14179.0 (2)O2—S1—C1—C2157.1 (2)
C13—C12—C11—C101.0 (4)O1—S1—C1—C225.9 (2)
F1—C10—C11—C12179.7 (2)N1—S1—C1—C284.0 (2)
C9—C10—C11—C120.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (4)2.06 (4)2.937 (3)177 (3)
C5—H5···O3ii0.932.463.375 (3)168
C13—H13···O1i0.932.473.285 (3)147
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+1.
 

Footnotes

These authors contributed equally.

Acknowledgements

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction data. GMS thanks the Vision Group on Science and Technology (VGST), Karnataka, India, for financial support under its SPiCE project scheme.

References

First citationBanwell, M. G., Crasto, C. F., Easton, C. J., Forrest, A. K., Karoli, T., March, D. R., Mensah, L., Nairn, M. R., O'Hanlon, P. J., Oldham, M. D. & Yue, W. (2000). Bioorg. Med. Chem. Lett. 10, 2263–2266.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, L. L., Ashton, W. T., Flanagan, K. L., Chen, T. B., O'Malley, S. S., Zingaro, G. J., Siegl, P. K. S., Kivlighn, S. D., Lotti, V. J., Chang, R. S. L. & & Greenlee, W. J. (1994). J. Med. Chem. 37, 4464–4478.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2750.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHasegawa, T. & Yamamoto, H. (2000). Bull. Chem. Soc. Jpn, 73, 423–428.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMader, M., Shih, C., Considine, E., Dios, A. D., Grossman, C., Hipskind, P., Lin, H., Lobb, K., Lopez, B., Lopez, J., Cabrejas, L., Richett, M., White, W., Cheung, Y., Huang, Z., Reilly, J. & Dinn, S. (2005). Bioorg. Med. Chem. Lett. 15, 617–620.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMusser, J. H., Kreft, A. F., Bender, R. H. W., Kubrak, D. M., Grimes, D., Carlson, R. P., Hand, J. M. & Chang, J. (1990). J. Med. Chem. 33, 240–245.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenivasa, S., Mohan, N. R., Manojkumar, K. E. & Suchetan, P. A. (2014). J. Appl. Chem. 3, 551–559.  Google Scholar
First citationSuchetan, P. A., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o1327.  CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1039.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds