organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-amino-3-(3-methyl-5-phenyl-1H-pyrazol-1-yl)-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bFaculty of Science & Engineering, School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 May 2015; accepted 17 May 2015; online 23 May 2015)

In the title compound, C12H12N6S, the dihedral angles between the central pyrazole ring and the pendant triazole and benzene rings are 68.01 (4) and 59.83 (9)°, respectively. In the crystal, mol­ecules are linked by N—H⋯N and N—H⋯S hydrogen bonds, generating (10-1) sheets.

1. Related literature

For the bio-activities of amino­triazoles, see: Jin et al. (2007[Jin, J.-Y., Zhang, L.-X., Zhang, A.-J., Lei, X.-X. & Zhu, J.-H. (2007). Molecules, 12, 1596-1605.]); Joung et al. (2000[Joung, J. K. E. I., Ramm, E. I. & Pabo, C. O. (2000). Proc. Natl Acad. Sci. USA, 97, 7382-7387.]). For amino­triazoles as block-building synthons, see: Curtis (2004[Curtis, A. D. M. (2004). Science of Synthesis, 13, 603-639.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H12N6S

  • Mr = 272.34

  • Monoclinic, P 21 /n

  • a = 11.3278 (4) Å

  • b = 8.3970 (3) Å

  • c = 15.4427 (5) Å

  • β = 109.053 (1)°

  • V = 1388.43 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.04 mm−1

  • T = 150 K

  • 0.24 × 0.18 × 0.10 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.77, Tmax = 0.82

  • 10355 measured reflections

  • 2683 independent reflections

  • 2515 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.09

  • 2683 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N1i 0.91 1.94 2.8429 (17) 169
N6—H6A⋯S1ii 0.91 2.55 3.4157 (13) 159
N6—H6B⋯N4iii 0.91 2.43 3.0059 (18) 122
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Amino-1,2,4-triazoles are known to be biologically active compounds (Jin et al., 2007). For example, the 5-amino-1,2,4- triazole itself has been used as the pesticide Amitrole (Joung et al., 2000) and 3,5-diamino-1,2,4-triazole (Guanazole) is an antitumor drug that inhibits ribonucleotide reductase and DNA synthesis. In addition, they play an important role as amidine type synthons in heterocyclic chemistry (Curtis, 2004) particularly fused ring systems, such as imidazo[1,2-b][1,2,4]triazole, imidazo[2,1-c][1,2,4]triazole, 1,2,4-triazolo[1,5-a]pyrimidine and 1,2,4-traizolo[1,5-a][1,3,5]triazine possessing variety of biological effects. In this context, we report in this study the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the dihedral angle between the central 5-membered ring and its attached phenyl ring is 59.83 (5)° while the dihedral angle between the two 5-membered rings is 68.01 (4)°. In the crystal, the molecules form sheets lying parallel to (101) through N—H···N and N—H···S hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For the bio-activities of aminotriazoles, see: Jin et al. (2007); Joung et al. (2000). For aminotriazoles as block-building synthons, see: Curtis (2004).

Experimental top

A mixture of 1 mmol (258 mg) of 5-(3-methyl-5-phenyl-1H-pyrazol-1-yl)-1,3,4-oxadiazole-2(3H)-thione and 2 ml of hydrazine in 30 ml ethanol was heated at 351 K for 6 h. On cooling, the solid product was filtered off, dried under vacuum and recrystallized from ethanol to afford colorless blocks of the title compound.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule showing labeling scheme and 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing viewed down the b axis. N—H···N and N—H···S hydrogen bonds are shown, respectively, as blue and purple dotted lines.
4-Amino-3-(3-methyl-5-phenyl-1H-pyrazol-1-yl)-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C12H12N6SF(000) = 568
Mr = 272.34Dx = 1.303 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 11.3278 (4) ÅCell parameters from 8668 reflections
b = 8.3970 (3) Åθ = 4.3–72.3°
c = 15.4427 (5) ŵ = 2.04 mm1
β = 109.053 (1)°T = 150 K
V = 1388.43 (8) Å3Block, colourless
Z = 40.24 × 0.18 × 0.10 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2683 independent reflections
Radiation source: INCOATEC IµS micro-focus source2515 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.4167 pixels mm-1θmax = 72.3°, θmin = 4.2°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 910
Tmin = 0.77, Tmax = 0.82l = 1919
10355 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.102H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.5187P]
where P = (Fo2 + 2Fc2)/3
2683 reflections(Δ/σ)max = 0.002
173 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C12H12N6SV = 1388.43 (8) Å3
Mr = 272.34Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.3278 (4) ŵ = 2.04 mm1
b = 8.3970 (3) ÅT = 150 K
c = 15.4427 (5) Å0.24 × 0.18 × 0.10 mm
β = 109.053 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2683 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
2515 reflections with I > 2σ(I)
Tmin = 0.77, Tmax = 0.82Rint = 0.021
10355 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.09Δρmax = 0.36 e Å3
2683 reflectionsΔρmin = 0.28 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger. H-atoms attached to carbon

were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those

attached to nitrogen were placed in locations derived from a difference

map and their parameters adjusted to give N—H = 0.91 Å. All were

included as riding contributions with isotropic displacement

parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.06212 (3)0.49379 (4)0.36297 (2)0.02864 (14)
N10.52909 (11)0.54447 (14)0.29113 (8)0.0249 (3)
N20.60148 (11)0.41615 (13)0.33081 (8)0.0235 (3)
N30.86566 (11)0.29657 (15)0.28254 (8)0.0263 (3)
H3A0.90390.22560.25590.032*
N40.74091 (11)0.27516 (15)0.27154 (9)0.0273 (3)
N50.81912 (11)0.48358 (13)0.35855 (8)0.0205 (3)
N60.81859 (11)0.61690 (14)0.41236 (8)0.0262 (3)
H6A0.87040.59480.46990.031*
H6B0.85120.69730.38780.031*
C10.60875 (14)0.17810 (17)0.42641 (9)0.0251 (3)
C20.72215 (17)0.1972 (2)0.49645 (11)0.0399 (4)
H20.75590.30090.51200.048*
C30.78631 (19)0.0666 (2)0.54370 (13)0.0469 (5)
H30.86360.08070.59140.056*
C40.73738 (18)0.0845 (2)0.52122 (12)0.0392 (4)
H40.78080.17440.55380.047*
C50.62567 (16)0.10472 (18)0.45161 (11)0.0344 (4)
H50.59270.20880.43620.041*
C60.56078 (15)0.02533 (18)0.40384 (11)0.0292 (3)
H60.48390.01020.35590.035*
C70.54349 (13)0.31865 (17)0.37531 (9)0.0239 (3)
C80.43020 (14)0.38690 (19)0.36366 (10)0.0287 (3)
H80.36700.34820.38620.034*
C90.42509 (14)0.52643 (18)0.31143 (10)0.0262 (3)
C100.71675 (13)0.39120 (16)0.31857 (9)0.0218 (3)
C110.91672 (13)0.42285 (16)0.33429 (9)0.0222 (3)
C120.32313 (15)0.6470 (2)0.28071 (13)0.0386 (4)
H12A0.34810.73160.24660.058*
H12B0.30740.69280.33430.058*
H12C0.24690.59570.24110.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0210 (2)0.0357 (2)0.0290 (2)0.00344 (13)0.00779 (15)0.00294 (13)
N10.0233 (6)0.0232 (6)0.0304 (6)0.0020 (5)0.0120 (5)0.0040 (5)
N20.0235 (6)0.0206 (6)0.0301 (6)0.0012 (4)0.0136 (5)0.0031 (4)
N30.0235 (6)0.0263 (6)0.0330 (6)0.0013 (5)0.0145 (5)0.0075 (5)
N40.0242 (6)0.0270 (6)0.0340 (6)0.0030 (5)0.0141 (5)0.0049 (5)
N50.0224 (6)0.0193 (5)0.0210 (5)0.0013 (4)0.0088 (5)0.0009 (4)
N60.0311 (7)0.0225 (6)0.0248 (6)0.0018 (5)0.0089 (5)0.0048 (4)
C10.0288 (7)0.0241 (7)0.0251 (7)0.0021 (5)0.0125 (6)0.0010 (5)
C20.0459 (10)0.0302 (8)0.0355 (8)0.0082 (7)0.0019 (7)0.0026 (6)
C30.0468 (11)0.0443 (10)0.0382 (9)0.0008 (8)0.0018 (8)0.0085 (8)
C40.0500 (10)0.0327 (9)0.0369 (8)0.0094 (7)0.0168 (7)0.0099 (6)
C50.0477 (10)0.0223 (7)0.0372 (8)0.0004 (6)0.0195 (7)0.0018 (6)
C60.0316 (8)0.0262 (7)0.0313 (8)0.0027 (6)0.0122 (6)0.0033 (6)
C70.0258 (7)0.0230 (7)0.0242 (6)0.0061 (5)0.0101 (5)0.0012 (5)
C80.0246 (7)0.0313 (8)0.0333 (7)0.0045 (6)0.0136 (6)0.0045 (6)
C90.0223 (7)0.0283 (7)0.0294 (7)0.0019 (5)0.0104 (6)0.0014 (6)
C100.0217 (7)0.0208 (6)0.0242 (6)0.0001 (5)0.0094 (5)0.0018 (5)
C110.0244 (7)0.0229 (7)0.0207 (6)0.0014 (5)0.0091 (5)0.0014 (5)
C120.0262 (8)0.0422 (9)0.0521 (10)0.0079 (7)0.0193 (7)0.0143 (8)
Geometric parameters (Å, º) top
S1—C111.6697 (14)C2—C31.384 (2)
N1—C91.3230 (19)C2—H20.9500
N1—N21.3714 (16)C3—C41.383 (3)
N2—C71.3670 (18)C3—H30.9500
N2—C101.3949 (18)C4—C51.377 (3)
N3—C111.3401 (18)C4—H40.9500
N3—N41.3790 (17)C5—C61.387 (2)
N3—H3A0.9100C5—H50.9500
N4—C101.2968 (18)C6—H60.9500
N5—C101.3639 (18)C7—C81.363 (2)
N5—C111.3759 (17)C8—C91.413 (2)
N5—N61.3953 (15)C8—H80.9500
N6—H6A0.9101C9—C121.492 (2)
N6—H6B0.9099C12—H12A0.9800
C1—C21.392 (2)C12—H12B0.9800
C1—C61.392 (2)C12—H12C0.9800
C1—C71.477 (2)
C9—N1—N2104.65 (11)C4—C5—H5119.6
C7—N2—N1112.32 (11)C6—C5—H5119.6
C7—N2—C10127.07 (12)C5—C6—C1119.77 (15)
N1—N2—C10120.47 (11)C5—C6—H6120.1
C11—N3—N4113.70 (11)C1—C6—H6120.1
C11—N3—H3A127.7C8—C7—N2105.56 (12)
N4—N3—H3A118.6C8—C7—C1133.80 (13)
C10—N4—N3103.20 (11)N2—C7—C1120.55 (12)
C10—N5—C11107.82 (11)C7—C8—C9106.58 (12)
C10—N5—N6123.89 (11)C7—C8—H8126.7
C11—N5—N6128.28 (12)C9—C8—H8126.7
N5—N6—H6A107.0N1—C9—C8110.89 (13)
N5—N6—H6B105.4N1—C9—C12120.25 (13)
H6A—N6—H6B109.8C8—C9—C12128.85 (14)
C2—C1—C6119.08 (14)N4—C10—N5112.16 (12)
C2—C1—C7119.82 (13)N4—C10—N2124.53 (13)
C6—C1—C7121.07 (13)N5—C10—N2123.26 (12)
C3—C2—C1120.73 (16)N3—C11—N5103.12 (11)
C3—C2—H2119.6N3—C11—S1129.55 (11)
C1—C2—H2119.6N5—C11—S1127.32 (11)
C4—C3—C2119.73 (16)C9—C12—H12A109.5
C4—C3—H3120.1C9—C12—H12B109.5
C2—C3—H3120.1H12A—C12—H12B109.5
C5—C4—C3119.98 (16)C9—C12—H12C109.5
C5—C4—H4120.0H12A—C12—H12C109.5
C3—C4—H4120.0H12B—C12—H12C109.5
C4—C5—C6120.70 (15)
C9—N1—N2—C70.12 (16)N2—N1—C9—C80.21 (16)
C9—N1—N2—C10176.19 (12)N2—N1—C9—C12178.88 (14)
C11—N3—N4—C100.45 (16)C7—C8—C9—N10.23 (18)
C6—C1—C2—C30.5 (3)C7—C8—C9—C12178.76 (16)
C7—C1—C2—C3178.43 (16)N3—N4—C10—N50.20 (15)
C1—C2—C3—C40.0 (3)N3—N4—C10—N2177.56 (12)
C2—C3—C4—C50.5 (3)C11—N5—C10—N40.75 (15)
C3—C4—C5—C60.4 (3)N6—N5—C10—N4179.53 (12)
C4—C5—C6—C10.1 (2)C11—N5—C10—N2178.15 (12)
C2—C1—C6—C50.5 (2)N6—N5—C10—N23.1 (2)
C7—C1—C6—C5178.45 (13)C7—N2—C10—N464.2 (2)
N1—N2—C7—C80.02 (16)N1—N2—C10—N4111.26 (16)
C10—N2—C7—C8175.74 (13)C7—N2—C10—N5112.89 (16)
N1—N2—C7—C1176.94 (12)N1—N2—C10—N571.66 (18)
C10—N2—C7—C17.3 (2)N4—N3—C11—N50.88 (15)
C2—C1—C7—C8118.65 (19)N4—N3—C11—S1178.60 (11)
C6—C1—C7—C863.4 (2)C10—N5—C11—N30.94 (14)
C2—C1—C7—N257.3 (2)N6—N5—C11—N3179.65 (12)
C6—C1—C7—N2120.64 (15)C10—N5—C11—S1178.55 (10)
N2—C7—C8—C90.14 (16)N6—N5—C11—S10.2 (2)
C1—C7—C8—C9176.23 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N1i0.911.942.8429 (17)169
N6—H6A···S1ii0.912.553.4157 (13)159
N6—H6B···N4iii0.912.433.0059 (18)122
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N1i0.911.942.8429 (17)169
N6—H6A···S1ii0.912.553.4157 (13)159
N6—H6B···N4iii0.912.433.0059 (18)122
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCurtis, A. D. M. (2004). Science of Synthesis, 13, 603–639.  CAS Google Scholar
First citationJin, J.-Y., Zhang, L.-X., Zhang, A.-J., Lei, X.-X. & Zhu, J.-H. (2007). Molecules, 12, 1596–1605.  CrossRef PubMed CAS Google Scholar
First citationJoung, J. K. E. I., Ramm, E. I. & Pabo, C. O. (2000). Proc. Natl Acad. Sci. USA, 97, 7382–7387.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds