organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-iodo-3-{[4-(tert-butyl­sulfan­yl)phen­yl]ethyn­yl}azulene

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 June 2015; accepted 30 June 2015; online 4 July 2015)

The title compound, C20H19IS, features a 1,3-disubstituted azulene involving an ethynylene elongated 4-(tert-butyl­sulfanyl)­phenyl sidearm and an iodine atom as the substituents. The azulene ring system is almost planar (r.m.s. deviation = 0.012 Å) and subtends a dihedral angle of 35.7 (1)° with the benzene ring. As a result of the inherent dipole character of the azulene core, a supra­molecular ππ dimer [separation between the centroids of the five- and seven-membered rings = 3.7632 (10) Å] with anti­parallel orientated mol­ecules can be observed in the crystal. The packing is consolidated by an unusual I⋯π(acetyl­ene) contact [I⋯Cg = 3.34 Å, C—I⋯Cg = 173.3°], and a very weak C—H⋯π inter­action is also found in the structure, with the azulene five-membered ring as the acceptor.

1. Related literature

For background to this work, see: Strachota et al. (2008[Strachota, A., Cimrová, V. & Thorn-Csányi, E. (2008). Macromol. Symp. 268, 66-71.]); Xia et al. (2014[Xia, J., Capozzi, B., Wei, S., Strange, M., Batra, A., Moreno, J. R., Amir, R. J., Amir, E., Solomon, G. C., Venkataraman, L. & Campos, L. M. (2014). Nano Lett. 14, 2941-2945.]). For related structures, see: Förster et al. (2012[Förster, S., Hahn, T., Loose, C., Röder, C., Liebing, S., Seichter, W., Eissmann, F., Kortus, J. & Weber, E. (2012). J. Phys. Org. Chem. 25, 856-863.], 2014[Förster, S., Seichter, W., Kuhnert, R. & Weber, E. (2014). J. Mol. Struct. 1075, 63-70.]). For the synthesis of the starting compounds 1,3-di­iodo­azulene and 1-(tert-butyl­sulfan­yl)-4-ethynyl­benzene, see: Wakabayashi et al. (1998[Wakabayashi, H., Kurihara, T., Shindo, K., Tsukada, M., Yang, P., Yasunami, M. & Nozoe, T. (1998). J. Chin. Chem. Soc. 45, 391-400.]); Mayor et al. (2003[Mayor, M., Weber, H. B., Reichert, J., Elbing, M., von Hänisch, C., Beckmann, D. & Fischer, M. (2003). Angew. Chem. Int. Ed. 42, 5834-5838.]). For the Sonogashira–Hagihara cross-coupling reaction, see: Sonogashira et al. (1975[Sonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467-4470.]). For I⋯π contacts, see: Forni et al. (2012[Forni, A., Pieraccini, S., Rendine, S., Gabas, F. & Sironi, M. (2012). ChemPhysChem, 13, 4224-4234.]). For C—H⋯π inter­actions, see: Nishio et al. (2009[Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757-1788.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H19IS

  • Mr = 442.33

  • Monoclinic, P 21 /n

  • a = 12.7222 (2) Å

  • b = 11.9892 (2) Å

  • c = 13.7895 (3) Å

  • β = 113.851 (1)°

  • V = 1923.68 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.77 mm−1

  • T = 100 K

  • 0.28 × 0.20 × 0.13 mm

2.2. Data collection

  • Bruker Kappa Apex CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.637, Tmax = 0.802

  • 23474 measured reflections

  • 5163 independent reflections

  • 4688 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.059

  • S = 1.04

  • 5163 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C4/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cg1i 0.95 2.95 3.471 (2) 116
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Owing to the remarkable electronic and optical properties of azulene and its derivatives, compounds of this type have recently received enormous inter­est for application in the field of molecular electronics (Strachota et al., 2008; Xia et al., 2014) Being connected to this, the title compound, C20H19IS, is a valuable inter­mediate in the preparation of corresponding azulenes having a characteristic 1,3-substitution pattern (Förster et al., 2012).

The crystal structure of the compound contains one molecule in the asymmetric part of the unit cell. The molecule deviates from planarity, which can be reflected by a twist angle of 35.7° with respect to the aromatic ring systems of benzene and azulene. The ability of azulene to shift electronic density from the seven-membered ring element toward the five-membered part of the ring system has already been shown to exercise a controlling effect on the supra­molecular inter­actions in the crystal especially regarding π-stacking behavior (Förster et al., 2014). In the present case, supra­molecular dimers with a head-to-tail fashioned orientation of the azulene cores are found (3.44 Å). On the side facing away from the azulene-contact, a benzene ring is located. However, considering the distance and geometry, the existence of a π···π-inter­action can be excluded. Instead, the presence of a weak C—H···π-inter­action [H17···Cg(C1, C10) 2.87 Å] is assumed (Nishio et al. 2009). In the crystal of the title compound, the packing is furthermore consolidated by a remarkable I···π-inter­action (Forni et al. 2012) [I1···Cg(C11, C12) 3.34 Å, 173.3°].

Experimental top

Synthesis and crystallization top

The title compound was prepared using a Sonogashira–Hagihara cross-coupling reaction (Sonogashira et al., 1975), starting with 1,3-di­iodo­azulene (Wakabayashi et al., 1998) and 1-(tert-butyl­sulfanyl)-4-ethynyl­benzene (Mayor et al., 2003). The aryl iodide (8.0 g, 21.06 mmol) and the terminal alkyne (4.0 g, 21.06 mmol) were dissolved in 200 ml of diiso­propyl­amine. After degassing of the solution and cooling to -30 °C, a mixture of bis­(tri­phenyl­phosphane)palladium(II) chloride (110 mg, 0.16 mmol) and copper(I) iodide (60 mg, 0.32 mmol) was added. The mixture was stirred for 18 h at room temperature. After evaporation of the solvent, the residue was purified by column chromatography on SiO2 [60 F254 Merck, eluent: hexane] to yield 4.11 g (44 %) of the title compound as a green solid. In addition to the product, 440 mg of 1,3-di­iodo­azulene and 80 mg of 1,3-bis­{[4-(tert-butyl­sulfanyl)phenyl]­ethynyl}azulene were isolated. Analytical data: mp = 120 °C; 1H-NMR: (CDCl3) δ/ppm = 1.32 (s, 9H CH3), 7.35 (t, 2H, ArH, 3JHH=9.8 Hz), 7.54 (m, 4H, ArH), 7.72 (d, 1H, ArH, 3JHH=9.9 Hz), 8.10 (s, 1H, ArH), 8.25 (d, 1H, ArH, 3JHH=9.7 Hz), 8.57 (d, 1H, ArH, 3JHH=9.5 Hz); 13CNMR: (CDCl3) δ/ppm = 31.01 (CH3), 46.50 (C-(CH3)3), 74.70 (ArC-I), 86.06 (CC), 94.34 (CC), 112.17 (ArC), 124.23 (ArC), 125.19 (ArC), 125.61 (ArC), 131.19 (ArC), 132.77 (ArC), 136.15 (ArC), 137.33 (ArC), 139.75 (ArC), 139.77 (ArC), 140.83 (ArC), 141.84 (ArC), 145.77 (ArC); GC/MS calc.: 442; found: 442 [M]+.; EA calc.: C: 59.73 %, H: 4.33 %, S: 7.25 %; found C: 60.03 %, H: 4.35 %, S: 7.21 %; Crystallization by slow solvent evaporation from acetone solution yielded suitable crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The hydrogen atoms attached to C were fixed geometrically and treated as riding atoms, with d(C—H) = 0.93 and Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl groups.

Related literature top

For background to this work, see: Strachota et al. (2008); Xia et al. (2014). For related structures, see: Förster et al. (2012, 2014). For the synthesis of the starting compounds 1,3-diiodoazulene and 1-(tert-butylsulfanyl)-4-ethynylbenzene, see: Wakabayashi et al. (1998); Mayor et al. (2003). For the Sonogashira–Hagihara cross-coupling reaction, see: Sonogashira et al. (1975). For I···π contacts, see: Forni et al. (2012). For C—H···π interactions, see: Nishio et al. (2009).

Structure description top

Owing to the remarkable electronic and optical properties of azulene and its derivatives, compounds of this type have recently received enormous inter­est for application in the field of molecular electronics (Strachota et al., 2008; Xia et al., 2014) Being connected to this, the title compound, C20H19IS, is a valuable inter­mediate in the preparation of corresponding azulenes having a characteristic 1,3-substitution pattern (Förster et al., 2012).

The crystal structure of the compound contains one molecule in the asymmetric part of the unit cell. The molecule deviates from planarity, which can be reflected by a twist angle of 35.7° with respect to the aromatic ring systems of benzene and azulene. The ability of azulene to shift electronic density from the seven-membered ring element toward the five-membered part of the ring system has already been shown to exercise a controlling effect on the supra­molecular inter­actions in the crystal especially regarding π-stacking behavior (Förster et al., 2014). In the present case, supra­molecular dimers with a head-to-tail fashioned orientation of the azulene cores are found (3.44 Å). On the side facing away from the azulene-contact, a benzene ring is located. However, considering the distance and geometry, the existence of a π···π-inter­action can be excluded. Instead, the presence of a weak C—H···π-inter­action [H17···Cg(C1, C10) 2.87 Å] is assumed (Nishio et al. 2009). In the crystal of the title compound, the packing is furthermore consolidated by a remarkable I···π-inter­action (Forni et al. 2012) [I1···Cg(C11, C12) 3.34 Å, 173.3°].

For background to this work, see: Strachota et al. (2008); Xia et al. (2014). For related structures, see: Förster et al. (2012, 2014). For the synthesis of the starting compounds 1,3-diiodoazulene and 1-(tert-butylsulfanyl)-4-ethynylbenzene, see: Wakabayashi et al. (1998); Mayor et al. (2003). For the Sonogashira–Hagihara cross-coupling reaction, see: Sonogashira et al. (1975). For I···π contacts, see: Forni et al. (2012). For C—H···π interactions, see: Nishio et al. (2009).

Synthesis and crystallization top

The title compound was prepared using a Sonogashira–Hagihara cross-coupling reaction (Sonogashira et al., 1975), starting with 1,3-di­iodo­azulene (Wakabayashi et al., 1998) and 1-(tert-butyl­sulfanyl)-4-ethynyl­benzene (Mayor et al., 2003). The aryl iodide (8.0 g, 21.06 mmol) and the terminal alkyne (4.0 g, 21.06 mmol) were dissolved in 200 ml of diiso­propyl­amine. After degassing of the solution and cooling to -30 °C, a mixture of bis­(tri­phenyl­phosphane)palladium(II) chloride (110 mg, 0.16 mmol) and copper(I) iodide (60 mg, 0.32 mmol) was added. The mixture was stirred for 18 h at room temperature. After evaporation of the solvent, the residue was purified by column chromatography on SiO2 [60 F254 Merck, eluent: hexane] to yield 4.11 g (44 %) of the title compound as a green solid. In addition to the product, 440 mg of 1,3-di­iodo­azulene and 80 mg of 1,3-bis­{[4-(tert-butyl­sulfanyl)phenyl]­ethynyl}azulene were isolated. Analytical data: mp = 120 °C; 1H-NMR: (CDCl3) δ/ppm = 1.32 (s, 9H CH3), 7.35 (t, 2H, ArH, 3JHH=9.8 Hz), 7.54 (m, 4H, ArH), 7.72 (d, 1H, ArH, 3JHH=9.9 Hz), 8.10 (s, 1H, ArH), 8.25 (d, 1H, ArH, 3JHH=9.7 Hz), 8.57 (d, 1H, ArH, 3JHH=9.5 Hz); 13CNMR: (CDCl3) δ/ppm = 31.01 (CH3), 46.50 (C-(CH3)3), 74.70 (ArC-I), 86.06 (CC), 94.34 (CC), 112.17 (ArC), 124.23 (ArC), 125.19 (ArC), 125.61 (ArC), 131.19 (ArC), 132.77 (ArC), 136.15 (ArC), 137.33 (ArC), 139.75 (ArC), 139.77 (ArC), 140.83 (ArC), 141.84 (ArC), 145.77 (ArC); GC/MS calc.: 442; found: 442 [M]+.; EA calc.: C: 59.73 %, H: 4.33 %, S: 7.25 %; found C: 60.03 %, H: 4.35 %, S: 7.21 %; Crystallization by slow solvent evaporation from acetone solution yielded suitable crystals.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. The hydrogen atoms attached to C were fixed geometrically and treated as riding atoms, with d(C—H) = 0.93 and Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT-NT (Sheldrick, 2008); data reduction: SAINT-NT (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : A view along the c axis of the crystal packing of the title compound.
3-{[4-(tert-Butylsulfanyl)phenyl]ethynyl}-1-iodo-azulene top
Crystal data top
C22H19ISF(000) = 880
Mr = 442.33Dx = 1.527 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.7222 (2) ÅCell parameters from 9945 reflections
b = 11.9892 (2) Åθ = 2.5–33.1°
c = 13.7895 (3) ŵ = 1.77 mm1
β = 113.851 (1)°T = 100 K
V = 1923.68 (6) Å3Irregular, violet
Z = 40.28 × 0.20 × 0.13 mm
Data collection top
Bruker Kappa Apex CCD
diffractometer
4688 reflections with I > 2σ(I)
phi and ω scansRint = 0.024
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 29.1°, θmin = 1.8°
Tmin = 0.637, Tmax = 0.802h = 1717
23474 measured reflectionsk = 1616
5163 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.9341P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5163 reflectionsΔρmax = 1.37 e Å3
220 parametersΔρmin = 0.39 e Å3
Crystal data top
C22H19ISV = 1923.68 (6) Å3
Mr = 442.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7222 (2) ŵ = 1.77 mm1
b = 11.9892 (2) ÅT = 100 K
c = 13.7895 (3) Å0.28 × 0.20 × 0.13 mm
β = 113.851 (1)°
Data collection top
Bruker Kappa Apex CCD
diffractometer
5163 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4688 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 0.802Rint = 0.024
23474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.04Δρmax = 1.37 e Å3
5163 reflectionsΔρmin = 0.39 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.84013 (2)0.46782 (2)0.23899 (2)0.02206 (5)
S20.11506 (4)0.30969 (4)0.07255 (4)0.02563 (10)
C10.69313 (13)0.37992 (13)0.14949 (13)0.0173 (3)
C20.64454 (13)0.29623 (13)0.18826 (13)0.0179 (3)
H20.67330.27100.25960.022*
C30.54571 (13)0.25519 (13)0.10422 (13)0.0173 (3)
C40.53172 (13)0.31415 (13)0.01096 (13)0.0163 (3)
C50.44468 (14)0.29644 (14)0.08807 (14)0.0204 (3)
H50.39160.23910.09190.024*
C60.42455 (15)0.35115 (15)0.18259 (14)0.0236 (3)
H60.36000.32560.24260.028*
C70.48585 (16)0.43818 (16)0.20148 (14)0.0238 (3)
H70.45510.46570.27210.029*
C80.58518 (16)0.49110 (16)0.13288 (16)0.0249 (4)
H80.61400.54800.16340.030*
C90.64791 (15)0.47161 (13)0.02540 (15)0.0207 (3)
H90.71420.51680.00760.025*
C100.62711 (13)0.39541 (13)0.04023 (13)0.0160 (3)
C110.47274 (14)0.16724 (14)0.10849 (14)0.0197 (3)
C120.41110 (14)0.09113 (14)0.10767 (14)0.0214 (3)
C130.34086 (13)0.00436 (14)0.10156 (14)0.0183 (3)
C140.31147 (16)0.03408 (14)0.18573 (15)0.0230 (4)
H140.33770.00960.24860.028*
C150.24401 (15)0.12745 (15)0.17689 (14)0.0219 (3)
H150.22490.14780.23430.026*
C160.20377 (14)0.19206 (13)0.08477 (14)0.0188 (3)
C170.23511 (15)0.16333 (14)0.00239 (15)0.0217 (3)
H170.20990.20790.05990.026*
C180.30281 (15)0.07036 (15)0.01021 (14)0.0218 (3)
H180.32340.05140.04670.026*
C190.03091 (15)0.24833 (16)0.01235 (15)0.0258 (4)
C200.05345 (17)0.19664 (19)0.09463 (17)0.0337 (4)
H20A0.13300.17000.12720.051*
H20B0.04110.25270.14070.051*
H20C0.00080.13390.08510.051*
C210.04654 (19)0.1617 (2)0.0863 (2)0.0435 (6)
H21A0.00310.09740.09170.065*
H21B0.02590.19460.15670.065*
H21C0.12690.13740.05790.065*
C220.1104 (2)0.3474 (2)0.0007 (2)0.0454 (6)
H22A0.19040.32180.02990.068*
H22B0.09200.38240.06840.068*
H22C0.09990.40180.04910.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01979 (7)0.02162 (7)0.02101 (7)0.00596 (4)0.00437 (5)0.00162 (4)
S20.0270 (2)0.01496 (19)0.0329 (2)0.00596 (16)0.01011 (19)0.00387 (16)
C10.0149 (7)0.0151 (7)0.0203 (8)0.0020 (6)0.0054 (6)0.0022 (6)
C20.0170 (7)0.0161 (7)0.0202 (8)0.0007 (6)0.0070 (6)0.0020 (6)
C30.0165 (7)0.0136 (7)0.0214 (8)0.0004 (6)0.0071 (6)0.0008 (6)
C40.0162 (7)0.0121 (7)0.0212 (8)0.0000 (5)0.0081 (6)0.0007 (6)
C50.0202 (7)0.0167 (7)0.0229 (8)0.0031 (6)0.0073 (7)0.0020 (6)
C60.0238 (8)0.0243 (9)0.0183 (8)0.0017 (7)0.0040 (7)0.0010 (6)
C70.0294 (9)0.0243 (8)0.0176 (8)0.0005 (7)0.0094 (7)0.0021 (6)
C80.0269 (9)0.0213 (8)0.0295 (10)0.0012 (7)0.0146 (8)0.0059 (7)
C90.0208 (8)0.0174 (8)0.0251 (9)0.0047 (6)0.0106 (7)0.0014 (6)
C100.0157 (7)0.0135 (7)0.0193 (7)0.0006 (5)0.0076 (6)0.0016 (6)
C110.0178 (7)0.0171 (7)0.0225 (8)0.0009 (6)0.0064 (6)0.0035 (6)
C120.0168 (7)0.0203 (8)0.0244 (8)0.0003 (6)0.0057 (6)0.0055 (6)
C130.0141 (7)0.0153 (7)0.0239 (8)0.0005 (6)0.0060 (6)0.0037 (6)
C140.0229 (8)0.0243 (9)0.0195 (8)0.0065 (6)0.0063 (7)0.0008 (6)
C150.0231 (8)0.0238 (8)0.0190 (8)0.0051 (6)0.0087 (7)0.0018 (6)
C160.0181 (7)0.0140 (7)0.0240 (8)0.0013 (6)0.0080 (6)0.0026 (6)
C170.0248 (8)0.0175 (8)0.0269 (9)0.0028 (6)0.0147 (7)0.0041 (6)
C180.0240 (8)0.0207 (8)0.0261 (9)0.0010 (6)0.0157 (7)0.0022 (7)
C190.0210 (8)0.0274 (9)0.0279 (9)0.0097 (7)0.0087 (7)0.0018 (7)
C200.0284 (9)0.0367 (11)0.0314 (10)0.0069 (8)0.0072 (8)0.0088 (8)
C210.0270 (10)0.0586 (15)0.0486 (14)0.0018 (10)0.0191 (10)0.0132 (11)
C220.0338 (11)0.0454 (13)0.0482 (14)0.0219 (10)0.0073 (10)0.0110 (11)
Geometric parameters (Å, º) top
I1—C12.0651 (15)C13—C181.398 (3)
S2—C161.7712 (16)C13—C141.402 (2)
S2—C191.8526 (19)C14—C151.386 (2)
C1—C21.394 (2)C14—H140.9500
C1—C101.409 (2)C15—C161.396 (2)
C2—C31.410 (2)C15—H150.9500
C2—H20.9500C16—C171.391 (2)
C3—C41.414 (2)C17—C181.386 (2)
C3—C111.422 (2)C17—H170.9500
C4—C51.383 (2)C18—H180.9500
C4—C101.479 (2)C19—C201.517 (3)
C5—C61.387 (2)C19—C221.523 (3)
C5—H50.9500C19—C211.523 (3)
C6—C71.389 (3)C20—H20A0.9800
C6—H60.9500C20—H20B0.9800
C7—C81.388 (3)C20—H20C0.9800
C7—H70.9500C21—H21A0.9800
C8—C91.390 (3)C21—H21B0.9800
C8—H80.9500C21—H21C0.9800
C9—C101.385 (2)C22—H22A0.9800
C9—H90.9500C22—H22B0.9800
C11—C121.200 (2)C22—H22C0.9800
C12—C131.434 (2)
C16—S2—C19102.19 (8)C13—C14—H14120.1
C2—C1—C10109.87 (14)C14—C15—C16120.96 (16)
C2—C1—I1124.97 (12)C14—C15—H15119.5
C10—C1—I1125.15 (12)C16—C15—H15119.5
C1—C2—C3108.81 (14)C17—C16—C15119.00 (15)
C1—C2—H2125.6C17—C16—S2120.11 (13)
C3—C2—H2125.6C15—C16—S2120.89 (13)
C2—C3—C4108.39 (14)C18—C17—C16120.67 (16)
C2—C3—C11127.23 (15)C18—C17—H17119.7
C4—C3—C11124.35 (15)C16—C17—H17119.7
C5—C4—C3125.25 (15)C17—C18—C13120.22 (16)
C5—C4—C10127.69 (15)C17—C18—H18119.9
C3—C4—C10107.06 (14)C13—C18—H18119.9
C4—C5—C6128.67 (16)C20—C19—C22110.38 (17)
C4—C5—H5115.7C20—C19—C21110.34 (19)
C6—C5—H5115.7C22—C19—C21110.54 (18)
C5—C6—C7128.83 (17)C20—C19—S2111.05 (13)
C5—C6—H6115.6C22—C19—S2103.93 (14)
C7—C6—H6115.6C21—C19—S2110.44 (14)
C8—C7—C6129.86 (17)C19—C20—H20A109.5
C8—C7—H7115.1C19—C20—H20B109.5
C6—C7—H7115.1H20A—C20—H20B109.5
C7—C8—C9128.44 (17)C19—C20—H20C109.5
C7—C8—H8115.8H20A—C20—H20C109.5
C9—C8—H8115.8H20B—C20—H20C109.5
C10—C9—C8128.97 (16)C19—C21—H21A109.5
C10—C9—H9115.5C19—C21—H21B109.5
C8—C9—H9115.5H21A—C21—H21B109.5
C9—C10—C1126.65 (15)C19—C21—H21C109.5
C9—C10—C4127.49 (15)H21A—C21—H21C109.5
C1—C10—C4105.87 (13)H21B—C21—H21C109.5
C12—C11—C3176.91 (19)C19—C22—H22A109.5
C11—C12—C13175.55 (19)C19—C22—H22B109.5
C18—C13—C14119.41 (15)H22A—C22—H22B109.5
C18—C13—C12119.05 (16)C19—C22—H22C109.5
C14—C13—C12121.53 (16)H22A—C22—H22C109.5
C15—C14—C13119.71 (16)H22B—C22—H22C109.5
C15—C14—H14120.1
C10—C1—C2—C30.28 (19)C5—C4—C10—C91.0 (3)
I1—C1—C2—C3179.64 (11)C3—C4—C10—C9179.53 (16)
C1—C2—C3—C40.09 (18)C5—C4—C10—C1179.21 (16)
C1—C2—C3—C11177.91 (16)C3—C4—C10—C10.28 (17)
C2—C3—C4—C5179.39 (15)C18—C13—C14—C150.8 (3)
C11—C3—C4—C51.3 (3)C12—C13—C14—C15179.58 (16)
C2—C3—C4—C100.12 (17)C13—C14—C15—C160.6 (3)
C11—C3—C4—C10178.19 (15)C14—C15—C16—C171.8 (3)
C3—C4—C5—C6179.33 (17)C14—C15—C16—S2178.67 (14)
C10—C4—C5—C61.3 (3)C19—S2—C16—C1789.74 (15)
C4—C5—C6—C70.8 (3)C19—S2—C16—C1590.77 (15)
C5—C6—C7—C82.6 (3)C15—C16—C17—C181.6 (3)
C6—C7—C8—C91.7 (3)S2—C16—C17—C18178.85 (14)
C7—C8—C9—C100.4 (3)C16—C17—C18—C130.2 (3)
C8—C9—C10—C1179.23 (18)C14—C13—C18—C171.0 (3)
C8—C9—C10—C40.5 (3)C12—C13—C18—C17179.80 (16)
C2—C1—C10—C9179.47 (16)C16—S2—C19—C2060.73 (15)
I1—C1—C10—C90.6 (2)C16—S2—C19—C22179.40 (14)
C2—C1—C10—C40.35 (18)C16—S2—C19—C2162.02 (16)
I1—C1—C10—C4179.57 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C4/C10 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg1i0.952.953.471 (2)116
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C4/C10 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg1i0.952.953.471 (2)116
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work has been performed within the Cluster of Excellence: `Structure Design of Novel High-Performance Mat­erials via Atomic Design and Defect Engineering' (ADDE), which was supported financially by the European Union (European Regional Development Fund) and by the Ministry of Science and Art of Saxony (SMWK).

References

First citationBruker (2008). SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationForni, A., Pieraccini, S., Rendine, S., Gabas, F. & Sironi, M. (2012). ChemPhysChem, 13, 4224–4234.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFörster, S., Hahn, T., Loose, C., Röder, C., Liebing, S., Seichter, W., Eissmann, F., Kortus, J. & Weber, E. (2012). J. Phys. Org. Chem. 25, 856–863.  Google Scholar
First citationFörster, S., Seichter, W., Kuhnert, R. & Weber, E. (2014). J. Mol. Struct. 1075, 63–70.  Google Scholar
First citationMayor, M., Weber, H. B., Reichert, J., Elbing, M., von Hänisch, C., Beckmann, D. & Fischer, M. (2003). Angew. Chem. Int. Ed. 42, 5834–5838.  Web of Science CSD CrossRef CAS Google Scholar
First citationNishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467–4470.  CrossRef Google Scholar
First citationStrachota, A., Cimrová, V. & Thorn-Csányi, E. (2008). Macromol. Symp. 268, 66–71.  CrossRef CAS Google Scholar
First citationWakabayashi, H., Kurihara, T., Shindo, K., Tsukada, M., Yang, P., Yasunami, M. & Nozoe, T. (1998). J. Chin. Chem. Soc. 45, 391–400.  CrossRef CAS Google Scholar
First citationXia, J., Capozzi, B., Wei, S., Strange, M., Batra, A., Moreno, J. R., Amir, R. J., Amir, E., Solomon, G. C., Venkataraman, L. & Campos, L. M. (2014). Nano Lett. 14, 2941–2945.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds