organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-[4-(1H-imidazol-1-yl)phen­yl]-2-(4-nitro­phen­yl)prop-2-ene­nitrile

CROSSMARK_Color_square_no_text.svg

aDeparment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and bKey Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: 806094151@qq.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 May 2015; accepted 20 July 2015; online 6 August 2015)

In the title compound, C18H12N4O2, which has a delocalized DπA electronic structure, the dihedral angles between the central benzene ring and the planes of the pendant imidazole and nitro­benzene rings are 37.65 (9) and 4.96 (7)°, respectively. In the centrosymmetric crystal structure, mol­ecules are linked by weak C—H⋯O inter­actions, generating [001] C(6) chains.

1. Related literature

For chemical and photophysical background, see: Liu et al. (2006[Liu, L., Lam, Y. W. & Wong, W. Y. (2006). J. Organomet. Chem. 691, 1092-1100.]); Zheng et al. (2013[Zheng, Z., Yu, Z. P., Yang, M. D., Jin, F., Zhang, Q., Zhou, H. P., Wu, J. Y. & Tian, Y. P. (2013). J. Org. Chem. 78, 3222-3234.]). For a related structure, see: Li (2011[Li, T.-L. (2011). Acta Cryst. E67, m1396.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H12N4O2

  • Mr = 316.32

  • Monoclinic, P 21 /c

  • a = 7.1792 (16) Å

  • b = 16.512 (4) Å

  • c = 12.771 (3) Å

  • β = 101.557 (3)°

  • V = 1483.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.25 × 0.2 × 0.18 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.320, Tmax = 0.439

  • 10392 measured reflections

  • 2609 independent reflections

  • 2081 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.105

  • S = 1.07

  • 2609 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2i 0.93 2.54 3.464 (2) 173
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Synthesis and crystallization top

3-(4-Imidazol-1-yl-phenyl)-2-(4-nitro-phenyl)-acrylo­nitrile was dissolved in ethanol solvent. Then added 4-nitro-benzo­nitrile into the solvent. When the two compounds were mixed completly, dropwise added a few piperidine into them. About seven hours later, we could get the title compound.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq.

Related literature top

For chemical and photophysical background, see: Liu et al. (2006); Zheng et al. (2013). For a related structure, see: Li (2011).

Structure description top

For chemical and photophysical background, see: Liu et al. (2006); Zheng et al. (2013). For a related structure, see: Li (2011).

Synthesis and crystallization top

3-(4-Imidazol-1-yl-phenyl)-2-(4-nitro-phenyl)-acrylo­nitrile was dissolved in ethanol solvent. Then added 4-nitro-benzo­nitrile into the solvent. When the two compounds were mixed completly, dropwise added a few piperidine into them. About seven hours later, we could get the title compound.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule.
[Figure 2] Fig. 2. The extended structure of the title compound.
3-[4-(1H-Imidazol-1-yl)phenyl]-2-(4-nitrophenyl)prop-2-enenitrile top
Crystal data top
C18H12N4O2Z = 4
Mr = 316.32F(000) = 656
Monoclinic, P21/cDx = 1.416 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.1792 (16) ŵ = 0.10 mm1
b = 16.512 (4) ÅT = 296 K
c = 12.771 (3) ÅBlock, red
β = 101.557 (3)°0.25 × 0.2 × 0.18 mm
V = 1483.3 (6) Å3
Data collection top
Bruker SMART CCD
diffractometer
2609 independent reflections
Radiation source: sealed tube2081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.320, Tmax = 0.439k = 1917
10392 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.2091P]
where P = (Fo2 + 2Fc2)/3
2609 reflections(Δ/σ)max = 0.002
217 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C18H12N4O2V = 1483.3 (6) Å3
Mr = 316.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1792 (16) ŵ = 0.10 mm1
b = 16.512 (4) ÅT = 296 K
c = 12.771 (3) Å0.25 × 0.2 × 0.18 mm
β = 101.557 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2609 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2081 reflections with I > 2σ(I)
Tmin = 0.320, Tmax = 0.439Rint = 0.024
10392 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.07Δρmax = 0.18 e Å3
2609 reflectionsΔρmin = 0.17 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.33343 (18)0.36839 (7)0.53687 (9)0.0409 (3)
C110.2512 (2)0.49937 (9)0.03244 (11)0.0373 (3)
C160.1639 (2)0.65848 (9)0.23484 (11)0.0433 (4)
C70.2711 (2)0.47837 (9)0.23353 (10)0.0380 (3)
C140.2517 (2)0.52940 (9)0.15944 (11)0.0441 (4)
H140.29170.47650.16690.053*
C90.3390 (2)0.36047 (9)0.34742 (11)0.0412 (4)
H90.37090.30590.35570.049*
C40.3103 (2)0.40518 (9)0.43461 (10)0.0379 (3)
C130.2195 (2)0.55534 (8)0.06072 (11)0.0370 (3)
C50.2614 (2)0.48643 (9)0.42196 (11)0.0458 (4)
H50.24160.51670.48020.055*
C100.2475 (2)0.52285 (9)0.13288 (11)0.0404 (4)
H100.22570.57800.13950.048*
C60.2421 (2)0.52205 (9)0.32260 (11)0.0438 (4)
H60.20910.57650.31470.053*
C80.3203 (2)0.39658 (9)0.24824 (11)0.0421 (4)
H80.34080.36610.19040.050*
N40.1372 (2)0.71310 (10)0.32681 (11)0.0563 (4)
C180.1554 (2)0.63447 (9)0.05281 (11)0.0441 (4)
H180.13080.65270.01200.053*
C150.2251 (2)0.58088 (10)0.24634 (11)0.0481 (4)
H150.24840.56320.31170.058*
O20.0835 (2)0.78255 (8)0.31500 (10)0.0736 (4)
O10.1702 (2)0.68742 (9)0.41145 (10)0.0818 (5)
C170.1280 (2)0.68607 (9)0.13928 (12)0.0461 (4)
H170.08590.73880.13310.055*
N30.3111 (3)0.35246 (9)0.02129 (11)0.0666 (5)
C120.2850 (2)0.41644 (10)0.00623 (11)0.0448 (4)
N20.4589 (2)0.29296 (8)0.67745 (10)0.0579 (4)
C10.4684 (2)0.31340 (9)0.57988 (12)0.0496 (4)
H10.55790.29260.54360.059*
C30.2306 (3)0.38325 (10)0.61467 (12)0.0562 (5)
H30.12810.41840.61030.067*
C20.3083 (3)0.33654 (10)0.69857 (12)0.0603 (5)
H20.26530.33420.76250.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0543 (8)0.0397 (7)0.0291 (6)0.0003 (6)0.0094 (5)0.0024 (5)
C110.0401 (8)0.0386 (8)0.0334 (7)0.0035 (6)0.0078 (6)0.0014 (6)
C160.0444 (9)0.0498 (9)0.0355 (8)0.0052 (7)0.0075 (6)0.0098 (7)
C70.0425 (8)0.0386 (8)0.0322 (7)0.0036 (6)0.0062 (6)0.0001 (6)
C140.0549 (10)0.0432 (8)0.0363 (8)0.0002 (7)0.0137 (7)0.0001 (6)
C90.0526 (9)0.0356 (8)0.0356 (8)0.0009 (7)0.0097 (7)0.0000 (6)
C40.0441 (9)0.0398 (8)0.0295 (7)0.0026 (6)0.0066 (6)0.0015 (6)
C130.0376 (8)0.0414 (8)0.0319 (7)0.0054 (6)0.0071 (6)0.0008 (6)
C50.0640 (11)0.0425 (9)0.0312 (7)0.0033 (7)0.0100 (7)0.0040 (6)
C100.0490 (9)0.0375 (8)0.0348 (8)0.0009 (6)0.0084 (6)0.0018 (6)
C60.0600 (10)0.0355 (8)0.0354 (8)0.0036 (7)0.0080 (7)0.0014 (6)
C80.0556 (9)0.0402 (8)0.0315 (7)0.0008 (7)0.0116 (6)0.0033 (6)
N40.0608 (9)0.0647 (10)0.0443 (8)0.0025 (8)0.0127 (7)0.0175 (7)
C180.0555 (10)0.0446 (9)0.0333 (7)0.0009 (7)0.0115 (7)0.0002 (6)
C150.0576 (10)0.0577 (10)0.0315 (8)0.0041 (8)0.0152 (7)0.0016 (7)
O20.0926 (11)0.0641 (9)0.0665 (8)0.0148 (7)0.0215 (7)0.0280 (7)
O10.1185 (12)0.0900 (10)0.0419 (7)0.0087 (9)0.0283 (7)0.0193 (6)
C170.0548 (10)0.0412 (8)0.0420 (8)0.0010 (7)0.0085 (7)0.0040 (6)
N30.1093 (14)0.0488 (9)0.0411 (8)0.0102 (8)0.0134 (8)0.0023 (7)
C120.0594 (10)0.0468 (10)0.0280 (7)0.0003 (8)0.0081 (7)0.0032 (6)
N20.0896 (11)0.0457 (8)0.0374 (7)0.0032 (7)0.0100 (7)0.0066 (6)
C10.0659 (11)0.0437 (9)0.0390 (8)0.0049 (8)0.0102 (7)0.0048 (7)
C30.0763 (12)0.0558 (10)0.0417 (9)0.0094 (9)0.0247 (8)0.0039 (7)
C20.0971 (14)0.0522 (10)0.0362 (8)0.0022 (10)0.0245 (9)0.0046 (7)
Geometric parameters (Å, º) top
N1—C11.361 (2)C13—C181.395 (2)
N1—C31.3736 (19)C5—C61.380 (2)
N1—C41.4197 (17)C5—H50.9300
C11—C101.3455 (19)C10—H100.9300
C11—C121.442 (2)C6—H60.9300
C11—C131.4876 (19)C8—H80.9300
C16—C151.372 (2)N4—O11.2277 (18)
C16—C171.375 (2)N4—O21.2287 (18)
C16—N41.4626 (19)C18—C171.377 (2)
C7—C61.3971 (19)C18—H180.9300
C7—C81.399 (2)C15—H150.9300
C7—C101.4606 (18)C17—H170.9300
C14—C151.381 (2)N3—C121.141 (2)
C14—C131.3939 (19)N2—C11.306 (2)
C14—H140.9300N2—C21.370 (2)
C9—C81.3820 (19)C1—H10.9300
C9—C41.3853 (19)C3—C21.347 (2)
C9—H90.9300C3—H30.9300
C4—C51.388 (2)C2—H20.9300
C1—N1—C3105.65 (12)C5—C6—C7121.66 (14)
C1—N1—C4126.83 (13)C5—C6—H6119.2
C3—N1—C4127.46 (13)C7—C6—H6119.2
C10—C11—C12122.11 (13)C9—C8—C7121.00 (13)
C10—C11—C13123.67 (13)C9—C8—H8119.5
C12—C11—C13114.22 (12)C7—C8—H8119.5
C15—C16—C17121.71 (13)O1—N4—O2123.44 (14)
C15—C16—N4118.88 (13)O1—N4—C16118.48 (15)
C17—C16—N4119.41 (15)O2—N4—C16118.08 (14)
C6—C7—C8117.63 (12)C17—C18—C13121.15 (14)
C6—C7—C10116.55 (13)C17—C18—H18119.4
C8—C7—C10125.82 (12)C13—C18—H18119.4
C15—C14—C13121.12 (14)C16—C15—C14118.97 (14)
C15—C14—H14119.4C16—C15—H15120.5
C13—C14—H14119.4C14—C15—H15120.5
C8—C9—C4120.27 (13)C16—C17—C18119.00 (15)
C8—C9—H9119.9C16—C17—H17120.5
C4—C9—H9119.9C18—C17—H17120.5
C9—C4—C5119.76 (13)N3—C12—C11175.48 (15)
C9—C4—N1120.17 (13)C1—N2—C2104.24 (14)
C5—C4—N1120.06 (12)N2—C1—N1112.88 (15)
C14—C13—C18118.02 (13)N2—C1—H1123.6
C14—C13—C11120.40 (13)N1—C1—H1123.6
C18—C13—C11121.58 (12)C2—C3—N1106.02 (15)
C6—C5—C4119.68 (13)C2—C3—H3127.0
C6—C5—H5120.2N1—C3—H3127.0
C4—C5—H5120.2C3—C2—N2111.20 (14)
C11—C10—C7132.31 (14)C3—C2—H2124.4
C11—C10—H10113.8N2—C2—H2124.4
C7—C10—H10113.8
C8—C9—C4—C50.4 (2)C10—C7—C8—C9179.97 (14)
C8—C9—C4—N1178.68 (13)C15—C16—N4—O10.2 (2)
C1—N1—C4—C938.6 (2)C17—C16—N4—O1179.89 (15)
C3—N1—C4—C9144.54 (16)C15—C16—N4—O2179.52 (15)
C1—N1—C4—C5140.54 (16)C17—C16—N4—O20.2 (2)
C3—N1—C4—C536.3 (2)C14—C13—C18—C171.2 (2)
C15—C14—C13—C181.4 (2)C11—C13—C18—C17179.44 (14)
C15—C14—C13—C11179.21 (14)C17—C16—C15—C140.1 (2)
C10—C11—C13—C14170.92 (14)N4—C16—C15—C14179.55 (14)
C12—C11—C13—C149.6 (2)C13—C14—C15—C160.8 (2)
C10—C11—C13—C189.7 (2)C15—C16—C17—C180.4 (2)
C12—C11—C13—C18169.74 (14)N4—C16—C17—C18179.33 (14)
C9—C4—C5—C60.2 (2)C13—C18—C17—C160.3 (2)
N1—C4—C5—C6178.97 (14)C10—C11—C12—N3178 (2)
C12—C11—C10—C70.7 (3)C13—C11—C12—N33 (2)
C13—C11—C10—C7178.73 (14)C2—N2—C1—N10.59 (19)
C6—C7—C10—C11174.72 (15)C3—N1—C1—N20.18 (19)
C8—C7—C10—C115.5 (3)C4—N1—C1—N2177.24 (14)
C4—C5—C6—C70.1 (2)C1—N1—C3—C20.32 (18)
C8—C7—C6—C50.1 (2)C4—N1—C3—C2177.72 (14)
C10—C7—C6—C5179.70 (14)N1—C3—C2—N20.7 (2)
C4—C9—C8—C70.5 (2)C1—N2—C2—C30.8 (2)
C6—C7—C8—C90.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.543.464 (2)173
Symmetry code: (i) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.543.464 (2)173
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the Graduate Students Innovative Program of Anhui University (grant Nos. J18515024, J18515019 and 201310357155).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, T.-L. (2011). Acta Cryst. E67, m1396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, L., Lam, Y. W. & Wong, W. Y. (2006). J. Organomet. Chem. 691, 1092–1100.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Z., Yu, Z. P., Yang, M. D., Jin, F., Zhang, Q., Zhou, H. P., Wu, J. Y. & Tian, Y. P. (2013). J. Org. Chem. 78, 3222–3234.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds