organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro­phen­yl)-3-nitro­pyridin-2-amine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 19 October 2011; accepted 23 October 2011; online 29 October 2011)

The dihedral angle between the benzene and pyridyl rings in the title compound, C11H8ClN3O2, is 22.65 (10)°, indicating a twisted mol­ecule. The amine H and nitro O atoms form a donor–acceptor pair for an intra­molecular N—H⋯O hydrogen bond so that the nitro group is almost coplanar with the pyridine ring to which it is connected [O—N—C—C torsion angle = 7.4 (3)°]. The pyridine N and Cl atoms are approximately syn. The crystal packing features C—H⋯Cl inter­actions that lead to undulating supra­molecular chains along [101]. These are connected into sheets by ππ inter­actions occurring between the benzene rings and between the pyridine rings of translationally related mol­ecules along the b axis [centroid–centroid distances = length of b axis = 3.7157 (2) Å].

Related literature

For the structure of a related pyrimidine amine derivative, see: Aznan Akhmad et al. (2010[Aznan Akhmad, M. A., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2400.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8ClN3O2

  • Mr = 249.65

  • Monoclinic, P 2/n

  • a = 15.8781 (10) Å

  • b = 3.7157 (2) Å

  • c = 18.0651 (13) Å

  • β = 102.252 (6)°

  • V = 1041.53 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.21 mm−1

  • T = 100 K

  • 0.20 × 0.05 × 0.03 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.566, Tmax = 0.910

  • 3341 measured reflections

  • 1971 independent reflections

  • 1684 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.06

  • 1971 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O1 0.88 (3) 1.94 (3) 2.647 (2) 137 (2)
C9—H9⋯Cl1i 0.95 2.79 3.665 (2) 153
Symmetry code: (i) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was investigated in connection with our ongoing crystallographic studies of pyrimidine derivatives (Aznan Akhmad et al., 2010).

The molecule of (I), is twisted as seen in the value of the dihedral angle formed between the benzene and pyridyl rings of 22.65 (10)°. The nitro group is close to being co-planar with the pyridyl ring to which it is connected; the O1—N3—C8—C7 torsion angle is 7.4 (3)°. This conformation is stabilized by an intramolecular N1—H1n···O1 hydrogen bond, Table 1. The pyridine-N2 and m-Cl atoms are approximately syn.

In the crystal structure, C—H···Cl interactions, Table 1, lead to supramolecular chains with an undulating topology along [101], Fig. 2. These stack along the b axis, Fig. 3, whereby the components of the stacks are linked by ππ interactions occurring between translationally related benzene rings and between translationally related pyridyl rings with centroid···centroid distances corresponding to the b axis, i.e. = 3.7157 (2) Å, Fig. 4.

Related literature top

For the structure of a related pyrimidine amine derivative, see: Aznan Akhmad et al. (2010).

Experimental top

2-Chloro-3-nitro-pyridine (0.5 g, 0.00315 mol) and m-chloroaniline (0.3311 ml, 0.00315 mol) were refluxed in ethanol (5 ml) for 4 h at 385 K. The mixture was cooled and the obtained residue dissolved in a minimum volume of water (10 ml) and extracted with ether (3 x 10 ml). The ethereal layer was washed with water and dried over anhydrous sodium sulfate. Evaporation gave a reddish solid and recrystallization using diethyl ether yielded dark-orange prisms after one day. M.pt.: 406–409 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Uequiv(C). The N-bound H-atom was located in a difference Fourier map and its position and Uiso refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Undulating supramolecular chain along [101] in (I) sustained by C—H···Cl interactions, shown as orange dashed lines.
[Figure 3] Fig. 3. Unit-cell contents for (I) shown in projection down the b axis highlighting the stacking of chains. The C—H···Cl interactions are shown as orange dashed lines.
[Figure 4] Fig. 4. Stacking of chains highlighting the ππ interactions shown as purple dashed lines. The C—H···Cl interactions are shown as orange dashed lines.
N-(3-Chlorophenyl)-3-nitropyridin-2-amine top
Crystal data top
C11H8ClN3O2F(000) = 512
Mr = 249.65Dx = 1.592 Mg m3
Monoclinic, P2/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yacCell parameters from 1441 reflections
a = 15.8781 (10) Åθ = 2.9–74.2°
b = 3.7157 (2) ŵ = 3.21 mm1
c = 18.0651 (13) ÅT = 100 K
β = 102.252 (6)°Prism, orange
V = 1041.53 (11) Å30.20 × 0.05 × 0.03 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1971 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1684 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.4041 pixels mm-1θmax = 70.0°, θmin = 3.4°
ω scanh = 1916
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 42
Tmin = 0.566, Tmax = 0.910l = 2220
3341 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0688P)2 + 0.3527P]
where P = (Fo2 + 2Fc2)/3
1971 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C11H8ClN3O2V = 1041.53 (11) Å3
Mr = 249.65Z = 4
Monoclinic, P2/nCu Kα radiation
a = 15.8781 (10) ŵ = 3.21 mm1
b = 3.7157 (2) ÅT = 100 K
c = 18.0651 (13) Å0.20 × 0.05 × 0.03 mm
β = 102.252 (6)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1971 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1684 reflections with I > 2σ(I)
Tmin = 0.566, Tmax = 0.910Rint = 0.026
3341 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.25 e Å3
1971 reflectionsΔρmin = 0.34 e Å3
158 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.78774 (3)0.02226 (14)0.66591 (3)0.02816 (19)
O10.66072 (10)0.4237 (5)0.23466 (9)0.0357 (4)
O20.54073 (10)0.6787 (5)0.18194 (9)0.0348 (4)
N10.68353 (11)0.1981 (5)0.37651 (10)0.0227 (4)
N20.55898 (11)0.1975 (5)0.42492 (9)0.0221 (4)
N30.58523 (12)0.5144 (5)0.23471 (10)0.0259 (4)
C10.74388 (13)0.0748 (6)0.44066 (12)0.0217 (4)
C20.73308 (13)0.1013 (5)0.51495 (12)0.0214 (4)
H20.68150.19470.52610.026*
C30.80060 (14)0.0138 (5)0.57217 (12)0.0225 (5)
C40.87682 (14)0.1519 (6)0.55902 (13)0.0258 (5)
H40.92160.22720.59970.031*
C50.88592 (14)0.1769 (6)0.48458 (12)0.0268 (5)
H50.93760.27190.47380.032*
C60.82038 (14)0.0648 (6)0.42579 (13)0.0245 (5)
H60.82740.08280.37500.029*
C70.59821 (13)0.2730 (5)0.36741 (11)0.0205 (4)
C80.54874 (14)0.4251 (6)0.29929 (11)0.0213 (4)
C90.46195 (14)0.4956 (5)0.29291 (12)0.0228 (5)
H90.42890.59720.24770.027*
C100.42391 (13)0.4171 (6)0.35261 (12)0.0237 (5)
H100.36460.46440.35000.028*
C110.47531 (13)0.2665 (6)0.41660 (11)0.0239 (5)
H110.44890.20810.45760.029*
H1n0.7042 (17)0.237 (8)0.3359 (15)0.041 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0287 (3)0.0341 (3)0.0202 (3)0.0026 (2)0.0018 (2)0.0004 (2)
O10.0280 (8)0.0557 (11)0.0255 (9)0.0049 (8)0.0110 (7)0.0076 (8)
O20.0308 (8)0.0474 (10)0.0249 (9)0.0005 (8)0.0030 (7)0.0135 (8)
N10.0213 (8)0.0297 (9)0.0180 (9)0.0012 (7)0.0060 (7)0.0031 (8)
N20.0238 (9)0.0234 (8)0.0194 (9)0.0014 (7)0.0054 (7)0.0001 (7)
N30.0267 (10)0.0301 (10)0.0214 (10)0.0029 (8)0.0061 (8)0.0015 (8)
C10.0215 (10)0.0202 (9)0.0225 (11)0.0019 (8)0.0025 (8)0.0005 (8)
C20.0207 (10)0.0193 (9)0.0242 (11)0.0010 (8)0.0049 (8)0.0001 (8)
C30.0249 (10)0.0184 (10)0.0229 (11)0.0052 (8)0.0020 (8)0.0003 (8)
C40.0230 (10)0.0223 (10)0.0294 (12)0.0000 (9)0.0007 (8)0.0018 (9)
C50.0221 (10)0.0254 (10)0.0327 (12)0.0026 (9)0.0055 (9)0.0006 (9)
C60.0257 (11)0.0232 (10)0.0256 (11)0.0004 (9)0.0078 (9)0.0021 (8)
C70.0215 (10)0.0186 (9)0.0217 (10)0.0008 (8)0.0057 (8)0.0017 (8)
C80.0255 (10)0.0211 (9)0.0177 (10)0.0020 (8)0.0056 (8)0.0004 (8)
C90.0231 (10)0.0211 (10)0.0224 (11)0.0002 (8)0.0008 (8)0.0001 (8)
C100.0198 (10)0.0239 (10)0.0275 (11)0.0005 (8)0.0055 (8)0.0036 (9)
C110.0259 (10)0.0243 (11)0.0234 (11)0.0028 (9)0.0097 (8)0.0026 (9)
Geometric parameters (Å, º) top
Cl1—C31.753 (2)C3—C41.381 (3)
O1—N31.245 (2)C4—C51.386 (3)
O2—N31.222 (2)C4—H40.9500
N1—C71.358 (3)C5—C61.384 (3)
N1—C11.414 (3)C5—H50.9500
N1—H1n0.88 (3)C6—H60.9500
N2—C111.330 (3)C7—C81.428 (3)
N2—C71.349 (3)C8—C91.383 (3)
N3—C81.447 (3)C9—C101.374 (3)
C1—C21.392 (3)C9—H90.9500
C1—C61.398 (3)C10—C111.384 (3)
C2—C31.389 (3)C10—H100.9500
C2—H20.9500C11—H110.9500
C7—N1—C1130.58 (17)C6—C5—H5119.7
C7—N1—H1n113.9 (18)C4—C5—H5119.7
C1—N1—H1n115.5 (18)C5—C6—C1120.4 (2)
C11—N2—C7119.09 (18)C5—C6—H6119.8
O2—N3—O1122.13 (18)C1—C6—H6119.8
O2—N3—C8118.63 (18)N2—C7—N1118.39 (19)
O1—N3—C8119.25 (18)N2—C7—C8119.10 (18)
C2—C1—C6120.08 (19)N1—C7—C8122.50 (18)
C2—C1—N1124.51 (19)C9—C8—C7120.17 (19)
C6—C1—N1115.33 (18)C9—C8—N3116.86 (19)
C3—C2—C1117.52 (19)C7—C8—N3122.97 (18)
C3—C2—H2121.2C10—C9—C8119.4 (2)
C1—C2—H2121.2C10—C9—H9120.3
C4—C3—C2123.5 (2)C8—C9—H9120.3
C4—C3—Cl1118.72 (17)C9—C10—C11117.50 (19)
C2—C3—Cl1117.73 (16)C9—C10—H10121.3
C3—C4—C5117.9 (2)C11—C10—H10121.3
C3—C4—H4121.1N2—C11—C10124.77 (18)
C5—C4—H4121.1N2—C11—H11117.6
C6—C5—C4120.5 (2)C10—C11—H11117.6
C7—N1—C1—C219.5 (4)C1—N1—C7—C8174.6 (2)
C7—N1—C1—C6163.8 (2)N2—C7—C8—C90.4 (3)
C6—C1—C2—C30.2 (3)N1—C7—C8—C9179.9 (2)
N1—C1—C2—C3176.37 (19)N2—C7—C8—N3179.92 (19)
C1—C2—C3—C40.1 (3)N1—C7—C8—N30.5 (3)
C1—C2—C3—Cl1179.50 (15)O2—N3—C8—C97.4 (3)
C2—C3—C4—C50.2 (3)O1—N3—C8—C9172.91 (19)
Cl1—C3—C4—C5179.74 (16)O2—N3—C8—C7172.3 (2)
C3—C4—C5—C60.3 (3)O1—N3—C8—C77.4 (3)
C4—C5—C6—C10.1 (3)C7—C8—C9—C100.1 (3)
C2—C1—C6—C50.1 (3)N3—C8—C9—C10179.82 (18)
N1—C1—C6—C5176.77 (19)C8—C9—C10—C110.6 (3)
C11—N2—C7—N1179.43 (18)C7—N2—C11—C100.8 (3)
C11—N2—C7—C80.0 (3)C9—C10—C11—N21.1 (3)
C1—N1—C7—N25.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O10.88 (3)1.94 (3)2.647 (2)137 (2)
C9—H9···Cl1i0.952.793.665 (2)153
Symmetry code: (i) x1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC11H8ClN3O2
Mr249.65
Crystal system, space groupMonoclinic, P2/n
Temperature (K)100
a, b, c (Å)15.8781 (10), 3.7157 (2), 18.0651 (13)
β (°) 102.252 (6)
V3)1041.53 (11)
Z4
Radiation typeCu Kα
µ (mm1)3.21
Crystal size (mm)0.20 × 0.05 × 0.03
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.566, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
3341, 1971, 1684
Rint0.026
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.06
No. of reflections1971
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.34

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O10.88 (3)1.94 (3)2.647 (2)137 (2)
C9—H9···Cl1i0.952.793.665 (2)153
Symmetry code: (i) x1/2, y+1, z1/2.
 

Footnotes

Additional correspondence author, e-mail: zana@um.edu.my.

Acknowledgements

The authors thank the Ministry of Higher Education, Malaysia, for research grants (FP047/2008 C & FP001/2010 A to ZA and UMRG125 to ERTT). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAznan Akhmad, M. A., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds