organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o476-o477

3-Amino-1-(4-fluoro­phen­yl)-8-meth­­oxy-1H-benzo[f]chromene-2-carbo­nitrile

aChemistry Department, Faculty of Science, King Khalid University, Abha 61413, PO Box 9004, Saudi Arabia, bChemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt, cPharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, dDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, eApplied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt, fDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and gChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 February 2013; accepted 25 February 2013; online 2 March 2013)

The title compound, C21H15FN2O2, features an approximately planar 1H-benzo[f]chromene fused-ring system (r.m.s. deviation for the 14 non-H atoms = 0.052 Å), with the fluoro­benzene ring being almost perpendicular to this [dihedral angle = 85.30 (7) °]. The furan ring has a flattened half-chair conformation, with the methine C atom deviating by 0.132 (2) Å from the plane of the remaining atoms (r.m.s. deviation = 0.0107 Å). In the crystal, inversion dimers are formed via pairs of amine–cyano N—H⋯N hydrogen bonds. The dimers are connected into a three-dimensional architecture by C—H⋯N(cyano), C—H⋯π and ππ [inter­centroid distance = 3.6671 (10) Å] inter­actions.

Related literature

For background and various applications of benzo- and naphtho­pyran- derivatives, see: Bonsignore et al. (1993[Bonsignore, L., Loy, G., Secci, D. & Calignano, A. (1993). Eur. J. Med. Chem. 28, 517-520.]); Hafez et al. (1987[Hafez, E. A. A., Elnagdi, M. H., Elagamey, A. G. A. & El-Taweel, F. M. A. A. (1987). Heterocycles, 26, 903-907.]). For background to the chemistry and biological activity of 4H-pyran derivatives, see: El-Agrody et al. (2011[El-Agrody, A. M., Sabry, N. M. & Motlaq, S. S. (2011). J. Chem. Res. 35, 77-83.]); Sabry et al. (2011[Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765-772.]). For related structures, see: Wang et al. (2008[Wang, X.-S., Yang, G.-S. & Zhao, G. (2008). Tetrahedron Asymmetry, 19, 709-714.]); Shekhar et al. (2012[Shekhar, A. C., Kumar, A. R., Sathaiah, G., Raju, K., Rao, P. S., Sridhar, M., Narsaiah, B., Srinivas, P. V. S. S. & Sridhar, B. (2012). Helv. Chim. Acta, 95, 502-508.]); Amr et al. (2013[Amr, A. E.-G. E., El-Agrody, A. M., Al-Omar, M. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o478-o479.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15FN2O2

  • Mr = 346.35

  • Triclinic, [P \overline 1]

  • a = 8.9672 (7) Å

  • b = 10.4365 (8) Å

  • c = 10.9058 (8) Å

  • α = 103.063 (7)°

  • β = 106.859 (7)°

  • γ = 111.399 (8)°

  • V = 844.01 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.722, Tmax = 1.000

  • 7109 measured reflections

  • 3902 independent reflections

  • 2716 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.138

  • S = 1.05

  • 3902 reflections

  • 244 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C4,C9,C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.89 (2) 2.16 (2) 3.043 (2) 170.0 (18)
C19—H19⋯N2ii 0.93 2.51 3.259 (3) 138
C11—H11⋯Cg1iii 0.98 2.90 3.7084 (17) 141
C14—H14CCg1iv 0.96 2.92 3.772 (3) 148
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzo- and naphthopyran-derivatives can possess biological and pharmacological activities, such as anti-coagulant, spasmolytic, diuretic, anti-cancer and anti-anaphylactin activities (Bonsignore et al., 1993). Some of these compounds can also be employed as cosmetics, pigments and as potential biodegradable agrochemicals (Hafez, et al., 1987). Derivatives of 4H-pyran are also known to exhibit biological activities (El-Agrody et al., 2011; Sabry et al., 2011), and form the focus of on-going studies of their chemistry. In this connection, herein, the crystal and molecular structure of the title compound, (I), is described.

In (I), Fig. 1, the 14 non-hydrogen atoms of the 1H-benzo[f]chromene fused-ring system are co-planar with a r.m.s. deviation of the fitted atoms = 0.052 Å. The maximum deviations are 0.136 (2) Å for the methine-C11 atom and -0.052 (2) Å for the aromatic-C7 atom. This implies that the furan ring is approximately planar as borne out by the observation that the methine-C11 atom lies only 0.132 (2) Å above the plane of the remaining atoms (r.m.s. deviation = 0.0107 Å), indicating a flattened half-chair conformation. The fluorobenzene ring is approximately perpendicular to the 1H-benzo[f]chromene residue, forming a dihedral angle of 85.30 (7)°. The methoxy group is co-planar with the ring to which it is attached as seen in the value of the C14—O2—C6—C5 torsion angle of 0.5 (3)°. The structure described here resembles very closely those of the 4-bromo (Wang et al., 2008) and 2-CF3 (Shekhar et al., 2012) derivatives of the parent compound, as well as that of the 7-methoxy analogue (Amr et al., 2013).

Hydrogen bonding features in the crystal packing whereby 12-membered {···HNC3N}2 synthons formed by centrosymmetrically related molecules arise from the formation of amine-NH···N(cyano) hydrogen bonds, Table 1. These are connected into a three-dimensional architecture by CH···N2(cyano), C—H···π and ππ [inter-centroid distance for (O1,C1,C10–C13)···(C4–C9)i = 3.6671 (10) Å, inter-planar angle = 4.19 (8)° for i: 1 - x, 1 - y, 1 - z] interactions, Fig. 2 and Table 1. The second amine-H2 atom does not participate in a significant intermolecular interaction.

Related literature top

For background and various applications of benzo- and naphthopyran- derivatives, see: Bonsignore et al. (1993); Hafez et al. (1987). For background to the chemistry and biological activity of 4H-pyran derivatives, see: El-Agrody et al. (2011); Sabry et al. (2011). For related structures, see: Wang et al. (2008); Shekhar et al. (2012); Amr et al. (2013).

Experimental top

A solution of 6-bromo-2-naphthol (0.01 mol) in EtOH (30 ml) was treated with α-cyano-p-fluorocinnamonitrile (0.01 mol) and piperidine (0.5 ml). The reaction mixture was heated until complete precipitation occurred corresponding to a reaction time of 60 min. The solid product which formed was collected by filtration and recrystallized from ethanol to give the title compound, (I), in the form of light brown prisms; M.pt: 529–530 K.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound-H atoms were refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the crystal packing in (I). The N—H···N, C—H···N, C—H···π and ππ interactions are shown as blue, orange, purple and brown dashed lines, respectively.
3-Amino-1-(4-fluorophenyl)-8-methoxy-1H-benzo[f]chromene-2-carbonitrile top
Crystal data top
C21H15FN2O2Z = 2
Mr = 346.35F(000) = 360
Triclinic, P1Dx = 1.363 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9672 (7) ÅCell parameters from 2078 reflections
b = 10.4365 (8) Åθ = 3.2–27.5°
c = 10.9058 (8) ŵ = 0.10 mm1
α = 103.063 (7)°T = 295 K
β = 106.859 (7)°Prism, light-brown
γ = 111.399 (8)°0.30 × 0.20 × 0.10 mm
V = 844.01 (11) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3902 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2716 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.2°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1312
Tmin = 0.722, Tmax = 1.000l = 1413
7109 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.1033P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3902 reflectionsΔρmax = 0.20 e Å3
244 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (4)
Crystal data top
C21H15FN2O2γ = 111.399 (8)°
Mr = 346.35V = 844.01 (11) Å3
Triclinic, P1Z = 2
a = 8.9672 (7) ÅMo Kα radiation
b = 10.4365 (8) ŵ = 0.10 mm1
c = 10.9058 (8) ÅT = 295 K
α = 103.063 (7)°0.30 × 0.20 × 0.10 mm
β = 106.859 (7)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3902 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2716 reflections with I > 2σ(I)
Tmin = 0.722, Tmax = 1.000Rint = 0.023
7109 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.20 e Å3
3902 reflectionsΔρmin = 0.16 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.65107 (18)1.02622 (15)1.19074 (13)0.0888 (4)
O10.93475 (14)0.70759 (13)0.65915 (12)0.0489 (3)
O20.08769 (17)0.77609 (16)0.33736 (14)0.0685 (4)
N11.0769 (2)0.62403 (19)0.79544 (18)0.0538 (4)
N20.8096 (2)0.4809 (2)0.97164 (18)0.0655 (5)
C10.7901 (2)0.72705 (17)0.59527 (16)0.0416 (4)
C20.8067 (2)0.7931 (2)0.49837 (18)0.0511 (4)
H2A0.90690.81840.48060.061*
C30.6756 (2)0.8201 (2)0.43063 (18)0.0518 (4)
H30.68790.86640.36810.062*
C40.5202 (2)0.77860 (17)0.45373 (15)0.0428 (4)
C50.3816 (2)0.80453 (18)0.38152 (17)0.0489 (4)
H50.39350.85220.31990.059*
C60.2310 (2)0.75979 (19)0.40231 (17)0.0493 (4)
C70.2135 (2)0.6892 (2)0.49622 (17)0.0503 (4)
H70.11000.65850.50940.060*
C80.3452 (2)0.66482 (18)0.56843 (16)0.0444 (4)
H80.33070.61820.63050.053*
C90.50492 (19)0.70961 (16)0.55037 (15)0.0391 (4)
C100.64573 (19)0.68629 (16)0.62547 (15)0.0370 (3)
C110.63936 (18)0.62664 (16)0.73856 (15)0.0370 (3)
H110.53150.53270.70060.044*
C120.79503 (19)0.59719 (16)0.78873 (15)0.0396 (4)
C130.93049 (19)0.63973 (17)0.75081 (16)0.0411 (4)
C140.0952 (3)0.8443 (3)0.2389 (2)0.0773 (6)
H14A0.01230.84980.20130.116*
H14B0.11070.78670.16610.116*
H14C0.19210.94240.28290.116*
C150.63823 (18)0.73347 (16)0.85967 (15)0.0376 (3)
C160.7538 (2)0.88289 (19)0.91135 (18)0.0509 (4)
H160.82990.91740.87040.061*
C170.7591 (3)0.9820 (2)1.0222 (2)0.0614 (5)
H170.83701.08251.05580.074*
C180.6474 (2)0.9291 (2)1.08140 (18)0.0567 (5)
C190.5336 (2)0.7830 (2)1.03607 (19)0.0614 (5)
H190.46000.74951.07920.074*
C200.5293 (2)0.6848 (2)0.92405 (17)0.0507 (4)
H200.45170.58440.89180.061*
C210.80450 (19)0.53183 (18)0.88874 (17)0.0453 (4)
H11.096 (3)0.588 (2)0.861 (2)0.065 (6)*
H21.158 (3)0.672 (2)0.772 (2)0.063 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1109 (10)0.0868 (9)0.0662 (8)0.0463 (7)0.0490 (7)0.0064 (7)
O10.0466 (6)0.0623 (7)0.0539 (7)0.0294 (5)0.0262 (5)0.0343 (6)
O20.0705 (8)0.0905 (10)0.0680 (9)0.0550 (8)0.0249 (7)0.0441 (8)
N10.0463 (9)0.0631 (10)0.0626 (10)0.0293 (7)0.0230 (7)0.0338 (8)
N20.0573 (9)0.0839 (12)0.0741 (11)0.0350 (8)0.0293 (8)0.0542 (10)
C10.0456 (8)0.0443 (9)0.0396 (8)0.0234 (7)0.0177 (7)0.0188 (7)
C20.0538 (10)0.0611 (11)0.0502 (10)0.0272 (8)0.0289 (8)0.0301 (9)
C30.0615 (10)0.0584 (11)0.0460 (9)0.0287 (8)0.0257 (8)0.0306 (8)
C40.0527 (9)0.0411 (9)0.0357 (8)0.0234 (7)0.0165 (7)0.0155 (7)
C50.0637 (11)0.0474 (10)0.0396 (9)0.0299 (8)0.0178 (8)0.0203 (7)
C60.0575 (10)0.0528 (10)0.0426 (9)0.0345 (8)0.0152 (8)0.0176 (8)
C70.0516 (9)0.0617 (11)0.0456 (9)0.0328 (8)0.0210 (8)0.0210 (8)
C80.0515 (9)0.0515 (10)0.0376 (8)0.0281 (7)0.0201 (7)0.0194 (7)
C90.0466 (8)0.0376 (8)0.0320 (8)0.0205 (6)0.0146 (6)0.0115 (6)
C100.0445 (8)0.0350 (8)0.0318 (7)0.0190 (6)0.0153 (6)0.0124 (6)
C110.0380 (8)0.0355 (8)0.0364 (8)0.0154 (6)0.0142 (6)0.0157 (6)
C120.0442 (8)0.0377 (8)0.0383 (8)0.0195 (6)0.0159 (6)0.0168 (7)
C130.0443 (8)0.0390 (8)0.0399 (8)0.0205 (7)0.0150 (7)0.0156 (7)
C140.0899 (15)0.0878 (16)0.0666 (13)0.0557 (13)0.0184 (11)0.0427 (12)
C150.0386 (8)0.0412 (8)0.0351 (8)0.0187 (6)0.0145 (6)0.0181 (6)
C160.0589 (10)0.0453 (10)0.0502 (10)0.0188 (8)0.0305 (8)0.0192 (8)
C170.0745 (12)0.0440 (10)0.0576 (11)0.0199 (9)0.0313 (10)0.0123 (9)
C180.0660 (11)0.0633 (12)0.0422 (9)0.0335 (9)0.0254 (8)0.0117 (9)
C190.0593 (11)0.0734 (13)0.0491 (10)0.0220 (9)0.0328 (9)0.0195 (9)
C200.0501 (9)0.0492 (10)0.0450 (9)0.0129 (7)0.0224 (7)0.0172 (8)
C210.0399 (8)0.0488 (9)0.0491 (9)0.0212 (7)0.0159 (7)0.0234 (8)
Geometric parameters (Å, º) top
F1—C181.362 (2)C8—C91.423 (2)
O1—C131.3508 (19)C8—H80.9300
O1—C11.3933 (18)C9—C101.428 (2)
O2—C61.3665 (19)C10—C111.508 (2)
O2—C141.419 (2)C11—C121.513 (2)
N1—C131.345 (2)C11—C151.529 (2)
N1—H10.89 (2)C11—H110.9800
N1—H20.87 (2)C12—C131.351 (2)
N2—C211.146 (2)C12—C211.410 (2)
C1—C101.369 (2)C14—H14A0.9600
C1—C21.400 (2)C14—H14B0.9600
C2—C31.356 (2)C14—H14C0.9600
C2—H2A0.9300C15—C201.379 (2)
C3—C41.416 (2)C15—C161.381 (2)
C3—H30.9300C16—C171.379 (2)
C4—C91.415 (2)C16—H160.9300
C4—C51.418 (2)C17—C181.363 (3)
C5—C61.364 (2)C17—H170.9300
C5—H50.9300C18—C191.357 (3)
C6—C71.402 (2)C19—C201.387 (2)
C7—C81.361 (2)C19—H190.9300
C7—H70.9300C20—H200.9300
C13—O1—C1118.99 (12)C10—C11—C15111.81 (12)
C6—O2—C14117.43 (15)C12—C11—C15109.77 (12)
C13—N1—H1120.1 (13)C10—C11—H11108.5
C13—N1—H2114.8 (13)C12—C11—H11108.5
H1—N1—H2123.1 (19)C15—C11—H11108.5
C10—C1—O1122.98 (14)C13—C12—C21118.53 (14)
C10—C1—C2123.20 (15)C13—C12—C11123.71 (14)
O1—C1—C2113.82 (13)C21—C12—C11117.57 (13)
C3—C2—C1119.46 (15)N1—C13—O1110.25 (14)
C3—C2—H2A120.3N1—C13—C12127.35 (16)
C1—C2—H2A120.3O1—C13—C12122.39 (14)
C2—C3—C4120.94 (16)O2—C14—H14A109.5
C2—C3—H3119.5O2—C14—H14B109.5
C4—C3—H3119.5H14A—C14—H14B109.5
C9—C4—C5120.25 (15)O2—C14—H14C109.5
C9—C4—C3118.64 (15)H14A—C14—H14C109.5
C5—C4—C3121.11 (16)H14B—C14—H14C109.5
C6—C5—C4120.17 (16)C20—C15—C16118.03 (15)
C6—C5—H5119.9C20—C15—C11121.98 (14)
C4—C5—H5119.9C16—C15—C11119.93 (13)
O2—C6—C5125.58 (17)C17—C16—C15121.56 (16)
O2—C6—C7114.43 (15)C17—C16—H16119.2
C5—C6—C7119.99 (15)C15—C16—H16119.2
C8—C7—C6121.13 (16)C18—C17—C16118.34 (17)
C8—C7—H7119.4C18—C17—H17120.8
C6—C7—H7119.4C16—C17—H17120.8
C7—C8—C9120.94 (16)C19—C18—F1118.80 (17)
C7—C8—H8119.5C19—C18—C17122.38 (16)
C9—C8—H8119.5F1—C18—C17118.82 (17)
C4—C9—C10120.40 (14)C18—C19—C20118.59 (16)
C4—C9—C8117.51 (14)C18—C19—H19120.7
C10—C9—C8122.09 (15)C20—C19—H19120.7
C1—C10—C9117.30 (14)C15—C20—C19121.09 (16)
C1—C10—C11121.40 (14)C15—C20—H20119.5
C9—C10—C11121.23 (13)C19—C20—H20119.5
C10—C11—C12109.72 (12)N2—C21—C12177.89 (18)
C13—O1—C1—C103.0 (2)C8—C9—C10—C116.2 (2)
C13—O1—C1—C2177.54 (13)C1—C10—C11—C129.55 (19)
C10—C1—C2—C30.5 (3)C9—C10—C11—C12173.70 (12)
O1—C1—C2—C3179.02 (15)C1—C10—C11—C15112.49 (15)
C1—C2—C3—C41.7 (3)C9—C10—C11—C1564.26 (17)
C2—C3—C4—C90.7 (3)C10—C11—C12—C139.0 (2)
C2—C3—C4—C5179.04 (16)C15—C11—C12—C13114.21 (16)
C9—C4—C5—C61.6 (2)C10—C11—C12—C21176.02 (13)
C3—C4—C5—C6178.06 (15)C15—C11—C12—C2160.74 (17)
C14—O2—C6—C50.5 (3)C1—O1—C13—N1176.64 (13)
C14—O2—C6—C7178.87 (16)C1—O1—C13—C123.7 (2)
C4—C5—C6—O2178.78 (15)C21—C12—C13—N11.8 (3)
C4—C5—C6—C70.6 (3)C11—C12—C13—N1176.66 (15)
O2—C6—C7—C8179.82 (15)C21—C12—C13—O1177.78 (14)
C5—C6—C7—C80.4 (3)C11—C12—C13—O12.9 (2)
C6—C7—C8—C90.3 (3)C10—C11—C15—C20137.00 (15)
C5—C4—C9—C10178.61 (13)C12—C11—C15—C20100.99 (17)
C3—C4—C9—C101.7 (2)C10—C11—C15—C1645.73 (19)
C5—C4—C9—C81.6 (2)C12—C11—C15—C1676.27 (18)
C3—C4—C9—C8178.05 (14)C20—C15—C16—C171.3 (3)
C7—C8—C9—C40.7 (2)C11—C15—C16—C17178.64 (16)
C7—C8—C9—C10179.57 (14)C15—C16—C17—C180.4 (3)
O1—C1—C10—C9178.74 (13)C16—C17—C18—C190.8 (3)
C2—C1—C10—C91.8 (2)C16—C17—C18—F1179.78 (17)
O1—C1—C10—C114.4 (2)F1—C18—C19—C20179.49 (17)
C2—C1—C10—C11175.07 (14)C17—C18—C19—C201.1 (3)
C4—C9—C10—C12.9 (2)C16—C15—C20—C191.0 (3)
C8—C9—C10—C1176.87 (14)C11—C15—C20—C19178.28 (16)
C4—C9—C10—C11174.03 (13)C18—C19—C20—C150.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C4,C9,C10 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.89 (2)2.16 (2)3.043 (2)170.0 (18)
C19—H19···N2ii0.932.513.259 (3)138
C11—H11···Cg1iii0.982.903.7084 (17)141
C14—H14C···Cg1iv0.962.923.772 (3)148
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC21H15FN2O2
Mr346.35
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.9672 (7), 10.4365 (8), 10.9058 (8)
α, β, γ (°)103.063 (7), 106.859 (7), 111.399 (8)
V3)844.01 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.722, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7109, 3902, 2716
Rint0.023
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.05
No. of reflections3902
No. of parameters244
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C4,C9,C10 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.89 (2)2.16 (2)3.043 (2)170.0 (18)
C19—H19···N2ii0.932.513.259 (3)138
C11—H11···Cg1iii0.982.903.7084 (17)141
C14—H14C···Cg1iv0.962.923.772 (3)148
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1.
 

Footnotes

Additional correspondence author, e-mail: aamr1963@yahoo.com.

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group project No. RGP-VPP-099. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAmr, A. E.-G. E., El-Agrody, A. M., Al-Omar, M. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o478–o479.  CSD CrossRef IUCr Journals Google Scholar
First citationBonsignore, L., Loy, G., Secci, D. & Calignano, A. (1993). Eur. J. Med. Chem. 28, 517–520.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Agrody, A. M., Sabry, N. M. & Motlaq, S. S. (2011). J. Chem. Res. 35, 77–83.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHafez, E. A. A., Elnagdi, M. H., Elagamey, A. G. A. & El-Taweel, F. M. A. A. (1987). Heterocycles, 26, 903–907.  CAS Google Scholar
First citationSabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765–772.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShekhar, A. C., Kumar, A. R., Sathaiah, G., Raju, K., Rao, P. S., Sridhar, M., Narsaiah, B., Srinivas, P. V. S. S. & Sridhar, B. (2012). Helv. Chim. Acta, 95, 502–508.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Yang, G.-S. & Zhao, G. (2008). Tetrahedron Asymmetry, 19, 709–714.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o476-o477
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds