organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o508-o509

Crystal structure of N-[(naphthalen-1-yl)carbamo­thio­yl]cyclo­hexa­necarboxamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Chemistry, National Institute of Technology, Trichy 620 015, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 June 2015; accepted 22 June 2015; online 27 June 2015)

The title compound, C18H20N2OS, displays whole-mol­ecule disorder over two adjacent sets of sites with an occupancy ratio of 0.630 (11):0.370 (11). In each disorder component, the cyclo­hexyl ring shows a chair conformation with the exocyclic C—C bond in an equatorial orientation. The dihedral angles between the cyclo­hexyl ring (all atoms) and the naphthyl ring system are 36.9 (6) for the major component and 20.7 (12)° for the minor component. Each component features an intra­molecular N—H⋯O hydrogen bond, which closes an S(5) ring. In the crystal, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops for both components. Aromatic ππ stacking inter­actions [shortest centroid–centroid separation = 3.593 (9) Å] and a C—H⋯π inter­action are also observed.

1. Related literature

For background to the varied properties of thio­urea derivatives, see: Sun et al. (2006[Sun, C., Huang, H., Feng, M., Shi, X., Zhang, X. & Zhou, P. (2006). Bioorg. Med. Chem. Lett. 16, 162-166.]); Shen et al. (2006[Shen, C. B., Wang, S. G., Yang, H. Y., Long, K. & Wang, F. H. (2006). Corros. Sci. 48, 1655-1665.]). For related structures, see: Hu et al. (2011[Hu, J.-H., Luo, Z.-Y., Ding, C.-F. & Song, X.-L. (2011). Acta Cryst. E67, o376.]); Gangadharan et al. (2015[Gangadharan, R., Haribabu, J., Karvembu, R. & Sethusankar, K. (2015). Acta Cryst. E71, 305-308.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H20N2OS

  • Mr = 312.42

  • Triclinic, [P \overline 1]

  • a = 7.0464 (5) Å

  • b = 11.0379 (5) Å

  • c = 12.4151 (8) Å

  • α = 110.873 (3)°

  • β = 100.660 (3)°

  • γ = 104.022 (3)°

  • V = 835.24 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.934, Tmax = 0.952

  • 14064 measured reflections

  • 2945 independent reflections

  • 1930 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.219

  • S = 1.05

  • 2945 reflections

  • 404 parameters

  • 1056 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C5/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.88 (4) 1.97 (4) 2.667 (15) 135 (4)
N2′—H2A⋯O1′ 0.93 (4) 2.03 (4) 2.62 (3) 120 (4)
N1—H1A⋯S1i 0.87 (3) 2.53 (3) 3.370 (19) 161 (4)
N1′—H1A⋯S1′i 0.90 (4) 2.59 (4) 3.44 (3) 159 (4)
C18—H18BCg1ii 0.90 2.66 3.527 (2) 148
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The design and synthesis of thiourea are of considerable interest because of their use in agriculture, medicine and analytical chemistry (J·H. Hu et al., 2011). Thiourea derivatives are driven by their potential as biological active compounds (Sun et al., 2006) and in the material application such as anti corrosion (Shen et al., 2006). As part of our own studies in this area, the crystal structure of the title compound has been determined and the results are presented herein.

For the major disorder component, the cyclohexane ring (C13—C18) adopts chair conformation [puckering amplitudes and smallest displacement parameters are q = 0.568 Å, θ = 177.7 (8)°, ϕ = 19 (29)° and ΔCs = 0.9 (14) Å]. Similarly, for the minor disorder component, the cyclohexane ring (C13'—C18') adopts a chair conformation. [puckering amplitudes and smallest displacement parameters are q = 0.56 (3) Å, θ = 180 (3)°, ϕ = 354 (31)° and ΔCs = 3.0 (4) Å]. The dihedral angles between cyclohexane and benzene rings (C5—C8/C10) and (C5—C10) of naphthalene moiety are 37.0 (7)and 36.5 (7)° (major component). In the case of minor component, the dihedral angles between cyclohexane and benzene rings (C5—C8/C10)and (C5—C10) of naphthalene are 37.0 (7)and 36.5 (7)°, respectively. The molecular conformation is consolidated by an intramolecular N—H···O hydrogen bond, forming S(5) ring motif.

The crystal packing features N—H···S hydrogen bonds with the symmetry code: (i) 2 - x,-y,1 - z, which links the molecules into centrosymmetric dimers with graph-set descriptor of R22(8). The crystal packing also features C—H···π (Table 1) and π-π interactions (Cg2···Cg2ii = 3.593 (9) Å; Cg2 is the centroid of a ring C5—C10; symmetry code: (ii) 3 - x,1 - y,2 - z. The packing view of the title compound is shown in Fig. 3.

Related literature top

For background to the varied properties of thiourea derivatives, see: Sun et al. (2006); Shen et al. (2006). For related structures, see: Hu et al. (2011); Gangadharan et al. (2015).

Experimental top

A solution of cyclohexane carbonyl chloride (1.4661 g, 10 mmol) in acetone (60 ml) was added drop wise to a suspension of potassium thiocyanate (0.9718 g, 10 mmol) in anhydrous acetone (60 ml). The reaction mixture was heated under reflux for 45 minutes and then cooled to room temperature. A solution of substituted naphthalen-1-amine (1.43 g, 10 mmol) in acetone (60 ml) was added and the resulting mixture was stirred for 2 h at room temperature. Hydrochloric acid (0.1 N, 500 ml) was added and the resulting white solid was filtered off, washed with water and dried in vaccum. The yield of the isolated product was 89%, giving colourless blocks.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the major component of the title compound, with displacement ellipsoids drawn at 40% probability level.
[Figure 2] Fig. 2. Stick plot of both major and minor components of the title compound, with the atoms label for non-H atoms.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
N-[(Naphthalen-1-yl)carbamothioyl]cyclohexanecarboxamide top
Crystal data top
C18H20N2OSZ = 2
Mr = 312.42F(000) = 332
Triclinic, P1Dx = 1.242 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0464 (5) ÅCell parameters from 1930 reflections
b = 11.0379 (5) Åθ = 2.1–25.0°
c = 12.4151 (8) ŵ = 0.20 mm1
α = 110.873 (3)°T = 293 K
β = 100.660 (3)°Block, white
γ = 104.022 (3)°0.35 × 0.30 × 0.25 mm
V = 835.24 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2945 independent reflections
Radiation source: fine-focus sealed tube1930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scanθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.934, Tmax = 0.952k = 1313
14064 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.219H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0972P)2 + 1.1049P]
where P = (Fo2 + 2Fc2)/3
2945 reflections(Δ/σ)max = 0.053
404 parametersΔρmax = 0.87 e Å3
1056 restraintsΔρmin = 0.25 e Å3
Crystal data top
C18H20N2OSγ = 104.022 (3)°
Mr = 312.42V = 835.24 (9) Å3
Triclinic, P1Z = 2
a = 7.0464 (5) ÅMo Kα radiation
b = 11.0379 (5) ŵ = 0.20 mm1
c = 12.4151 (8) ÅT = 293 K
α = 110.873 (3)°0.35 × 0.30 × 0.25 mm
β = 100.660 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2945 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1930 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.952Rint = 0.031
14064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0681056 restraints
wR(F2) = 0.219H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.87 e Å3
2945 reflectionsΔρmin = 0.25 e Å3
404 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.4139 (12)0.4829 (15)0.6995 (10)0.072 (3)0.630 (11)
C21.5803 (14)0.5008 (15)0.6610 (8)0.058 (2)0.630 (11)
H21.56900.45500.57980.069*0.630 (11)
C31.7732 (13)0.5902 (11)0.7454 (8)0.064 (2)0.630 (11)
H31.89080.60650.72140.076*0.630 (11)
C41.7793 (14)0.6525 (12)0.8658 (8)0.065 (2)0.630 (11)
H41.90160.71110.92570.078*0.630 (11)
C51.5918 (13)0.6230 (12)0.8936 (7)0.0446 (17)0.630 (11)
C61.5952 (14)0.6835 (11)1.0116 (8)0.062 (2)0.630 (11)
H61.71930.74181.07000.075*0.630 (11)
C71.4217 (16)0.6606 (16)1.0460 (8)0.082 (3)0.630 (11)
H71.42940.70321.12700.099*0.630 (11)
C81.2357 (16)0.5753 (16)0.9622 (9)0.076 (3)0.630 (11)
H81.11990.55740.98750.091*0.630 (11)
C91.2189 (15)0.5164 (15)0.8419 (8)0.062 (2)0.630 (11)
H91.09190.46570.78380.074*0.630 (11)
C101.4035 (19)0.536 (2)0.8090 (10)0.063 (3)0.630 (11)
C111.1480 (17)0.2490 (13)0.5594 (10)0.042 (2)0.630 (11)
C120.839 (2)0.2236 (13)0.4017 (11)0.042 (3)0.630 (11)
C130.643 (2)0.113 (2)0.3153 (11)0.052 (3)0.630 (11)
H130.67430.02870.27760.062*0.630 (11)
C140.4915 (15)0.0832 (11)0.3824 (10)0.067 (2)0.630 (11)
H14A0.46690.16740.42580.080*0.630 (11)
H14B0.55140.05380.44130.080*0.630 (11)
C150.2882 (18)0.0269 (11)0.2994 (11)0.084 (3)0.630 (11)
H15A0.19290.03670.34550.101*0.630 (11)
H15B0.30830.11460.26290.101*0.630 (11)
C160.2014 (19)0.0145 (14)0.2016 (11)0.088 (3)0.630 (11)
H16A0.07330.05680.14750.106*0.630 (11)
H16B0.17200.09860.23890.106*0.630 (11)
C170.3457 (16)0.0371 (10)0.1289 (11)0.074 (3)0.630 (11)
H17A0.28640.06640.06970.088*0.630 (11)
H17B0.36910.04790.08650.088*0.630 (11)
C180.5478 (15)0.1477 (9)0.2156 (9)0.059 (3)0.630 (11)
H18A0.64360.15990.17030.071*0.630 (11)
H18B0.52400.23420.25140.071*0.630 (11)
S11.2576 (18)0.1673 (11)0.6264 (10)0.0567 (16)0.630 (11)
N10.938 (2)0.1781 (12)0.4817 (12)0.044 (3)0.630 (11)
N21.2224 (9)0.3819 (7)0.5845 (5)0.0416 (16)0.630 (11)
O10.886 (2)0.3438 (12)0.4191 (12)0.055 (3)0.630 (11)
C1'1.4044 (16)0.4630 (19)0.6642 (11)0.032 (3)0.370 (11)
C2'1.574 (2)0.480 (3)0.6233 (13)0.063 (4)0.370 (11)
H2'1.55530.43300.54120.076*0.370 (11)
C3'1.7640 (19)0.5594 (19)0.6957 (14)0.060 (4)0.370 (11)
H3'1.87260.56490.66300.072*0.370 (11)
C4'1.802 (2)0.635 (2)0.8205 (14)0.070 (4)0.370 (11)
H4'1.93280.69310.87110.084*0.370 (11)
C5'1.632 (3)0.618 (3)0.8638 (14)0.067 (4)0.370 (11)
C6'1.656 (3)0.682 (3)0.9838 (16)0.097 (5)0.370 (11)
H6'1.78610.73711.03730.117*0.370 (11)
C7'1.489 (3)0.666 (3)1.0264 (14)0.077 (5)0.370 (11)
H7'1.51000.70781.10920.092*0.370 (11)
C8'1.298 (3)0.593 (3)0.9538 (14)0.070 (4)0.370 (11)
H8'1.18740.59780.98440.084*0.370 (11)
C9'1.261 (3)0.507 (3)0.8293 (12)0.076 (5)0.370 (11)
H9'1.13670.43810.78050.091*0.370 (11)
C10'1.434 (2)0.536 (3)0.7873 (12)0.037 (3)0.370 (11)
C11'1.100 (3)0.253 (2)0.5789 (19)0.049 (4)0.370 (11)
C12'0.809 (3)0.221 (2)0.424 (2)0.042 (4)0.370 (11)
C13'0.629 (3)0.110 (4)0.3220 (19)0.051 (4)0.370 (11)
H13'0.65310.02270.30690.061*0.370 (11)
C14'0.444 (3)0.103 (3)0.364 (2)0.096 (5)0.370 (11)
H14C0.42480.19230.38840.116*0.370 (11)
H14D0.46470.08280.43440.116*0.370 (11)
C15'0.256 (4)0.005 (3)0.2673 (18)0.102 (6)0.370 (11)
H15C0.27020.09440.24880.123*0.370 (11)
H15D0.13780.00390.29700.123*0.370 (11)
C16'0.219 (3)0.017 (2)0.1542 (17)0.081 (5)0.370 (11)
H16C0.10000.05640.09190.098*0.370 (11)
H16D0.19510.10420.16940.098*0.370 (11)
C17'0.408 (3)0.018 (2)0.116 (2)0.090 (6)0.370 (11)
H17C0.38860.03110.04200.108*0.370 (11)
H17D0.42300.07110.09810.108*0.370 (11)
C18'0.602 (3)0.126 (2)0.2064 (17)0.083 (5)0.370 (11)
H18C0.71760.11640.17620.099*0.370 (11)
H18D0.59570.21720.21970.099*0.370 (11)
S1'1.222 (3)0.1767 (19)0.6457 (17)0.065 (4)0.370 (11)
N2'1.1590 (19)0.3881 (14)0.6219 (11)0.083 (4)0.370 (11)
N1'0.972 (3)0.176 (2)0.461 (2)0.036 (4)0.370 (11)
O1'0.838 (4)0.341 (2)0.448 (2)0.057 (4)0.370 (11)
H1A0.918 (6)0.0899 (17)0.454 (4)0.069*
H2A1.129 (5)0.415 (4)0.560 (3)0.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.079 (5)0.052 (5)0.075 (7)0.020 (4)0.001 (5)0.030 (6)
C20.071 (4)0.050 (5)0.046 (5)0.024 (3)0.007 (4)0.017 (4)
C30.072 (4)0.066 (6)0.051 (6)0.026 (4)0.016 (4)0.021 (5)
C40.054 (4)0.058 (5)0.075 (5)0.014 (3)0.001 (4)0.034 (5)
C50.052 (4)0.031 (3)0.039 (4)0.011 (3)0.008 (3)0.013 (3)
C60.070 (5)0.057 (4)0.070 (4)0.028 (5)0.022 (4)0.033 (4)
C70.104 (7)0.077 (5)0.068 (5)0.042 (6)0.022 (5)0.027 (4)
C80.084 (6)0.081 (6)0.080 (5)0.037 (5)0.036 (4)0.043 (4)
C90.064 (5)0.056 (4)0.066 (4)0.035 (4)0.004 (3)0.024 (3)
C100.074 (5)0.051 (4)0.063 (5)0.017 (4)0.005 (4)0.032 (4)
C110.047 (5)0.037 (3)0.035 (4)0.011 (3)0.006 (3)0.012 (3)
C120.053 (5)0.037 (3)0.032 (4)0.008 (3)0.007 (3)0.017 (3)
C130.058 (4)0.036 (4)0.053 (4)0.009 (4)0.001 (4)0.022 (3)
C140.058 (5)0.069 (4)0.070 (5)0.021 (3)0.011 (4)0.031 (3)
C150.066 (5)0.082 (5)0.099 (6)0.007 (4)0.013 (5)0.049 (4)
C160.063 (5)0.092 (5)0.089 (7)0.005 (4)0.012 (5)0.046 (5)
C170.072 (6)0.056 (4)0.070 (5)0.018 (4)0.013 (5)0.020 (4)
C180.066 (5)0.050 (4)0.055 (4)0.016 (3)0.009 (3)0.031 (3)
S10.069 (3)0.035 (2)0.054 (3)0.0193 (14)0.0060 (17)0.017 (2)
N10.056 (5)0.031 (3)0.036 (5)0.009 (3)0.001 (4)0.013 (3)
N20.047 (3)0.033 (3)0.038 (3)0.013 (2)0.001 (2)0.014 (2)
O10.060 (6)0.036 (3)0.059 (6)0.002 (3)0.004 (3)0.028 (3)
C1'0.049 (5)0.025 (5)0.015 (4)0.012 (4)0.004 (3)0.007 (4)
C2'0.085 (6)0.051 (7)0.041 (7)0.021 (5)0.001 (5)0.014 (6)
C3'0.053 (6)0.057 (7)0.063 (8)0.018 (5)0.010 (6)0.020 (7)
C4'0.080 (7)0.060 (7)0.057 (9)0.026 (6)0.004 (7)0.018 (8)
C5'0.076 (7)0.051 (5)0.060 (7)0.019 (6)0.001 (6)0.020 (6)
C6'0.103 (9)0.075 (7)0.090 (8)0.025 (8)0.001 (7)0.027 (7)
C7'0.084 (10)0.075 (7)0.080 (7)0.032 (9)0.027 (7)0.038 (6)
C8'0.079 (8)0.074 (7)0.063 (6)0.028 (7)0.030 (6)0.030 (5)
C9'0.058 (7)0.055 (6)0.112 (7)0.018 (7)0.004 (6)0.044 (6)
C10'0.049 (5)0.022 (4)0.025 (5)0.007 (4)0.011 (4)0.006 (5)
C11'0.056 (7)0.032 (5)0.050 (7)0.023 (5)0.002 (6)0.011 (5)
C12'0.053 (6)0.033 (5)0.040 (7)0.008 (5)0.007 (5)0.022 (5)
C13'0.053 (6)0.041 (6)0.052 (6)0.010 (6)0.003 (6)0.024 (5)
C14'0.073 (8)0.101 (8)0.084 (7)0.009 (7)0.012 (6)0.024 (7)
C15'0.079 (8)0.104 (8)0.100 (9)0.005 (7)0.013 (7)0.047 (7)
C16'0.069 (7)0.072 (6)0.082 (9)0.011 (6)0.005 (8)0.031 (7)
C17'0.074 (8)0.082 (8)0.074 (7)0.019 (7)0.011 (7)0.008 (6)
C18'0.064 (8)0.083 (8)0.066 (7)0.014 (6)0.001 (6)0.010 (6)
S1'0.074 (7)0.033 (2)0.060 (6)0.020 (3)0.016 (4)0.006 (3)
N2'0.097 (7)0.040 (5)0.065 (7)0.020 (6)0.041 (5)0.006 (5)
N1'0.045 (6)0.028 (4)0.031 (6)0.011 (4)0.009 (4)0.009 (4)
O1'0.061 (10)0.041 (5)0.058 (9)0.007 (6)0.003 (6)0.025 (5)
Geometric parameters (Å, º) top
C1—C101.298 (10)C1'—C2'1.378 (11)
C1—C21.344 (9)C1'—C10'1.396 (12)
C1—N21.589 (8)C1'—N2'1.616 (10)
C2—C31.416 (9)C2'—C3'1.341 (13)
C2—H20.9300C2'—H2'0.9300
C3—C41.392 (8)C3'—C4'1.408 (11)
C3—H30.9300C3'—H3'0.9300
C4—C51.418 (9)C4'—C5'1.399 (14)
C4—H40.9300C4'—H4'0.9300
C5—C61.370 (9)C5'—C6'1.359 (14)
C5—C101.392 (11)C5'—C10'1.399 (15)
C6—C71.364 (9)C6'—C7'1.378 (12)
C6—H60.9300C6'—H6'0.9300
C7—C81.373 (10)C7'—C8'1.336 (14)
C7—H70.9300C7'—H7'0.9300
C8—C91.369 (9)C8'—C9'1.432 (13)
C8—H80.9300C8'—H8'0.9300
C9—C101.424 (10)C9'—C10'1.422 (14)
C9—H90.9300C9'—H9'0.9300
C11—N21.329 (14)C11'—N2'1.31 (2)
C11—N11.451 (19)C11'—N1'1.40 (3)
C11—S11.653 (6)C11'—S1'1.652 (8)
C12—O11.214 (6)C12'—O1'1.214 (8)
C12—N11.411 (9)C12'—N1'1.413 (11)
C12—C131.502 (7)C12'—C13'1.500 (9)
C13—C181.511 (10)C13'—C14'1.490 (14)
C13—C141.512 (8)C13'—C18'1.491 (13)
C13—H130.9800C13'—H13'0.9800
C14—C151.520 (8)C14'—C15'1.502 (13)
C14—H14A0.9700C14'—H14C0.9700
C14—H14B0.9700C14'—H14D0.9700
C15—C161.521 (8)C15'—C16'1.495 (13)
C15—H15A0.9700C15'—H15C0.9700
C15—H15B0.9700C15'—H15D0.9700
C16—C171.512 (9)C16'—C17'1.492 (14)
C16—H16A0.9700C16'—H16C0.9700
C16—H16B0.9700C16'—H16D0.9700
C17—C181.526 (8)C17'—C18'1.498 (13)
C17—H17A0.9700C17'—H17C0.9700
C17—H17B0.9700C17'—H17D0.9700
C18—H18A0.9700C18'—H18C0.9700
C18—H18B0.9700C18'—H18D0.9700
N1—H1A0.874 (19)N2'—H2A0.927 (18)
N2—H2A0.883 (18)N1'—H1A0.906 (19)
C10—C1—C2128.3 (8)C2'—C1'—C10'117.6 (9)
C10—C1—N2124.4 (8)C2'—C1'—N2'143.7 (10)
C2—C1—N2107.4 (7)C10'—C1'—N2'98.7 (8)
C1—C2—C3119.2 (6)C3'—C2'—C1'123.4 (8)
C1—C2—H2120.4C3'—C2'—H2'118.3
C3—C2—H2120.4C1'—C2'—H2'118.3
C4—C3—C2117.2 (6)C2'—C3'—C4'121.2 (8)
C4—C3—H3121.4C2'—C3'—H3'119.4
C2—C3—H3121.4C4'—C3'—H3'119.4
C3—C4—C5117.5 (6)C5'—C4'—C3'116.1 (10)
C3—C4—H4121.3C5'—C4'—H4'122.0
C5—C4—H4121.3C3'—C4'—H4'121.9
C6—C5—C10117.4 (6)C6'—C5'—C10'117.6 (11)
C6—C5—C4118.2 (6)C6'—C5'—C4'120.2 (12)
C10—C5—C4124.4 (6)C10'—C5'—C4'122.3 (10)
C7—C6—C5121.9 (7)C5'—C6'—C7'120.2 (12)
C7—C6—H6119.0C5'—C6'—H6'119.9
C5—C6—H6119.0C7'—C6'—H6'119.9
C6—C7—C8120.6 (6)C8'—C7'—C6'122.9 (9)
C6—C7—H7119.7C8'—C7'—H7'118.6
C8—C7—H7119.7C6'—C7'—H7'118.5
C9—C8—C7120.7 (6)C7'—C8'—C9'120.3 (9)
C9—C8—H8119.6C7'—C8'—H8'119.8
C7—C8—H8119.6C9'—C8'—H8'119.9
C8—C9—C10117.4 (7)C10'—C9'—C8'113.6 (10)
C8—C9—H9121.3C10'—C9'—H9'123.2
C10—C9—H9121.3C8'—C9'—H9'123.2
C1—C10—C5113.4 (8)C5'—C10'—C1'119.3 (10)
C1—C10—C9124.9 (9)C5'—C10'—C9'123.6 (10)
C5—C10—C9121.6 (7)C1'—C10'—C9'116.6 (11)
N2—C11—N1115.4 (9)N2'—C11'—N1'118.4 (15)
N2—C11—S1125.6 (9)N2'—C11'—S1'120.8 (16)
N1—C11—S1118.1 (10)N1'—C11'—S1'118.6 (18)
O1—C12—N1122.6 (12)O1'—C12'—N1'121 (2)
O1—C12—C13125.0 (14)O1'—C12'—C13'121 (2)
N1—C12—C13110.6 (11)N1'—C12'—C13'115 (2)
C12—C13—C18112.6 (11)C14'—C13'—C18'113 (2)
C12—C13—C14110.4 (10)C14'—C13'—C12'108 (2)
C18—C13—C14110.4 (11)C18'—C13'—C12'114 (2)
C12—C13—H13107.7C14'—C13'—H13'107.2
C18—C13—H13107.8C18'—C13'—H13'107.2
C14—C13—H13107.7C12'—C13'—H13'107.2
C13—C14—C15112.9 (10)C13'—C14'—C15'111 (2)
C13—C14—H14A109.0C13'—C14'—H14C109.3
C15—C14—H14A109.0C15'—C14'—H14C109.3
C13—C14—H14B109.0C13'—C14'—H14D109.4
C15—C14—H14B109.0C15'—C14'—H14D109.3
H14A—C14—H14B107.8H14C—C14'—H14D108.0
C14—C15—C16109.0 (8)C16'—C15'—C14'112.4 (17)
C14—C15—H15A109.9C16'—C15'—H15C109.1
C16—C15—H15A109.9C14'—C15'—H15C109.1
C14—C15—H15B109.9C16'—C15'—H15D109.1
C16—C15—H15B109.9C14'—C15'—H15D109.1
H15A—C15—H15B108.3H15C—C15'—H15D107.9
C17—C16—C15112.9 (11)C17'—C16'—C15'106 (2)
C17—C16—H16A109.0C17'—C16'—H16C110.6
C15—C16—H16A109.0C15'—C16'—H16C110.6
C17—C16—H16B109.0C17'—C16'—H16D110.5
C15—C16—H16B109.0C15'—C16'—H16D110.6
H16A—C16—H16B107.8H16C—C16'—H16D108.7
C16—C17—C18108.3 (9)C16'—C17'—C18'115.5 (19)
C16—C17—H17A110.0C16'—C17'—H17C108.4
C18—C17—H17A110.0C18'—C17'—H17C108.4
C16—C17—H17B110.0C16'—C17'—H17D108.4
C18—C17—H17B110.0C18'—C17'—H17D108.4
H17A—C17—H17B108.4H17C—C17'—H17D107.5
C13—C18—C17112.9 (9)C13'—C18'—C17'109 (2)
C13—C18—H18A109.0C13'—C18'—H18C109.9
C17—C18—H18A109.0C17'—C18'—H18C109.9
C13—C18—H18B109.0C13'—C18'—H18D109.9
C17—C18—H18B109.0C17'—C18'—H18D109.9
H18A—C18—H18B107.8H18C—C18'—H18D108.3
C12—N1—C11124.0 (12)C11'—N2'—C1'114.4 (14)
C12—N1—H1A117 (3)C11'—N2'—H2A110 (3)
C11—N1—H1A107 (3)C1'—N2'—H2A96 (3)
C11—N2—C1120.8 (9)C11'—N1'—C12'117 (2)
C11—N2—H2A113 (3)C11'—N1'—H1A106 (3)
C1—N2—H2A119 (3)C12'—N1'—H1A108 (3)
C10—C1—C2—C32 (3)C10'—C1'—C2'—C3'1 (4)
N2—C1—C2—C3178.3 (12)N2'—C1'—C2'—C3'179 (3)
C1—C2—C3—C41.6 (19)C1'—C2'—C3'—C4'1 (4)
C2—C3—C4—C50.9 (17)C2'—C3'—C4'—C5'2 (3)
C3—C4—C5—C6180.0 (11)C3'—C4'—C5'—C6'177 (3)
C3—C4—C5—C100 (2)C3'—C4'—C5'—C10'3 (4)
C10—C5—C6—C70 (2)C10'—C5'—C6'—C7'0 (4)
C4—C5—C6—C7180.0 (14)C4'—C5'—C6'—C7'180 (3)
C5—C6—C7—C80 (2)C5'—C6'—C7'—C8'3 (5)
C6—C7—C8—C93 (3)C6'—C7'—C8'—C9'11 (5)
C7—C8—C9—C106 (3)C7'—C8'—C9'—C10'16 (4)
C2—C1—C10—C51 (3)C6'—C5'—C10'—C1'177 (3)
N2—C1—C10—C5178.9 (14)C4'—C5'—C10'—C1'3 (4)
C2—C1—C10—C9177.1 (18)C6'—C5'—C10'—C9'5 (4)
N2—C1—C10—C93 (3)C4'—C5'—C10'—C9'174 (3)
C6—C5—C10—C1180.0 (16)C2'—C1'—C10'—C5'2 (4)
C4—C5—C10—C10 (3)N2'—C1'—C10'—C5'180 (2)
C6—C5—C10—C94 (2)C2'—C1'—C10'—C9'174 (3)
C4—C5—C10—C9176.5 (16)N2'—C1'—C10'—C9'7 (3)
C8—C9—C10—C1178 (2)C8'—C9'—C10'—C5'13 (4)
C8—C9—C10—C57 (3)C8'—C9'—C10'—C1'175 (3)
O1—C12—C13—C1824 (2)O1'—C12'—C13'—C14'78 (3)
N1—C12—C13—C18170.9 (14)N1'—C12'—C13'—C14'123 (3)
O1—C12—C13—C14100.1 (15)O1'—C12'—C13'—C18'48 (4)
N1—C12—C13—C1465.1 (18)N1'—C12'—C13'—C18'111 (3)
C12—C13—C14—C15179.2 (11)C18'—C13'—C14'—C15'53 (3)
C18—C13—C14—C1554.0 (16)C12'—C13'—C14'—C15'179.9 (19)
C13—C14—C15—C1654.8 (15)C13'—C14'—C15'—C16'57 (3)
C14—C15—C16—C1757.3 (14)C14'—C15'—C16'—C17'57 (3)
C15—C16—C17—C1857.7 (13)C15'—C16'—C17'—C18'59 (3)
C12—C13—C18—C17178.7 (11)C14'—C13'—C18'—C17'51 (3)
C14—C13—C18—C1754.8 (16)C12'—C13'—C18'—C17'175 (2)
C16—C17—C18—C1356.1 (14)C16'—C17'—C18'—C13'56 (3)
O1—C12—N1—C1127 (2)N1'—C11'—N2'—C1'120 (2)
C13—C12—N1—C11167.2 (13)S1'—C11'—N2'—C1'43 (2)
N2—C11—N1—C1223 (2)C2'—C1'—N2'—C11'66 (4)
S1—C11—N1—C12167.5 (12)C10'—C1'—N2'—C11'116.0 (19)
N1—C11—N2—C1159.0 (11)N2'—C11'—N1'—C12'43 (3)
S1—C11—N2—C19.9 (13)S1'—C11'—N1'—C12'153.6 (19)
C10—C1—N2—C1180 (2)O1'—C12'—N1'—C11'46 (4)
C2—C1—N2—C1199.7 (12)C13'—C12'—N1'—C11'156 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C5/C10 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.88 (4)1.97 (4)2.667 (15)135 (4)
N2—H2A···O10.93 (4)2.03 (4)2.62 (3)120 (4)
N1—H1A···S1i0.87 (3)2.53 (3)3.370 (19)161 (4)
N1—H1A···S1i0.90 (4)2.59 (4)3.44 (3)159 (4)
C18—H18B···Cg1ii0.902.663.527 (2)148
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C5/C10 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.88 (4)1.97 (4)2.667 (15)135 (4)
N2'—H2A···O1'0.93 (4)2.03 (4)2.62 (3)120 (4)
N1—H1A···S1i0.87 (3)2.53 (3)3.370 (19)161 (4)
N1'—H1A···S1'i0.90 (4)2.59 (4)3.44 (3)159 (4)
C18—H18B···Cg1ii0.902.663.527 (2)148
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection. JH thanks UGC for the fellowship.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGangadharan, R., Haribabu, J., Karvembu, R. & Sethusankar, K. (2015). Acta Cryst. E71, 305–308.  CSD CrossRef IUCr Journals Google Scholar
First citationHu, J.-H., Luo, Z.-Y., Ding, C.-F. & Song, X.-L. (2011). Acta Cryst. E67, o376.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, C. B., Wang, S. G., Yang, H. Y., Long, K. & Wang, F. H. (2006). Corros. Sci. 48, 1655–1665.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C., Huang, H., Feng, M., Shi, X., Zhang, X. & Zhou, P. (2006). Bioorg. Med. Chem. Lett. 16, 162–166.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o508-o509
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds