organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o222-o223

Crystal structure of 7-[(2E)-2-benzyl­­idene-3-oxobut­­oxy]-4-methyl-2H-chromen-2-one

CROSSMARK_Color_square_no_text.svg

aDepartmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP , Brazil, bDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, cInstituto de Química, Universidade Estadual de Campinas, C.P. 6154, 13083-970 Campinas, SP, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@ufscar.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 February 2015; accepted 13 February 2015; online 4 March 2015)

Two independent mol­ecules (A and B) comprise the asymmetric unit of the title compound, C21H18O4. There are significant conformational differences between the mol­ecules relating in particular to the relative orientation of the 3-oxo-2-(phenyl­methyl­idene)but­oxy substituent with respect to the superimposable chromen-2-one residues. To a first approximation, the substituents are mirror images; both are approximately perpendicular to the chromen-2-one fused ring system with dihedral angles of 88.50 (7) (A) and 81.96 (7)° (B). Another difference between the independent mol­ecules is noted in the dihedral angles between the adjacent phenyl and but-3-en-2-one groups of 8.72 (12) (A) and 27.70 (10)° (B). The conformation about the ethene bond in both mol­ecules is E. The crystal packing features C—H⋯O, C—H⋯π(ar­yl) and ππ [CgCg = 3.6657 (8) and 3.7778 (8) Å] stacking inter­actions, which generate a three-dimensional network.

1. Related literature

For background to the biotransformation procedure mediated by Saccharomyces cerevisiae, see: de Paula et al. (2013[Paula, B. R. S. de, Zampieri, D. S., Rodrigues, J. A. R. & Moran, P. J. S. (2013). Tetrahedron Asymmetry, 24, 973-981.]). For the structure of the closely related compounds 7-all­yloxy-2H-chromen-2-one and (3E)-3-(4-nitro­phen­oxy­meth­yl)-4-phenyl­but-3-en-2-one, see: Seth et al. (2011[Seth, S. K., Sarkar, D., JANA, A. D. & Kar, T. (2011). Cryst. Growth Des. 11, 4837-4849.]); Zukerman-Schpector et al. (2014[Zukerman-Schpector, J., Maganhi, S. H., Moran, P. J. S., Paula, B. R. S. de, Nucci, P. R. & Tiekink, E. R. T. (2014). Acta Cryst. E70, o1020-o1021.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H18O4

  • Mr = 334.36

  • Triclinic, [P \overline 1]

  • a = 9.7755 (8) Å

  • b = 12.3986 (10) Å

  • c = 14.1827 (11) Å

  • α = 86.293 (3)°

  • β = 84.328 (2)°

  • γ = 86.816 (2)°

  • V = 1704.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.52 × 0.38 × 0.33 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.664, Tmax = 0.745

  • 18494 measured reflections

  • 6263 independent reflections

  • 5296 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.124

  • S = 1.05

  • 6263 reflections

  • 456 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O8i 0.93 2.59 3.4778 (19) 159
C9—H9⋯O3ii 0.93 2.52 3.381 (2) 155
C30—H30⋯O7iii 0.93 2.59 3.441 (2) 153
C42—H42B⋯O1 0.96 2.53 3.427 (2) 155
C25—H25CCg1iv 0.96 2.64 3.5238 (18) 152
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x+3, -y, -z+2; (iv) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMOL (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

These title compound was synthetized to be used as a substrate in the modelling of the biotransformation procedure mediated by Saccharomyces cerevisiae,specifically in order to compare the role of different leaving groups (de Paula et al., 2013). The goal was to develop a procedure that could follow the reaction progress by colorimetric or fluorescence techniques.

Related literature top

For background to the biotransformation procedure mediated by Saccharomyces cerevisiae, see: de Paula et al. (2013). For the structure of the closely related compounds 7-allyloxy-2H-chromen-2-one and (3E)-3-(4-nitrophenoxymethyl)-4-phenylbut-3-en-2-one, see: Seth et al. (2011); Zukerman-Schpector et al. (2014).

Experimental top

4-Methylumbelliferone (352 mg, 2 mmol) and potassium carbonate (232 mg, 2.4 mmol) were added to a solution of (E)-3-bromomethyl-4-phenyl-3-buten-2-one (478 mg, 2 mmol) in dry acetone (4 ml). The solution was stirred for 3 h, and then filtered. The solvent was evaporated, and the residue was recrystallized from a CH2Cl2/hexane mixture to afford the product as a colourless solid in 63% yield. The product was recrystallized by slow evaporation of a 3:1 CH2Cl2/hexane mixture. M.pt 188.1–189.1 °C. 1H NMR (CD2Cl2, 400 MHz): δ 2.40 (d, 3H, J = 1.2 Hz), 2.51 (s, 3H), 4.88 (s, 2H), 6.10 (q, 1H, J = 1.2 Hz), 6.87 (d, 1H, J = 2.4 Hz), 6.92 (dd, 1H, J = 2.4, 8.8 Hz), 7.38–7.51 (m, 5H), 7.55 (d, 1H, J = 8.8 Hz), 7.91 (s, 1H). 13C NMR (CD2Cl2, 150 MHz): δ 19.0, 26.4, 62.7, 102.5, 112.6, 113.0, 114.6, 126.3, 129.4, 130.2, 130.4, 135.0, 135.8, 146.3, 153.2, 155.8, 161.4, 162.0, 198.6.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2 Ueq(C).

Structure description top

These title compound was synthetized to be used as a substrate in the modelling of the biotransformation procedure mediated by Saccharomyces cerevisiae,specifically in order to compare the role of different leaving groups (de Paula et al., 2013). The goal was to develop a procedure that could follow the reaction progress by colorimetric or fluorescence techniques.

For background to the biotransformation procedure mediated by Saccharomyces cerevisiae, see: de Paula et al. (2013). For the structure of the closely related compounds 7-allyloxy-2H-chromen-2-one and (3E)-3-(4-nitrophenoxymethyl)-4-phenylbut-3-en-2-one, see: Seth et al. (2011); Zukerman-Schpector et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMOL (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent molecules in title compound showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Superimposition of the two independent molecules. Molecule A is shown in red and inverted B in blue. The molecules have been superimposed such that the chromen-2-one rings are overlapped.
[Figure 3] Fig. 3. A view in projection down [0 1 1] of the unit-cell contents. The C—H···O, C—H···π and ππ interactions are shown as orange, blue and purple dashed lines, respectively.
7-[(2E)-2-Benzylidene-3-oxobutoxy]-4-methyl-2H-chromen-2-one top
Crystal data top
C21H18O4Z = 4
Mr = 334.36F(000) = 704
Triclinic, P1Dx = 1.303 Mg m3
a = 9.7755 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.3986 (10) ÅCell parameters from 9897 reflections
c = 14.1827 (11) Åθ = 2.7–25.4°
α = 86.293 (3)°µ = 0.09 mm1
β = 84.328 (2)°T = 296 K
γ = 86.816 (2)°Slab, colourless
V = 1704.9 (2) Å30.52 × 0.38 × 0.33 mm
Data collection top
Bruker APEXII CCD
diffractometer
5296 reflections with I > 2σ(I)
φ and ω scansRint = 0.022
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 25.5°, θmin = 1.5°
Tmin = 0.664, Tmax = 0.745h = 1111
18494 measured reflectionsk = 1411
6263 independent reflectionsl = 1712
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.3298P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.34 e Å3
6263 reflectionsΔρmin = 0.20 e Å3
456 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0232 (15)
Crystal data top
C21H18O4γ = 86.816 (2)°
Mr = 334.36V = 1704.9 (2) Å3
Triclinic, P1Z = 4
a = 9.7755 (8) ÅMo Kα radiation
b = 12.3986 (10) ŵ = 0.09 mm1
c = 14.1827 (11) ÅT = 296 K
α = 86.293 (3)°0.52 × 0.38 × 0.33 mm
β = 84.328 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
6263 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5296 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.745Rint = 0.022
18494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
6263 reflectionsΔρmin = 0.20 e Å3
456 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66167 (15)0.54439 (11)0.77694 (10)0.0509 (3)
H1A0.64240.56880.71300.061*
H1B0.75530.56120.78530.061*
C20.56313 (14)0.60008 (11)0.84772 (9)0.0461 (3)
C30.61877 (16)0.61816 (12)0.93888 (10)0.0552 (4)
C40.53887 (19)0.68481 (15)1.01131 (11)0.0697 (5)
H4A0.59690.69951.05930.105*
H4B0.46160.64601.04000.105*
H4C0.50670.75180.98130.105*
C50.43370 (14)0.63270 (11)0.83276 (10)0.0482 (3)
H50.38680.67200.88060.058*
C60.35438 (15)0.61632 (12)0.75311 (10)0.0525 (3)
C70.37769 (18)0.52938 (13)0.69523 (11)0.0614 (4)
H70.45020.47930.70470.074*
C80.2945 (2)0.51655 (16)0.62389 (13)0.0760 (5)
H80.31180.45820.58570.091*
C90.1871 (2)0.58891 (19)0.60901 (14)0.0851 (6)
H90.13070.57930.56140.102*
C100.1628 (2)0.67582 (19)0.66457 (15)0.0836 (6)
H100.09080.72590.65360.100*
C110.24423 (17)0.68949 (16)0.73662 (13)0.0680 (4)
H110.22560.74800.77460.082*
C120.73601 (14)0.36282 (11)0.74086 (9)0.0462 (3)
C130.83798 (14)0.39762 (11)0.67315 (9)0.0450 (3)
H130.84790.47090.65730.054*
C140.92491 (13)0.31981 (11)0.62973 (9)0.0415 (3)
C151.11843 (15)0.29105 (12)0.51475 (10)0.0491 (3)
C161.10802 (15)0.17735 (12)0.53629 (10)0.0507 (3)
H161.17120.13000.50480.061*
C171.01082 (15)0.13580 (11)0.60016 (9)0.0469 (3)
C180.91298 (14)0.20950 (11)0.64932 (9)0.0430 (3)
C190.80687 (15)0.17767 (11)0.71703 (10)0.0506 (3)
H190.79500.10440.73170.061*
C200.72030 (16)0.25230 (12)0.76206 (10)0.0526 (4)
H200.65050.22950.80710.063*
C211.00109 (18)0.01671 (12)0.62083 (11)0.0619 (4)
H21A1.07400.02090.58390.093*
H21B0.91390.00500.60480.093*
H21C1.00900.00050.68710.093*
C221.42046 (16)0.01415 (12)0.66110 (11)0.0550 (4)
H22A1.49460.05030.68460.066*
H22B1.38720.05850.60840.066*
C231.47095 (15)0.09526 (11)0.62931 (10)0.0494 (3)
C241.40983 (15)0.12992 (12)0.54516 (10)0.0534 (4)
C251.45639 (18)0.23594 (13)0.50425 (11)0.0636 (4)
H25A1.55370.23670.48620.095*
H25B1.40880.24500.44940.095*
H25C1.43640.29390.55090.095*
C261.56948 (14)0.15546 (11)0.66955 (10)0.0485 (3)
H261.59450.22060.64200.058*
C271.64397 (16)0.13415 (12)0.75052 (10)0.0531 (4)
C281.59257 (19)0.06977 (15)0.82394 (11)0.0681 (4)
H281.50320.03950.82500.082*
C291.6727 (2)0.05022 (17)0.89526 (13)0.0841 (6)
H291.63760.00570.94310.101*
C301.8031 (2)0.0959 (2)0.89606 (15)0.0893 (6)
H301.85730.08130.94360.107*
C311.8537 (2)0.16322 (19)0.82661 (15)0.0864 (6)
H311.94130.19610.82820.104*
C321.77542 (17)0.18246 (15)0.75440 (13)0.0671 (4)
H321.81090.22830.70760.081*
C331.24785 (15)0.08942 (11)0.77207 (9)0.0476 (3)
C341.13865 (15)0.07032 (11)0.83951 (9)0.0479 (3)
H341.11580.00010.85880.057*
C351.06426 (14)0.15711 (11)0.87758 (9)0.0433 (3)
C360.87152 (16)0.21257 (12)0.98414 (10)0.0538 (4)
C370.90271 (15)0.32257 (12)0.95757 (10)0.0526 (4)
H370.84610.37750.98430.063*
C381.00978 (14)0.34977 (11)0.89585 (9)0.0464 (3)
C391.09595 (14)0.26388 (11)0.85298 (9)0.0435 (3)
C401.20862 (15)0.27995 (12)0.78721 (10)0.0515 (3)
H401.23390.35020.77000.062*
C411.28442 (15)0.19480 (12)0.74656 (10)0.0539 (4)
H411.35940.20780.70240.065*
C421.04227 (17)0.46471 (12)0.87027 (12)0.0605 (4)
H42A1.13040.47800.89040.091*
H42B0.97300.51170.90120.091*
H42C1.04440.47840.80280.091*
O10.72972 (14)0.57721 (13)0.95517 (10)0.0940 (5)
O20.64601 (10)0.42965 (8)0.79142 (7)0.0555 (3)
O31.02571 (10)0.35905 (7)0.56416 (6)0.0474 (2)
O41.20006 (12)0.33432 (9)0.45684 (8)0.0693 (3)
O51.32377 (13)0.07151 (11)0.50820 (9)0.0787 (4)
O61.31154 (11)0.00128 (8)0.73480 (7)0.0594 (3)
O70.95511 (10)0.13252 (8)0.94262 (7)0.0516 (3)
O80.77875 (13)0.18204 (10)1.04032 (9)0.0789 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0502 (8)0.0476 (8)0.0527 (8)0.0014 (6)0.0055 (6)0.0058 (6)
C20.0466 (8)0.0448 (7)0.0451 (7)0.0007 (6)0.0036 (6)0.0037 (6)
C30.0535 (9)0.0591 (9)0.0517 (8)0.0054 (7)0.0029 (7)0.0043 (7)
C40.0750 (11)0.0830 (12)0.0516 (9)0.0060 (9)0.0045 (8)0.0195 (8)
C50.0473 (8)0.0498 (8)0.0459 (7)0.0000 (6)0.0043 (6)0.0048 (6)
C60.0475 (8)0.0588 (8)0.0501 (8)0.0086 (7)0.0001 (6)0.0018 (6)
C70.0688 (10)0.0556 (9)0.0614 (9)0.0117 (8)0.0117 (8)0.0001 (7)
C80.0943 (14)0.0721 (11)0.0664 (11)0.0254 (10)0.0215 (10)0.0011 (9)
C90.0848 (14)0.1025 (16)0.0728 (12)0.0271 (12)0.0317 (11)0.0141 (11)
C100.0601 (11)0.1067 (16)0.0838 (13)0.0014 (10)0.0202 (10)0.0108 (12)
C110.0510 (9)0.0832 (12)0.0686 (10)0.0031 (8)0.0048 (8)0.0026 (9)
C120.0500 (8)0.0476 (7)0.0399 (7)0.0048 (6)0.0011 (6)0.0051 (6)
C130.0512 (8)0.0406 (7)0.0422 (7)0.0022 (6)0.0011 (6)0.0034 (5)
C140.0437 (7)0.0458 (7)0.0353 (6)0.0009 (5)0.0051 (5)0.0047 (5)
C150.0453 (8)0.0547 (8)0.0476 (7)0.0017 (6)0.0002 (6)0.0146 (6)
C160.0503 (8)0.0521 (8)0.0507 (8)0.0068 (6)0.0059 (6)0.0172 (6)
C170.0548 (8)0.0447 (7)0.0435 (7)0.0034 (6)0.0144 (6)0.0114 (6)
C180.0499 (8)0.0427 (7)0.0378 (6)0.0012 (6)0.0096 (6)0.0069 (5)
C190.0637 (9)0.0408 (7)0.0470 (7)0.0049 (6)0.0038 (6)0.0020 (6)
C200.0585 (9)0.0526 (8)0.0445 (7)0.0051 (7)0.0059 (6)0.0012 (6)
C210.0819 (11)0.0447 (8)0.0599 (9)0.0044 (7)0.0084 (8)0.0116 (7)
C220.0587 (9)0.0510 (8)0.0519 (8)0.0034 (7)0.0086 (7)0.0032 (6)
C230.0497 (8)0.0493 (8)0.0472 (7)0.0031 (6)0.0048 (6)0.0064 (6)
C240.0510 (8)0.0594 (9)0.0479 (8)0.0018 (7)0.0037 (6)0.0053 (7)
C250.0733 (11)0.0645 (10)0.0535 (9)0.0042 (8)0.0001 (8)0.0151 (7)
C260.0494 (8)0.0457 (7)0.0487 (8)0.0015 (6)0.0044 (6)0.0050 (6)
C270.0550 (9)0.0509 (8)0.0526 (8)0.0075 (7)0.0026 (7)0.0028 (6)
C280.0751 (11)0.0753 (11)0.0539 (9)0.0009 (9)0.0068 (8)0.0065 (8)
C290.1088 (17)0.0907 (14)0.0555 (10)0.0165 (12)0.0136 (10)0.0068 (9)
C300.0939 (16)0.1127 (17)0.0658 (12)0.0307 (13)0.0284 (11)0.0124 (11)
C310.0666 (12)0.1114 (17)0.0821 (13)0.0081 (11)0.0208 (10)0.0113 (12)
C320.0590 (10)0.0730 (11)0.0685 (10)0.0027 (8)0.0073 (8)0.0041 (8)
C330.0518 (8)0.0474 (7)0.0426 (7)0.0075 (6)0.0010 (6)0.0086 (6)
C340.0550 (8)0.0432 (7)0.0439 (7)0.0044 (6)0.0006 (6)0.0037 (6)
C350.0454 (7)0.0492 (7)0.0348 (6)0.0043 (6)0.0035 (5)0.0045 (5)
C360.0536 (9)0.0573 (9)0.0480 (8)0.0108 (7)0.0037 (7)0.0078 (6)
C370.0534 (8)0.0515 (8)0.0526 (8)0.0113 (7)0.0036 (7)0.0145 (6)
C380.0500 (8)0.0467 (7)0.0441 (7)0.0063 (6)0.0118 (6)0.0104 (6)
C390.0477 (8)0.0450 (7)0.0385 (7)0.0036 (6)0.0086 (6)0.0076 (5)
C400.0570 (9)0.0459 (8)0.0511 (8)0.0029 (6)0.0004 (7)0.0054 (6)
C410.0533 (8)0.0579 (9)0.0486 (8)0.0013 (7)0.0061 (6)0.0073 (6)
C420.0666 (10)0.0456 (8)0.0698 (10)0.0040 (7)0.0065 (8)0.0132 (7)
O10.0745 (9)0.1308 (12)0.0787 (9)0.0390 (8)0.0274 (7)0.0288 (8)
O20.0588 (6)0.0479 (6)0.0549 (6)0.0049 (5)0.0153 (5)0.0027 (4)
O30.0486 (5)0.0452 (5)0.0469 (5)0.0001 (4)0.0050 (4)0.0069 (4)
O40.0645 (7)0.0653 (7)0.0735 (7)0.0037 (6)0.0229 (6)0.0136 (6)
O50.0785 (8)0.0898 (9)0.0687 (8)0.0230 (7)0.0204 (6)0.0139 (6)
O60.0631 (7)0.0521 (6)0.0587 (6)0.0062 (5)0.0151 (5)0.0088 (5)
O70.0554 (6)0.0472 (5)0.0487 (5)0.0064 (4)0.0075 (4)0.0035 (4)
O80.0771 (8)0.0693 (8)0.0805 (8)0.0095 (6)0.0320 (7)0.0023 (6)
Geometric parameters (Å, º) top
C1—O21.4387 (17)C22—O61.4281 (17)
C1—C21.4956 (18)C22—C231.4992 (19)
C1—H1A0.9700C22—H22A0.9700
C1—H1B0.9700C22—H22B0.9700
C2—C51.3396 (19)C23—C261.336 (2)
C2—C31.486 (2)C23—C241.484 (2)
C3—O11.2085 (18)C24—O51.2155 (18)
C3—C41.493 (2)C24—C251.500 (2)
C4—H4A0.9600C25—H25A0.9600
C4—H4B0.9600C25—H25B0.9600
C4—H4C0.9600C25—H25C0.9600
C5—C61.463 (2)C26—C271.465 (2)
C5—H50.9300C26—H260.9300
C6—C71.392 (2)C27—C281.390 (2)
C6—C111.397 (2)C27—C321.392 (2)
C7—C81.381 (2)C28—C291.380 (2)
C7—H70.9300C28—H280.9300
C8—C91.366 (3)C29—C301.367 (3)
C8—H80.9300C29—H290.9300
C9—C101.372 (3)C30—C311.370 (3)
C9—H90.9300C30—H300.9300
C10—C111.380 (3)C31—C321.378 (3)
C10—H100.9300C31—H310.9300
C11—H110.9300C32—H320.9300
C12—O21.3586 (15)C33—O61.3659 (16)
C12—C131.3808 (19)C33—C341.381 (2)
C12—C201.397 (2)C33—C411.390 (2)
C13—C141.3836 (18)C34—C351.3744 (18)
C13—H130.9300C34—H340.9300
C14—O31.3733 (16)C35—O71.3739 (16)
C14—C181.3870 (19)C35—C391.3908 (19)
C15—O41.2084 (18)C36—O81.2070 (18)
C15—O31.3747 (16)C36—O71.3748 (16)
C15—C161.430 (2)C36—C371.432 (2)
C16—C171.346 (2)C37—C381.340 (2)
C16—H160.9300C37—H370.9300
C17—C181.4455 (18)C38—C391.4479 (18)
C17—C211.493 (2)C38—C421.491 (2)
C18—C191.398 (2)C39—C401.386 (2)
C19—C201.3648 (19)C40—C411.3797 (19)
C19—H190.9300C40—H400.9300
C20—H200.9300C41—H410.9300
C21—H21A0.9600C42—H42A0.9600
C21—H21B0.9600C42—H42B0.9600
C21—H21C0.9600C42—H42C0.9600
O2—C1—C2108.32 (11)C23—C22—H22A110.2
O2—C1—H1A110.0O6—C22—H22B110.2
C2—C1—H1A110.0C23—C22—H22B110.2
O2—C1—H1B110.0H22A—C22—H22B108.5
C2—C1—H1B110.0C26—C23—C24121.63 (13)
H1A—C1—H1B108.4C26—C23—C22123.12 (13)
C5—C2—C3120.75 (12)C24—C23—C22115.14 (13)
C5—C2—C1124.21 (13)O5—C24—C23120.00 (14)
C3—C2—C1115.04 (12)O5—C24—C25119.89 (14)
O1—C3—C2119.53 (14)C23—C24—C25120.09 (13)
O1—C3—C4119.44 (14)C24—C25—H25A109.5
C2—C3—C4121.03 (13)C24—C25—H25B109.5
C3—C4—H4A109.5H25A—C25—H25B109.5
C3—C4—H4B109.5C24—C25—H25C109.5
H4A—C4—H4B109.5H25A—C25—H25C109.5
C3—C4—H4C109.5H25B—C25—H25C109.5
H4A—C4—H4C109.5C23—C26—C27129.65 (13)
H4B—C4—H4C109.5C23—C26—H26115.2
C2—C5—C6130.26 (13)C27—C26—H26115.2
C2—C5—H5114.9C28—C27—C32117.74 (15)
C6—C5—H5114.9C28—C27—C26124.75 (14)
C7—C6—C11117.75 (15)C32—C27—C26117.51 (14)
C7—C6—C5124.07 (14)C29—C28—C27120.72 (18)
C11—C6—C5118.12 (14)C29—C28—H28119.6
C8—C7—C6120.84 (17)C27—C28—H28119.6
C8—C7—H7119.6C30—C29—C28120.48 (19)
C6—C7—H7119.6C30—C29—H29119.8
C9—C8—C7120.53 (19)C28—C29—H29119.8
C9—C8—H8119.7C29—C30—C31119.77 (19)
C7—C8—H8119.7C29—C30—H30120.1
C8—C9—C10119.74 (18)C31—C30—H30120.1
C8—C9—H9120.1C30—C31—C32120.3 (2)
C10—C9—H9120.1C30—C31—H31119.8
C9—C10—C11120.50 (19)C32—C31—H31119.8
C9—C10—H10119.7C31—C32—C27120.87 (18)
C11—C10—H10119.7C31—C32—H32119.6
C10—C11—C6120.63 (18)C27—C32—H32119.6
C10—C11—H11119.7O6—C33—C34114.83 (12)
C6—C11—H11119.7O6—C33—C41125.12 (13)
O2—C12—C13124.43 (12)C34—C33—C41120.05 (12)
O2—C12—C20115.23 (12)C35—C34—C33118.86 (13)
C13—C12—C20120.34 (12)C35—C34—H34120.6
C12—C13—C14117.79 (12)C33—C34—H34120.6
C12—C13—H13121.1O7—C35—C34115.89 (12)
C14—C13—H13121.1O7—C35—C39121.17 (12)
O3—C14—C13115.28 (11)C34—C35—C39122.94 (13)
O3—C14—C18121.25 (11)O8—C36—O7115.77 (14)
C13—C14—C18123.47 (12)O8—C36—C37126.60 (13)
O4—C15—O3115.98 (13)O7—C36—C37117.63 (13)
O4—C15—C16126.84 (13)C38—C37—C36122.93 (13)
O3—C15—C16117.17 (12)C38—C37—H37118.5
C17—C16—C15122.92 (13)C36—C37—H37118.5
C17—C16—H16118.5C37—C38—C39118.30 (13)
C15—C16—H16118.5C37—C38—C42122.24 (13)
C16—C17—C18118.49 (13)C39—C38—C42119.46 (13)
C16—C17—C21121.99 (13)C40—C39—C35116.64 (12)
C18—C17—C21119.52 (13)C40—C39—C38124.60 (13)
C14—C18—C19116.91 (12)C35—C39—C38118.75 (13)
C14—C18—C17118.52 (13)C41—C40—C39121.97 (14)
C19—C18—C17124.56 (13)C41—C40—H40119.0
C20—C19—C18121.14 (13)C39—C40—H40119.0
C20—C19—H19119.4C40—C41—C33119.50 (13)
C18—C19—H19119.4C40—C41—H41120.3
C19—C20—C12120.32 (13)C33—C41—H41120.3
C19—C20—H20119.8C38—C42—H42A109.5
C12—C20—H20119.8C38—C42—H42B109.5
C17—C21—H21A109.5H42A—C42—H42B109.5
C17—C21—H21B109.5C38—C42—H42C109.5
H21A—C21—H21B109.5H42A—C42—H42C109.5
C17—C21—H21C109.5H42B—C42—H42C109.5
H21A—C21—H21C109.5C12—O2—C1118.01 (11)
H21B—C21—H21C109.5C14—O3—C15121.63 (11)
O6—C22—C23107.67 (12)C33—O6—C22117.14 (11)
O6—C22—H22A110.2C35—O7—C36121.20 (11)
O2—C1—C2—C589.47 (16)C22—C23—C26—C272.4 (2)
O2—C1—C2—C390.67 (15)C23—C26—C27—C2826.9 (3)
C5—C2—C3—O1171.46 (16)C23—C26—C27—C32153.46 (16)
C1—C2—C3—O18.7 (2)C32—C27—C28—C293.4 (3)
C5—C2—C3—C47.6 (2)C26—C27—C28—C29177.02 (16)
C1—C2—C3—C4172.22 (14)C27—C28—C29—C301.5 (3)
C3—C2—C5—C6174.56 (14)C28—C29—C30—C311.3 (3)
C1—C2—C5—C65.6 (2)C29—C30—C31—C322.0 (3)
C2—C5—C6—C726.7 (2)C30—C31—C32—C270.0 (3)
C2—C5—C6—C11156.43 (16)C28—C27—C32—C312.6 (3)
C11—C6—C7—C80.2 (2)C26—C27—C32—C31177.72 (16)
C5—C6—C7—C8177.05 (15)O6—C33—C34—C35176.91 (12)
C6—C7—C8—C90.3 (3)C41—C33—C34—C352.6 (2)
C7—C8—C9—C100.9 (3)C33—C34—C35—O7178.55 (12)
C8—C9—C10—C111.3 (3)C33—C34—C35—C391.6 (2)
C9—C10—C11—C61.2 (3)O8—C36—C37—C38178.55 (16)
C7—C6—C11—C100.6 (2)O7—C36—C37—C381.0 (2)
C5—C6—C11—C10177.68 (16)C36—C37—C38—C391.2 (2)
O2—C12—C13—C14177.87 (12)C36—C37—C38—C42178.88 (14)
C20—C12—C13—C141.7 (2)O7—C35—C39—C40179.56 (12)
C12—C13—C14—O3178.97 (11)C34—C35—C39—C400.3 (2)
C12—C13—C14—C181.4 (2)O7—C35—C39—C381.25 (19)
O4—C15—C16—C17177.92 (15)C34—C35—C39—C38178.93 (12)
O3—C15—C16—C171.6 (2)C37—C38—C39—C40179.06 (13)
C15—C16—C17—C180.2 (2)C42—C38—C39—C400.9 (2)
C15—C16—C17—C21179.40 (13)C37—C38—C39—C350.06 (19)
O3—C14—C18—C19179.87 (11)C42—C38—C39—C35179.99 (12)
C13—C14—C18—C190.22 (19)C35—C39—C40—C411.2 (2)
O3—C14—C18—C170.99 (18)C38—C39—C40—C41177.95 (13)
C13—C14—C18—C17179.35 (12)C39—C40—C41—C330.2 (2)
C16—C17—C18—C141.07 (19)O6—C33—C41—C40177.74 (13)
C21—C17—C18—C14179.32 (12)C34—C33—C41—C401.7 (2)
C16—C17—C18—C19179.86 (13)C13—C12—O2—C13.1 (2)
C21—C17—C18—C190.3 (2)C20—C12—O2—C1176.50 (12)
C14—C18—C19—C200.6 (2)C2—C1—O2—C12173.35 (12)
C17—C18—C19—C20178.49 (13)C13—C14—O3—C15179.27 (11)
C18—C19—C20—C120.2 (2)C18—C14—O3—C150.42 (18)
O2—C12—C20—C19178.64 (13)O4—C15—O3—C14177.88 (12)
C13—C12—C20—C191.0 (2)C16—C15—O3—C141.65 (18)
O6—C22—C23—C2688.27 (17)C34—C33—O6—C22176.75 (12)
O6—C22—C23—C2495.48 (15)C41—C33—O6—C222.7 (2)
C26—C23—C24—O5177.42 (15)C23—C22—O6—C33178.10 (12)
C22—C23—C24—O51.1 (2)C34—C35—O7—C36178.73 (12)
C26—C23—C24—C251.2 (2)C39—C35—O7—C361.44 (19)
C22—C23—C24—C25177.53 (13)O8—C36—O7—C35179.95 (13)
C24—C23—C26—C27178.41 (14)C37—C36—O7—C350.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O8i0.932.593.4778 (19)159
C9—H9···O3ii0.932.523.381 (2)155
C30—H30···O7iii0.932.593.441 (2)153
C42—H42B···O10.962.533.427 (2)155
C25—H25C···Cg1iv0.962.643.5238 (18)152
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+3, y, z+2; (iv) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O8i0.932.593.4778 (19)159
C9—H9···O3ii0.932.523.381 (2)155
C30—H30···O7iii0.932.593.441 (2)153
C42—H42B···O10.962.533.427 (2)155
C25—H25C···Cg1iv0.962.643.5238 (18)152
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+3, y, z+2; (iv) x+1, y1, z.
 

Acknowledgements

We thank Professor Regina H. A. Santos from IQSC–USP for the X-ray data collection. The Brazilian agencies CNPq (306121/2013-2 to IC, 305626/2013-2 to JZS and 304730/2013-0 to PJSM), FAPESP (2012/08385-6 to BRSP) and CAPES are acknowledged for financial support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. https://www.chemaxon.com.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPaula, B. R. S. de, Zampieri, D. S., Rodrigues, J. A. R. & Moran, P. J. S. (2013). Tetrahedron Asymmetry, 24, 973–981.  Google Scholar
First citationSeth, S. K., Sarkar, D., JANA, A. D. & Kar, T. (2011). Cryst. Growth Des. 11, 4837–4849.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Maganhi, S. H., Moran, P. J. S., Paula, B. R. S. de, Nucci, P. R. & Tiekink, E. R. T. (2014). Acta Cryst. E70, o1020–o1021.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o222-o223
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds