organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-(cyclo­pentyl­­idene­amino)-3-(prop-2-en-1-yl)thio­urea

aFaculty of Science & Engineering, School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 November 2015; accepted 5 November 2015; online 11 November 2015)

In the title compound, C9H15N3S, the cyclo­pentyl ring adopts an envelope conformation with one of the methyl­ene C atoms as the flap. The thio­semicarbazide fragment is almost planar (r.m.s. deviation = 0.038 Å) and a short intra­molecular N—H⋯N contact occurs. In the crystal, mol­ecules are linked into helical (41 symmetry) chains propagating in [001] by N—H⋯N and N—H⋯S hydrogen bonds. A very weak C—H⋯S inter­action is also observed.

1. Related literature

For the biological activities of thio­semicarbazide-containing compounds, see: Hu et al. (2010[Hu, K., Yang, Z., Pan, S., Xu, H. & Ren, J. (2010). Eur. J. Med. Chem. 45, 3453-3458.]); da Costa et al. (2015[Costa, P. M. da, da Costa, M. P., Carvalho, A. A., Cavalcanti, M. S., de Oliveira Cardoso, M. V., de Oliveira Filho, G. B., de Araújo Viana, D., Fechine-Jamacaru, F. V., Leite, A. C., de Moraes, M. O., Pessoa, C. & Ferreira, P. M. (2015). Chem. Biol. Interact. 239, 174-183.]). For the synthesis of the title compound, see: Mague et al. (2014[Mague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o515.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H15N3S

  • Mr = 197.30

  • Tetragonal, P 41

  • a = 9.0124 (2) Å

  • c = 12.8200 (2) Å

  • V = 1041.28 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.42 mm−1

  • T = 150 K

  • 0.21 × 0.16 × 0.10 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.67, Tmax = 0.79

  • 7869 measured reflections

  • 1990 independent reflections

  • 1901 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.109

  • S = 1.10

  • 1990 reflections

  • 119 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack x determined using 826 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.04 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯N1i 0.91 2.29 3.194 (4) 177
N3—H3C⋯N1 0.91 2.25 2.642 (4) 106
N3—H3C⋯S1ii 0.91 2.49 3.310 (3) 151
C3—H3A⋯S1iii 0.99 2.86 3.663 (4) 139
Symmetry codes: (i) [-y+1, x, z+{\script{1\over 4}}]; (ii) [y, -x+1, z-{\script{1\over 4}}]; (iii) [-y, x, z+{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The thiosemicarbazones comprise a class of molecules known for their diverse biological activities (Hu et al., 2010; Costa et al., 2015). In this context we report here the synthesis and crystal structure determination of the title compound.

In the title compound (Fig. 1), a Cremer-Pople analysis of the conformation of the 5-membered ring gave puckering parameters Q(2) = 0.380 (4) Å and φ(2) = 285.3 (6)°. The molecules pack in helical chains about the 41 axis assisted by an N2—H2C···N1i and an N3—H3C···S1ii (i: 1 - y, x, 1/4 + z; ii: y, 1 - x, -1/4 + z) hydrogen bond between each pair of adjacent molecules (Table 1 and Fig. 2).

Related literature top

For the biological activities of thiosemicarbazide-containing compounds, see: Hu et al. (2010); da Costa et al. (2015). For the synthesis of the title compound, see: Mague et al. (2014).

Experimental top

The title compound was prepared according to our recently reported method (Mague et al., 2014). Colourless blocks were grown from ethanol solution by slow evaporation. M. p. 374–375 K; 89% yield.

Refinement top

H atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Structure description top

The thiosemicarbazones comprise a class of molecules known for their diverse biological activities (Hu et al., 2010; Costa et al., 2015). In this context we report here the synthesis and crystal structure determination of the title compound.

In the title compound (Fig. 1), a Cremer-Pople analysis of the conformation of the 5-membered ring gave puckering parameters Q(2) = 0.380 (4) Å and φ(2) = 285.3 (6)°. The molecules pack in helical chains about the 41 axis assisted by an N2—H2C···N1i and an N3—H3C···S1ii (i: 1 - y, x, 1/4 + z; ii: y, 1 - x, -1/4 + z) hydrogen bond between each pair of adjacent molecules (Table 1 and Fig. 2).

For the biological activities of thiosemicarbazide-containing compounds, see: Hu et al. (2010); da Costa et al. (2015). For the synthesis of the title compound, see: Mague et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule, shown with 50% probability ellipsoids.
[Figure 2] Fig. 2. The packing in the title molecule, viewed down the b axis. N—H···N and N—H···S hydrogen bonds are shown, respectively, as blue and brown dotted lines.
1-(Cyclopentylideneamino)-3-(prop-2-en-1-yl)thiourea top
Crystal data top
C9H15N3SDx = 1.259 Mg m3
Mr = 197.30Cu Kα radiation, λ = 1.54178 Å
Tetragonal, P41Cell parameters from 7005 reflections
Hall symbol: P 4wθ = 3.5–72.4°
a = 9.0124 (2) ŵ = 2.42 mm1
c = 12.8200 (2) ÅT = 150 K
V = 1041.28 (5) Å3Block, colourless
Z = 40.21 × 0.16 × 0.10 mm
F(000) = 424
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
1990 independent reflections
Radiation source: INCOATEC IµS micro–focus source1901 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 4.9°
ω scansh = 1011
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1111
Tmin = 0.67, Tmax = 0.79l = 1515
7869 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.3211P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.70 e Å3
1990 reflectionsΔρmin = 0.18 e Å3
119 parametersAbsolute structure: Flack x determined using 826 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.04 (3)
Crystal data top
C9H15N3SZ = 4
Mr = 197.30Cu Kα radiation
Tetragonal, P41µ = 2.42 mm1
a = 9.0124 (2) ÅT = 150 K
c = 12.8200 (2) Å0.21 × 0.16 × 0.10 mm
V = 1041.28 (5) Å3
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
1990 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
1901 reflections with I > 2σ(I)
Tmin = 0.67, Tmax = 0.79Rint = 0.032
7869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.70 e Å3
S = 1.10Δρmin = 0.18 e Å3
1990 reflectionsAbsolute structure: Flack x determined using 826 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
119 parametersAbsolute structure parameter: 0.04 (3)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50830 (11)0.10489 (10)0.51268 (7)0.0404 (3)
N10.2886 (3)0.4807 (3)0.5217 (2)0.0312 (8)
N20.3701 (3)0.3575 (3)0.5510 (2)0.0325 (8)
N30.3362 (3)0.2660 (3)0.3854 (2)0.0357 (9)
C10.2584 (4)0.5764 (4)0.5926 (3)0.0293 (9)
C20.3050 (4)0.5761 (4)0.7060 (3)0.0339 (10)
C30.2402 (4)0.7223 (4)0.7498 (3)0.0362 (10)
C40.2242 (4)0.8220 (4)0.6547 (3)0.0389 (11)
C50.1737 (4)0.7160 (4)0.5686 (3)0.0359 (11)
C60.3975 (4)0.2491 (4)0.4790 (3)0.0331 (10)
C70.3533 (5)0.1587 (5)0.3012 (3)0.0430 (11)
C80.2503 (6)0.0262 (6)0.3117 (4)0.0617 (17)
C90.1462 (7)0.0066 (7)0.2532 (5)0.079 (2)
H2A0.414500.574600.712400.0410*
H2B0.263500.489100.743000.0410*
H2C0.410600.340200.614800.0390*
H3A0.142600.704800.783100.0430*
H3B0.308200.767000.801700.0430*
H3C0.274000.344300.375400.0430*
H4A0.320000.869100.636600.0470*
H4B0.149300.900500.667000.0470*
H5A0.065300.698800.571900.0430*
H5B0.199700.754900.498800.0430*
H7A0.457200.123100.300000.0520*
H7B0.333400.208600.233800.0520*
H80.267600.038100.369100.0740*
H9A0.124200.054100.194600.0950*
H9B0.088300.092500.266900.0950*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0529 (6)0.0352 (4)0.0332 (4)0.0076 (4)0.0021 (4)0.0046 (4)
N10.0366 (14)0.0334 (13)0.0235 (12)0.0002 (11)0.0003 (12)0.0003 (12)
N20.0433 (16)0.0325 (15)0.0217 (12)0.0033 (12)0.0040 (12)0.0021 (11)
N30.0413 (17)0.0387 (17)0.0272 (15)0.0005 (12)0.0016 (13)0.0047 (12)
C10.0316 (16)0.0328 (17)0.0236 (16)0.0033 (13)0.0013 (13)0.0030 (13)
C20.0415 (19)0.0357 (18)0.0245 (17)0.0010 (15)0.0038 (14)0.0002 (13)
C30.0379 (18)0.0401 (18)0.0307 (17)0.0040 (14)0.0039 (15)0.0051 (15)
C40.047 (2)0.0338 (18)0.036 (2)0.0042 (15)0.0050 (17)0.0026 (15)
C50.0389 (18)0.0392 (19)0.0297 (18)0.0042 (15)0.0013 (14)0.0033 (15)
C60.0372 (17)0.0361 (18)0.0260 (16)0.0053 (13)0.0023 (14)0.0018 (13)
C70.044 (2)0.055 (2)0.0299 (17)0.0055 (17)0.0020 (15)0.0131 (17)
C80.065 (3)0.061 (3)0.059 (3)0.002 (2)0.005 (2)0.018 (2)
C90.075 (3)0.090 (4)0.073 (4)0.040 (3)0.019 (3)0.028 (3)
Geometric parameters (Å, º) top
S1—C61.695 (4)C8—C91.237 (8)
N1—N21.383 (4)C2—H2A0.9900
N1—C11.282 (5)C2—H2B0.9900
N2—C61.367 (5)C3—H3A0.9900
N3—C61.330 (5)C3—H3B0.9900
N3—C71.457 (5)C4—H4A0.9900
C1—C21.513 (5)C4—H4B0.9900
C1—C51.503 (5)C5—H5A0.9900
C2—C31.547 (5)C5—H5B0.9900
N2—H2C0.9100C7—H7A0.9900
C3—C41.521 (5)C7—H7B0.9900
N3—H3C0.9100C8—H80.9500
C4—C51.529 (5)C9—H9A0.9500
C7—C81.519 (7)C9—H9B0.9500
N2—N1—C1117.4 (3)C2—C3—H3B111.00
N1—N2—C6119.1 (3)C4—C3—H3A111.00
C6—N3—C7123.3 (3)C4—C3—H3B111.00
N1—C1—C2128.4 (3)H3A—C3—H3B109.00
N1—C1—C5121.7 (3)C3—C4—H4A111.00
C2—C1—C5109.8 (3)C3—C4—H4B111.00
C1—C2—C3104.0 (3)C5—C4—H4A111.00
N1—N2—H2C127.00C5—C4—H4B111.00
C6—N2—H2C114.00H4A—C4—H4B109.00
C2—C3—C4104.4 (3)C1—C5—H5A111.00
C6—N3—H3C118.00C1—C5—H5B111.00
C7—N3—H3C118.00C4—C5—H5A111.00
C3—C4—C5103.8 (3)C4—C5—H5B111.00
C1—C5—C4102.9 (3)H5A—C5—H5B109.00
S1—C6—N2118.9 (3)N3—C7—H7A109.00
N2—C6—N3116.9 (3)N3—C7—H7B109.00
S1—C6—N3124.2 (3)C8—C7—H7A109.00
N3—C7—C8113.1 (3)C8—C7—H7B109.00
C7—C8—C9126.7 (5)H7A—C7—H7B108.00
C1—C2—H2A111.00C7—C8—H8117.00
C1—C2—H2B111.00C9—C8—H8117.00
C3—C2—H2A111.00C8—C9—H9A120.00
C3—C2—H2B111.00C8—C9—H9B120.00
H2A—C2—H2B109.00H9A—C9—H9B120.00
C2—C3—H3A111.00
C1—N1—N2—C6176.4 (3)N1—C1—C2—C3177.8 (4)
N2—N1—C1—C22.3 (5)C5—C1—C2—C31.3 (4)
N2—N1—C1—C5178.5 (3)N1—C1—C5—C4154.9 (3)
N1—N2—C6—S1175.4 (2)C2—C1—C5—C421.9 (4)
N1—N2—C6—N33.5 (5)C1—C2—C3—C424.2 (4)
C7—N3—C6—S12.2 (5)C2—C3—C4—C538.1 (3)
C7—N3—C6—N2179.0 (3)C3—C4—C5—C136.6 (3)
C6—N3—C7—C880.2 (5)N3—C7—C8—C9113.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···N1i0.912.293.194 (4)177
N3—H3C···N10.912.252.642 (4)106
N3—H3C···S1ii0.912.493.310 (3)151
C3—H3A···S1iii0.992.863.663 (4)139
Symmetry codes: (i) y+1, x, z+1/4; (ii) y, x+1, z1/4; (iii) y, x, z+1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···N1i0.912.293.194 (4)177
N3—H3C···N10.912.252.642 (4)106
N3—H3C···S1ii0.912.493.310 (3)151
C3—H3A···S1iii0.992.863.663 (4)139
Symmetry codes: (i) y+1, x, z+1/4; (ii) y, x+1, z1/4; (iii) y, x, z+1/4.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosta, P. M. da, da Costa, M. P., Carvalho, A. A., Cavalcanti, M. S., de Oliveira Cardoso, M. V., de Oliveira Filho, G. B., de Araújo Viana, D., Fechine-Jamacaru, F. V., Leite, A. C., de Moraes, M. O., Pessoa, C. & Ferreira, P. M. (2015). Chem. Biol. Interact. 239, 174–183.  Web of Science PubMed Google Scholar
First citationHu, K., Yang, Z., Pan, S., Xu, H. & Ren, J. (2010). Eur. J. Med. Chem. 45, 3453–3458.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o515.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds