organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-({4-[(4,6-Di­methyl­pyrimidin-2-yl)sulfamo­yl]phen­yl}iminio)meth­yl]-6-hy­dr­oxy­phenolate

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Pharmacy Services, Jinnah Hospital, Lahore, Pakistan, cDepartment of Chemistry, Forman Christian College, Lahore 54600, Pakistan, dDepartment of Chemistry, Government Post Graduate College, Gojra, Punjab, Pakistan, and eDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 21 July 2012; accepted 5 August 2012; online 11 August 2012)

The title compound, C19H18N4O4S, exists as a zwitterion in the solid state, with nominal proton transfer from a phenol group to the imine N atom. The 2,3-dihy­droxy­benzaldehyde fragment is oriented at a dihedral angle of 35.51 (11)° to the adajacent aniline group and makes a dihedral angle of 76.99 (6)° with the 4,6-dimethyl­pyrimidin-2-amine group. Intra­molecular O—H⋯O and N—H⋯O hydrogen bonds close S(5) and S(6) rings, respectively; the same O atom accepts both bonds. In the crystal, polymeric chains along [001] are formed from mol­ecules joined end-to-end by N—H⋯O and O—H⋯N hydrogen bonds; these feature R23(6) loops. The polymeric chains are linked by C—H⋯O inter­actions and there are ππ inter­actions between the pyrimidine rings with a centroid–centroid distance of 3.446 (2) Å.

Related literature

For related structures, see: Chohan et al. (2008[Chohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o648.]); Shad et al. (2009[Shad, H. A., Tahir, M. N. & Chohan, Z. H. (2009). Acta Cryst. E65, o98-o99.]); Tahir et al. (2012[Tahir, M. N., Khan, A. H., Iqbal, M. S., Munir, C. & Aziz, T. (2012). Acta Cryst. E68, o2125.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18N4O4S

  • Mr = 398.43

  • Orthorhombic, P b c n

  • a = 24.7506 (12) Å

  • b = 12.1689 (6) Å

  • c = 12.8408 (5) Å

  • V = 3867.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.34 × 0.28 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.971

  • 16627 measured reflections

  • 3796 independent reflections

  • 1778 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.151

  • S = 1.01

  • 3796 reflections

  • 259 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.78 (4) 1.88 (4) 2.569 (5) 148 (4)
O2—H2⋯O1 0.82 2.34 2.768 (5) 113
O2—H2⋯N3i 0.82 2.16 2.862 (5) 144
N2—H2A⋯O1ii 0.86 1.94 2.790 (4) 172
C18—H18A⋯O4iii 0.96 2.52 3.469 (5) 171
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported the crystal structure of 4-{[(E)-(2,3-dihydroxyphenyl) methylidene]amino}-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide (Tahir et al., 2012) and the title compound (I), (Fig. 1) has also been synthesized for the biological studies and forming different metal complexes.

The crystal structures of 4-(5-chloro-2-hydroxybenzylideneamino)-N- (4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (Chohan et al., 2008) and 4-[(5-bromo-2-hydroxybenzylidene)amino]-N-(4,6-dimethylpyrimidin- 2-yl)benzenesulfonamide–4-bromo-2-[(E)-({4-[(4,6-dimethylpyrimidin-2-yl) sulfamoyl]phenyl}iminio)methyl]phenolate (Shad et al., 2009) have been published which are related to the title compound.

In (I) the parts of 2,3-dihydroxybenzaldehyde A (C1—C7/O1/O2), annilinic group B (C8—C13/N1) and 4,6-dimethylpyrimidin-2-amine C (C14—C19/N2/N3/N4) are planar with r.m.s. deviation of 0.0105, 0.0070 and 0.0216 Å, respectively. The dihedral angle between A/B, A/C and B/C is 35.51 (11)°, 76.99 (6)° and 88.92 (6)°, respectively. The sulfonyl group D (O3/S1/O4) is of course planar. The dihedral angle between A/D, B/D and C/D is 62.20 (13)°, 47.66 (17)° and 50.34 (15)°, respectively. In (I), S(5) and S(6) ring motif (Bernstein et al., 1995) are present due to H-bondings of O—H···O and N—H···O types, respectively (Table 1, Fig. 1). The molecules are interlinked from end to end due to H-bondings of N—H···O and O—H···O types (Table 1, Fig. 2). Due to these bondings R23(6) loops are also formed. The molecules are interlinked in the form of polymeric chains along the c-axis. The polymeric chains are also interlinked due to C–H···O bondings (Table 1, Fig. 2), Where CH is of methyl group and O-atom is of sulfonyl group. There exist ππ interaction between Cg1···Cg1i [i = 1 - x, y, 1/2 - z] at a distance of 3.446 (2) Å, where Cg1 is the centroid of pyrimidin ring (C14—C17/N3/N4).

Related literature top

For related structures, see: Chohan et al. (2008); Shad et al. (2009); Tahir et al. (2012). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Equimolar quantities of 4-amino-N-(4,6-dimethylpyrimidin-2-yl) benzenesulfonamide (Sulfamethazine) and 2,3-dihydroxybenzaldehyde were refluxed in methanol along with few drops of acetic acid as catalyst for 3 h. The solution was kept at room temperature which afforded dark red plates after four days upon slow evaporation of the solvent.

Refinement top

The coordinates of H1 were refined. The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å, N—H= 0.86 Å, O—H= 0.82 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for hydroxy & methyl and x = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted lines represent the intramolecular H-bonds.
[Figure 2] Fig. 2. The partial packing, which shows that molecules form polymeric chains along [001]. The H-atoms not involved in H-bondings are omitted for clarity.
2-[(E)-({4-[(4,6-Dimethylpyrimidin-2-yl)sulfamoyl]phenyl}iminio)methyl]- 6-hydroxyphenolate top
Crystal data top
C19H18N4O4SF(000) = 1664
Mr = 398.43Dx = 1.369 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1778 reflections
a = 24.7506 (12) Åθ = 1.7–26.0°
b = 12.1689 (6) ŵ = 0.20 mm1
c = 12.8408 (5) ÅT = 296 K
V = 3867.5 (3) Å3Plate, dark red
Z = 80.34 × 0.28 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3796 independent reflections
Radiation source: fine-focus sealed tube1778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 1.7°
ω scansh = 3029
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1515
Tmin = 0.935, Tmax = 0.971l = 1514
16627 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0534P)2 + 1.0105P]
where P = (Fo2 + 2Fc2)/3
3796 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C19H18N4O4SV = 3867.5 (3) Å3
Mr = 398.43Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 24.7506 (12) ŵ = 0.20 mm1
b = 12.1689 (6) ÅT = 296 K
c = 12.8408 (5) Å0.34 × 0.28 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3796 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1778 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.971Rint = 0.069
16627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.21 e Å3
3796 reflectionsΔρmin = 0.28 e Å3
259 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33210 (4)0.16234 (8)0.39452 (7)0.0639 (3)
O10.14274 (12)0.0303 (2)0.1123 (2)0.0874 (11)
O20.07789 (15)0.0466 (3)0.2721 (3)0.1110 (16)
O30.30024 (11)0.2317 (2)0.46012 (18)0.0765 (10)
O40.36264 (12)0.0762 (2)0.43976 (18)0.0799 (10)
N10.19699 (14)0.0123 (3)0.0534 (3)0.0683 (14)
N20.37120 (13)0.2493 (3)0.3342 (2)0.0719 (11)
N30.42863 (12)0.3128 (3)0.2071 (2)0.0638 (11)
N40.41470 (12)0.1191 (3)0.2320 (2)0.0650 (12)
C10.15104 (16)0.1524 (3)0.0429 (3)0.0673 (17)
C20.13077 (16)0.0756 (3)0.1170 (3)0.0683 (16)
C30.09721 (18)0.1143 (3)0.1978 (3)0.0783 (17)
C40.08434 (18)0.2239 (4)0.2017 (4)0.091 (2)
C50.10447 (18)0.2985 (3)0.1295 (4)0.0843 (19)
C60.13772 (17)0.2643 (3)0.0517 (3)0.0773 (17)
C70.18412 (16)0.1152 (3)0.0396 (3)0.0700 (17)
C80.22986 (15)0.0266 (3)0.1351 (3)0.0567 (14)
C90.27177 (16)0.0346 (3)0.1735 (3)0.0667 (16)
C100.30228 (15)0.0054 (3)0.2545 (3)0.0653 (14)
C110.29108 (14)0.1070 (3)0.2961 (2)0.0523 (12)
C120.24920 (16)0.1698 (3)0.2564 (3)0.0633 (14)
C130.21849 (16)0.1290 (3)0.1757 (3)0.0653 (14)
C140.40682 (15)0.2243 (3)0.2534 (3)0.0613 (16)
C150.46458 (16)0.2897 (3)0.1314 (3)0.0663 (16)
C160.47691 (16)0.1837 (3)0.1050 (3)0.0730 (16)
C170.45058 (16)0.0989 (3)0.1559 (3)0.0683 (16)
C180.45913 (17)0.0204 (3)0.1284 (3)0.0923 (19)
C190.48948 (18)0.3859 (3)0.0768 (3)0.0920 (19)
H10.1840 (16)0.024 (3)0.010 (3)0.0821*
H20.087170.016700.259280.1666*
H2A0.369750.316720.353980.0861*
H40.061530.248940.254130.1089*
H50.095120.372300.134370.1011*
H60.151630.314790.004460.0928*
H70.197430.166780.086400.0841*
H90.279590.102920.144840.0801*
H100.330520.036330.281300.0782*
H120.241880.238890.283910.0759*
H130.190160.170360.148750.0779*
H160.502510.168930.053890.0876*
H18A0.435760.040110.071730.1383*
H18B0.451000.065370.187780.1383*
H18C0.496060.031590.108190.1383*
H19A0.463030.420010.032700.1379*
H19B0.519400.361330.035350.1379*
H19C0.501980.438150.127430.1379*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0759 (7)0.0645 (6)0.0512 (5)0.0047 (6)0.0066 (5)0.0030 (5)
O10.112 (2)0.0531 (16)0.097 (2)0.0023 (16)0.0265 (17)0.0057 (15)
O20.141 (3)0.080 (2)0.112 (3)0.012 (2)0.051 (2)0.016 (2)
O30.090 (2)0.0805 (18)0.0591 (15)0.0076 (15)0.0199 (14)0.0167 (14)
O40.099 (2)0.0790 (18)0.0618 (16)0.0104 (16)0.0146 (15)0.0079 (14)
N10.083 (3)0.060 (2)0.062 (2)0.0034 (19)0.0070 (19)0.0035 (18)
N20.081 (2)0.0598 (18)0.075 (2)0.0124 (17)0.0241 (19)0.0180 (17)
N30.066 (2)0.068 (2)0.0573 (19)0.0040 (17)0.0016 (16)0.0028 (16)
N40.065 (2)0.068 (2)0.062 (2)0.0039 (17)0.0091 (17)0.0125 (17)
C10.066 (3)0.062 (3)0.074 (3)0.001 (2)0.005 (2)0.007 (2)
C20.071 (3)0.057 (2)0.077 (3)0.002 (2)0.001 (2)0.019 (2)
C30.079 (3)0.070 (3)0.086 (3)0.003 (2)0.010 (3)0.015 (3)
C40.090 (4)0.073 (3)0.109 (4)0.009 (3)0.010 (3)0.029 (3)
C50.084 (3)0.059 (3)0.110 (4)0.011 (2)0.009 (3)0.017 (3)
C60.080 (3)0.059 (3)0.093 (3)0.006 (2)0.016 (3)0.000 (2)
C70.071 (3)0.062 (3)0.077 (3)0.003 (2)0.009 (2)0.005 (2)
C80.068 (3)0.051 (2)0.051 (2)0.003 (2)0.0007 (19)0.0017 (19)
C90.076 (3)0.051 (2)0.073 (3)0.009 (2)0.002 (2)0.004 (2)
C100.072 (3)0.055 (2)0.069 (2)0.008 (2)0.007 (2)0.002 (2)
C110.061 (2)0.047 (2)0.049 (2)0.0016 (18)0.0038 (17)0.0042 (17)
C120.086 (3)0.048 (2)0.056 (2)0.006 (2)0.013 (2)0.002 (2)
C130.076 (3)0.060 (2)0.060 (2)0.015 (2)0.001 (2)0.005 (2)
C140.061 (3)0.066 (3)0.057 (2)0.008 (2)0.002 (2)0.008 (2)
C150.061 (3)0.087 (3)0.051 (2)0.006 (2)0.004 (2)0.006 (2)
C160.071 (3)0.091 (3)0.057 (2)0.001 (2)0.009 (2)0.004 (2)
C170.068 (3)0.081 (3)0.056 (2)0.002 (2)0.002 (2)0.004 (2)
C180.106 (4)0.088 (3)0.083 (3)0.011 (3)0.017 (3)0.018 (3)
C190.095 (4)0.104 (3)0.077 (3)0.013 (3)0.018 (2)0.023 (3)
Geometric parameters (Å, º) top
S1—O31.430 (3)C8—C131.380 (5)
S1—O41.417 (3)C9—C101.374 (5)
S1—N21.630 (3)C10—C111.375 (5)
S1—C111.755 (3)C11—C121.385 (5)
O1—C21.324 (4)C12—C131.378 (5)
O2—C31.348 (5)C15—C161.368 (5)
O2—H20.8200C15—C191.497 (5)
N1—C71.304 (5)C16—C171.385 (5)
N1—C81.409 (5)C17—C181.509 (5)
N2—C141.395 (5)C4—H40.9300
N3—C151.347 (5)C5—H50.9300
N3—C141.343 (5)C6—H60.9300
N4—C141.324 (5)C7—H70.9300
N4—C171.343 (5)C9—H90.9300
N1—H10.78 (4)C10—H100.9300
N2—H2A0.8600C12—H120.9300
C1—C21.425 (5)C13—H130.9300
C1—C61.406 (5)C16—H160.9300
C1—C71.413 (5)C18—H18A0.9600
C2—C31.410 (6)C18—H18B0.9600
C3—C41.372 (6)C18—H18C0.9600
C4—C51.390 (7)C19—H19A0.9600
C5—C61.360 (6)C19—H19B0.9600
C8—C91.369 (5)C19—H19C0.9600
O3—S1—O4119.31 (15)N3—C14—N4128.6 (3)
O3—S1—N2102.96 (16)N2—C14—N3114.1 (3)
O3—S1—C11109.37 (16)N3—C15—C19116.5 (3)
O4—S1—N2111.00 (17)C16—C15—C19122.0 (4)
O4—S1—C11108.66 (17)N3—C15—C16121.5 (4)
N2—S1—C11104.50 (15)C15—C16—C17118.7 (4)
C3—O2—H2109.00N4—C17—C18116.0 (3)
C7—N1—C8124.4 (4)C16—C17—C18122.7 (3)
S1—N2—C14126.0 (3)N4—C17—C16121.2 (3)
C14—N3—C15114.7 (3)C3—C4—H4119.00
C14—N4—C17115.2 (3)C5—C4—H4119.00
C7—N1—H1110 (3)C4—C5—H5120.00
C8—N1—H1125 (3)C6—C5—H5120.00
C14—N2—H2A117.00C1—C6—H6120.00
S1—N2—H2A117.00C5—C6—H6120.00
C2—C1—C7119.6 (3)N1—C7—H7118.00
C2—C1—C6119.9 (4)C1—C7—H7118.00
C6—C1—C7120.4 (3)C8—C9—H9120.00
C1—C2—C3118.7 (3)C10—C9—H9120.00
O1—C2—C1122.0 (3)C9—C10—H10120.00
O1—C2—C3119.4 (3)C11—C10—H10120.00
C2—C3—C4119.2 (4)C11—C12—H12120.00
O2—C3—C2121.7 (3)C13—C12—H12120.00
O2—C3—C4119.1 (4)C8—C13—H13120.00
C3—C4—C5121.8 (4)C12—C13—H13120.00
C4—C5—C6120.5 (4)C15—C16—H16121.00
C1—C6—C5119.8 (4)C17—C16—H16121.00
N1—C7—C1123.4 (4)C17—C18—H18A109.00
N1—C8—C9121.5 (3)C17—C18—H18B109.00
C9—C8—C13120.7 (4)C17—C18—H18C109.00
N1—C8—C13117.8 (3)H18A—C18—H18B109.00
C8—C9—C10119.8 (3)H18A—C18—H18C109.00
C9—C10—C11120.1 (3)H18B—C18—H18C109.00
S1—C11—C10120.5 (3)C15—C19—H19A109.00
S1—C11—C12119.1 (3)C15—C19—H19B109.00
C10—C11—C12120.3 (3)C15—C19—H19C109.00
C11—C12—C13119.4 (3)H19A—C19—H19B109.00
C8—C13—C12119.8 (4)H19A—C19—H19C109.00
N2—C14—N4117.3 (3)H19B—C19—H19C109.00
O3—S1—N2—C14173.5 (3)C2—C1—C6—C51.6 (6)
O4—S1—N2—C1457.7 (3)C7—C1—C6—C5177.9 (4)
C11—S1—N2—C1459.3 (3)C2—C1—C7—N11.0 (6)
O3—S1—C11—C10149.8 (3)C6—C1—C7—N1178.5 (4)
O3—S1—C11—C1234.1 (3)O1—C2—C3—O21.6 (6)
O4—S1—C11—C1018.0 (3)O1—C2—C3—C4179.2 (4)
O4—S1—C11—C12165.9 (3)C1—C2—C3—O2178.1 (4)
N2—S1—C11—C10100.5 (3)C1—C2—C3—C41.1 (6)
N2—S1—C11—C1275.6 (3)O2—C3—C4—C5177.8 (4)
C8—N1—C7—C1180.0 (4)C2—C3—C4—C51.5 (7)
C7—N1—C8—C934.0 (6)C3—C4—C5—C60.3 (7)
C7—N1—C8—C13146.0 (4)C4—C5—C6—C11.2 (7)
S1—N2—C14—N3170.9 (3)N1—C8—C9—C10178.8 (4)
S1—N2—C14—N48.9 (5)C13—C8—C9—C101.1 (6)
C15—N3—C14—N2177.7 (3)N1—C8—C13—C12179.3 (4)
C15—N3—C14—N42.5 (6)C9—C8—C13—C120.7 (6)
C14—N3—C15—C160.3 (5)C8—C9—C10—C110.7 (6)
C14—N3—C15—C19179.4 (3)C9—C10—C11—S1176.4 (3)
C17—N4—C14—N2178.0 (3)C9—C10—C11—C120.3 (5)
C17—N4—C14—N32.2 (6)S1—C11—C12—C13176.9 (3)
C14—N4—C17—C160.1 (5)C10—C11—C12—C130.8 (5)
C14—N4—C17—C18178.5 (3)C11—C12—C13—C80.3 (6)
C6—C1—C2—O1179.3 (4)N3—C15—C16—C171.7 (6)
C6—C1—C2—C30.4 (6)C19—C15—C16—C17177.3 (4)
C7—C1—C2—O11.2 (6)C15—C16—C17—N41.9 (6)
C7—C1—C2—C3179.1 (4)C15—C16—C17—C18176.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.78 (4)1.88 (4)2.569 (5)148 (4)
O2—H2···O10.822.342.768 (5)113
O2—H2···N3i0.822.162.862 (5)144
N2—H2A···O1ii0.861.942.790 (4)172
C18—H18A···O4iii0.962.523.469 (5)171
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC19H18N4O4S
Mr398.43
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)296
a, b, c (Å)24.7506 (12), 12.1689 (6), 12.8408 (5)
V3)3867.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.34 × 0.28 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.935, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
16627, 3796, 1778
Rint0.069
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.151, 1.01
No. of reflections3796
No. of parameters259
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.78 (4)1.88 (4)2.569 (5)148 (4)
O2—H2···O10.822.342.768 (5)113
O2—H2···N3i0.822.162.862 (5)144
N2—H2A···O1ii0.861.942.790 (4)172
C18—H18A···O4iii0.962.523.469 (5)171
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o648.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShad, H. A., Tahir, M. N. & Chohan, Z. H. (2009). Acta Cryst. E65, o98–o99.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Khan, A. H., Iqbal, M. S., Munir, C. & Aziz, T. (2012). Acta Cryst. E68, o2125.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds