organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Hy­dr­oxy-N′-(3-hy­dr­oxy-4-meth­­oxy­benzyl­­idene)benzohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 6 September 2011; accepted 8 September 2011; online 14 September 2011)

The mol­ecule of the title benzohydrazide derivative, C15H14N2O4, exists in a trans conformation with respect to the C=N double bond and is twisted, the dihedral angle between the two benzene rings being 24.17 (6)°. The meth­oxy group is almost co-planar with respect to the attached benzene ring [Cm—O—C—C (m = meth­yl) = −1.45 (17)°]. In the crystal, the mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds into sheets parallel to the bc plane. These sheets are further connected into a three-dimensional network by weak C—H⋯O and C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Li & Ban (2009[Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876.]); Zhang (2011[Zhang, Z. (2011). Acta Cryst. E67, o300.]). For background to and applications of benzohydrazide derivatives, see: Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Bhole & Bhusari (2009[Bhole, R. P. & Bhusari, K. P. (2009). QSAR Comb. Sci. 28, 1405-1417.]); Loncle et al. (2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]); Raj et al. (2007[Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O4

  • Mr = 286.28

  • Monoclinic, P 21 /c

  • a = 10.7484 (5) Å

  • b = 9.4669 (4) Å

  • c = 15.7198 (5) Å

  • β = 122.166 (2)°

  • V = 1354.04 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.42 × 0.29 × 0.19 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.981

  • 16525 measured reflections

  • 3910 independent reflections

  • 3438 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.125

  • S = 1.03

  • 3910 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.88 2.30 2.9798 (12) 134
N1—H1A⋯O4i 0.88 2.53 3.3542 (12) 156
O2—H2A⋯O1ii 0.84 1.89 2.7259 (11) 174
O3—H3A⋯O1iii 0.84 1.88 2.6762 (13) 157
C10—H10A⋯O2iv 0.95 2.58 3.4786 (14) 158
C15—H15BCg1v 0.98 2.85 3.7211 (16) 149
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (v) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzohydrazide derivatives have a wide variety of biological properties, such as antibacterial (Bhole & Bhusari, 2009), antifungal (Loncle et al., 2004), antitubecular (Bedia et al., 2006) and antiproliferative (Raj et al., 2007) activities.

These interesting properties lead us to synthesize the title compound (I), which contains hydroxyl and methoxy substituents, in order to study and compare its biological properties with other related benzohydrazide derivatives. Herein the crystal structure of (I) is reported.

The molecule of the title benzohydrazide derivative (Fig. 1), C15H14N2O4, exists in a trans-configuration with respect to the C8N2 bond [1.2811 (13) Å] and the torsion angle N1–N2–C8–C9 = 178.77 (9)°. The molecule is twisted with the dihedral angle between the two benzene rings being 24.17 (6)°. Atom O1, C7, N1, N2 and C8 of the middle bridge lie nearly on the same plane with the torsion angle O1–C7–N1–N2 = -3.15 (14)°. The mean plane through this middle bridge makes the dihedral angles of 4.82 (7) and 25.95 (7)° with the C1–C6 and C9–C14 benzene rings, respectively. The methoxy group is almost co-planar with the attached benzene ring with the torsion angle C15–O4–C12–C13 = -1.45 (17)°. Bond distances are of normal values (Allen et al., 1987) and are comparable with related structures (Li & Ban, 2009; Zhang, 2011).

In the crystal packing (Fig. 2), the molecules are linked by N—H···O and O—H···O hydrogen bonds (Table 1) into sheets parallel to the bc plane and these sheets are further connected into three dimensional network. The crystal is stabilized N—H···O and O—H···O hydrogen bonds together with C—H···O weak interaction. C—H···π weak interaction (Table 1) was also observed.

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Li & Ban (2009); Zhang (2011). For background to and applications of benzohydrazide derivatives, see: Bedia et al. (2006); Bhole & Bhusari (2009); Loncle et al. (2004); Raj et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986).

Experimental top

The title compound (I) was prepared by dissolving 4-hydroxybenzohydrazide (0.1 mmol, 0.15 g) in ethanol (15 ml). A solution of 3-hydroxy-4-methoxybenzaldehyde (0.1 mmol, 0.15 g) in ethanol (15 ml) was then added slowly to the reaction. The mixture was refluxed for around 5 hr. The solution was then cooled to room temperature. Colorless blocks of (I) were obtained after slow evaporation of the solvent at room temperature after several days, Mp. 516 K (decompose).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(O-H) = 0.84 Å, d(N-H) = 0.88 Å, d(C-H) = 0.95 Å for aromatic and CH and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.70 Å from C1 and the deepest hole is located at 0.21 Å from H2A.

Structure description top

Benzohydrazide derivatives have a wide variety of biological properties, such as antibacterial (Bhole & Bhusari, 2009), antifungal (Loncle et al., 2004), antitubecular (Bedia et al., 2006) and antiproliferative (Raj et al., 2007) activities.

These interesting properties lead us to synthesize the title compound (I), which contains hydroxyl and methoxy substituents, in order to study and compare its biological properties with other related benzohydrazide derivatives. Herein the crystal structure of (I) is reported.

The molecule of the title benzohydrazide derivative (Fig. 1), C15H14N2O4, exists in a trans-configuration with respect to the C8N2 bond [1.2811 (13) Å] and the torsion angle N1–N2–C8–C9 = 178.77 (9)°. The molecule is twisted with the dihedral angle between the two benzene rings being 24.17 (6)°. Atom O1, C7, N1, N2 and C8 of the middle bridge lie nearly on the same plane with the torsion angle O1–C7–N1–N2 = -3.15 (14)°. The mean plane through this middle bridge makes the dihedral angles of 4.82 (7) and 25.95 (7)° with the C1–C6 and C9–C14 benzene rings, respectively. The methoxy group is almost co-planar with the attached benzene ring with the torsion angle C15–O4–C12–C13 = -1.45 (17)°. Bond distances are of normal values (Allen et al., 1987) and are comparable with related structures (Li & Ban, 2009; Zhang, 2011).

In the crystal packing (Fig. 2), the molecules are linked by N—H···O and O—H···O hydrogen bonds (Table 1) into sheets parallel to the bc plane and these sheets are further connected into three dimensional network. The crystal is stabilized N—H···O and O—H···O hydrogen bonds together with C—H···O weak interaction. C—H···π weak interaction (Table 1) was also observed.

For bond-length data, see: Allen et al. (1987). For related structures, see: Li & Ban (2009); Zhang (2011). For background to and applications of benzohydrazide derivatives, see: Bedia et al. (2006); Bhole & Bhusari (2009); Loncle et al. (2004); Raj et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis, Hydrogen bonds were shown as dashed lines.
(E)-4-Hydroxy-N'-(3-hydroxy-4-methoxybenzylidene)benzohydrazide top
Crystal data top
C15H14N2O4F(000) = 600
Mr = 286.28Dx = 1.404 Mg m3
Monoclinic, P21/cMelting point = 516 (decompose)–516 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.7484 (5) ÅCell parameters from 3910 reflections
b = 9.4669 (4) Åθ = 2.2–30.0°
c = 15.7198 (5) ŵ = 0.10 mm1
β = 122.166 (2)°T = 100 K
V = 1354.04 (10) Å3Block, colorless
Z = 40.42 × 0.29 × 0.19 mm
Data collection top
Bruker APEX DUO CCD
diffractometer
3910 independent reflections
Radiation source: sealed tube3438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1415
Tmin = 0.958, Tmax = 0.981k = 1313
16525 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.4766P]
where P = (Fo2 + 2Fc2)/3
3910 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C15H14N2O4V = 1354.04 (10) Å3
Mr = 286.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7484 (5) ŵ = 0.10 mm1
b = 9.4669 (4) ÅT = 100 K
c = 15.7198 (5) Å0.42 × 0.29 × 0.19 mm
β = 122.166 (2)°
Data collection top
Bruker APEX DUO CCD
diffractometer
3910 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3438 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.981Rint = 0.021
16525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
3910 reflectionsΔρmin = 0.49 e Å3
191 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43925 (8)1.18018 (8)0.58385 (5)0.01852 (17)
O20.49471 (9)1.47445 (8)0.24675 (6)0.01967 (17)
H2A0.47921.43160.19520.030*
O30.26685 (8)0.66939 (8)0.80751 (6)0.01987 (17)
H3A0.35560.67740.82600.030*
O40.01675 (9)0.54612 (9)0.72204 (6)0.02306 (18)
N10.28428 (10)1.03431 (9)0.45801 (6)0.01717 (18)
H1A0.23801.01040.39420.021*
N20.26221 (9)0.96119 (9)0.52515 (6)0.01676 (18)
C10.40755 (10)1.22076 (10)0.42422 (7)0.01464 (18)
C20.50952 (12)1.33110 (12)0.46469 (8)0.0208 (2)
H2B0.56031.34940.53480.025*
C30.53774 (12)1.41401 (12)0.40453 (8)0.0229 (2)
H3B0.60711.48880.43340.027*
C40.46467 (10)1.38813 (10)0.30166 (7)0.01553 (19)
C50.36654 (12)1.27532 (12)0.26061 (8)0.0210 (2)
H5A0.31931.25470.19100.025*
C60.33780 (12)1.19320 (12)0.32125 (8)0.0208 (2)
H6A0.26991.11730.29250.025*
C70.37956 (10)1.14385 (10)0.49418 (7)0.01477 (18)
C80.15580 (12)0.87261 (12)0.48512 (8)0.0204 (2)
H8A0.09820.86310.41410.024*
C90.12146 (11)0.78585 (11)0.54692 (8)0.0189 (2)
C100.21899 (10)0.77112 (10)0.65114 (7)0.01542 (19)
H10A0.31150.81760.68380.019*
C110.18034 (10)0.68906 (10)0.70614 (7)0.01506 (19)
C120.04194 (11)0.62256 (11)0.65889 (8)0.0189 (2)
C130.05414 (13)0.63664 (15)0.55581 (9)0.0306 (3)
H13A0.14750.59180.52320.037*
C140.01309 (13)0.71667 (15)0.50042 (9)0.0312 (3)
H14A0.07810.72410.42970.037*
C150.12259 (13)0.47708 (14)0.67802 (10)0.0297 (3)
H15D0.12940.42890.73060.045*
H15A0.13250.40770.62850.045*
H15B0.20140.54730.64480.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0209 (3)0.0232 (4)0.0119 (3)0.0039 (3)0.0090 (3)0.0025 (3)
O20.0247 (4)0.0215 (4)0.0148 (3)0.0043 (3)0.0119 (3)0.0004 (3)
O30.0180 (3)0.0263 (4)0.0132 (3)0.0006 (3)0.0069 (3)0.0032 (3)
O40.0221 (4)0.0259 (4)0.0225 (4)0.0044 (3)0.0128 (3)0.0058 (3)
N10.0221 (4)0.0188 (4)0.0119 (4)0.0044 (3)0.0100 (3)0.0008 (3)
N20.0198 (4)0.0186 (4)0.0146 (4)0.0001 (3)0.0110 (3)0.0020 (3)
C10.0162 (4)0.0159 (4)0.0129 (4)0.0002 (3)0.0085 (3)0.0002 (3)
C20.0222 (5)0.0248 (5)0.0121 (4)0.0074 (4)0.0069 (4)0.0013 (4)
C30.0244 (5)0.0265 (5)0.0142 (5)0.0107 (4)0.0079 (4)0.0018 (4)
C40.0170 (4)0.0172 (4)0.0142 (4)0.0007 (3)0.0096 (3)0.0014 (3)
C50.0263 (5)0.0244 (5)0.0131 (4)0.0077 (4)0.0111 (4)0.0040 (4)
C60.0265 (5)0.0221 (5)0.0155 (5)0.0097 (4)0.0124 (4)0.0055 (4)
C70.0158 (4)0.0163 (4)0.0130 (4)0.0009 (3)0.0081 (3)0.0004 (3)
C80.0211 (5)0.0246 (5)0.0141 (4)0.0031 (4)0.0084 (4)0.0021 (4)
C90.0184 (4)0.0219 (5)0.0153 (4)0.0030 (3)0.0083 (4)0.0023 (3)
C100.0146 (4)0.0165 (4)0.0154 (4)0.0009 (3)0.0081 (3)0.0003 (3)
C110.0155 (4)0.0156 (4)0.0137 (4)0.0017 (3)0.0076 (3)0.0006 (3)
C120.0189 (4)0.0199 (5)0.0189 (5)0.0023 (3)0.0106 (4)0.0030 (4)
C130.0200 (5)0.0428 (7)0.0205 (5)0.0137 (5)0.0050 (4)0.0054 (5)
C140.0225 (5)0.0452 (7)0.0158 (5)0.0128 (5)0.0032 (4)0.0066 (5)
C150.0267 (5)0.0295 (6)0.0348 (6)0.0092 (4)0.0177 (5)0.0038 (5)
Geometric parameters (Å, º) top
O1—C71.2465 (12)C4—C51.3946 (14)
O2—C41.3468 (12)C5—C61.3864 (14)
O2—H2A0.8400C5—H5A0.9500
O3—C111.3642 (12)C6—H6A0.9500
O3—H3A0.8400C8—C91.4616 (14)
O4—C121.3671 (12)C8—H8A0.9500
O4—C151.4302 (13)C9—C141.3889 (15)
N1—C71.3518 (13)C9—C101.4049 (13)
N1—N21.3841 (11)C10—C111.3804 (13)
N1—H1A0.8800C10—H10A0.9500
N2—C81.2811 (13)C11—C121.4087 (14)
C1—C21.3981 (13)C12—C131.3886 (15)
C1—C61.3992 (13)C13—C141.3913 (16)
C1—C71.4774 (13)C13—H13A0.9500
C2—C31.3813 (14)C14—H14A0.9500
C2—H2B0.9500C15—H15D0.9800
C3—C41.3927 (14)C15—H15A0.9800
C3—H3B0.9500C15—H15B0.9800
C4—O2—H2A109.5N2—C8—C9121.12 (9)
C11—O3—H3A109.5N2—C8—H8A119.4
C12—O4—C15116.86 (9)C9—C8—H8A119.4
C7—N1—N2117.51 (8)C14—C9—C10119.23 (10)
C7—N1—H1A121.2C14—C9—C8118.41 (9)
N2—N1—H1A121.2C10—C9—C8122.36 (9)
C8—N2—N1115.06 (8)C11—C10—C9119.98 (9)
C2—C1—C6118.24 (9)C11—C10—H10A120.0
C2—C1—C7116.77 (9)C9—C10—H10A120.0
C6—C1—C7124.97 (9)O3—C11—C10124.27 (9)
C3—C2—C1121.18 (9)O3—C11—C12115.25 (9)
C3—C2—H2B119.4C10—C11—C12120.44 (9)
C1—C2—H2B119.4O4—C12—C13125.91 (9)
C2—C3—C4120.09 (9)O4—C12—C11114.55 (9)
C2—C3—H3B120.0C13—C12—C11119.53 (9)
C4—C3—H3B120.0C12—C13—C14119.73 (10)
O2—C4—C3117.26 (9)C12—C13—H13A120.1
O2—C4—C5123.26 (9)C14—C13—H13A120.1
C3—C4—C5119.48 (9)C9—C14—C13121.04 (10)
C6—C5—C4120.11 (9)C9—C14—H14A119.5
C6—C5—H5A119.9C13—C14—H14A119.5
C4—C5—H5A119.9O4—C15—H15D109.5
C5—C6—C1120.83 (9)O4—C15—H15A109.5
C5—C6—H6A119.6H15D—C15—H15A109.5
C1—C6—H6A119.6O4—C15—H15B109.5
O1—C7—N1120.39 (9)H15D—C15—H15B109.5
O1—C7—C1121.31 (9)H15A—C15—H15B109.5
N1—C7—C1118.28 (8)
C7—N1—N2—C8170.09 (9)N2—C8—C9—C14165.34 (12)
C6—C1—C2—C32.04 (16)N2—C8—C9—C1014.19 (17)
C7—C1—C2—C3176.66 (10)C14—C9—C10—C110.25 (16)
C1—C2—C3—C40.29 (18)C8—C9—C10—C11179.28 (10)
C2—C3—C4—O2178.66 (10)C9—C10—C11—O3179.40 (9)
C2—C3—C4—C52.01 (17)C9—C10—C11—C121.60 (15)
O2—C4—C5—C6178.17 (10)C15—O4—C12—C131.45 (17)
C3—C4—C5—C62.53 (16)C15—O4—C12—C11179.62 (10)
C4—C5—C6—C10.77 (17)O3—C11—C12—O41.13 (13)
C2—C1—C6—C51.50 (16)C10—C11—C12—O4179.13 (9)
C7—C1—C6—C5177.08 (10)O3—C11—C12—C13179.87 (11)
N2—N1—C7—O13.15 (14)C10—C11—C12—C131.87 (16)
N2—N1—C7—C1178.39 (8)O4—C12—C13—C14179.17 (12)
C2—C1—C7—O13.16 (14)C11—C12—C13—C140.3 (2)
C6—C1—C7—O1175.44 (10)C10—C9—C14—C131.8 (2)
C2—C1—C7—N1178.39 (9)C8—C9—C14—C13177.71 (13)
C6—C1—C7—N13.01 (15)C12—C13—C14—C91.6 (2)
N1—N2—C8—C9178.77 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.882.302.9798 (12)134
N1—H1A···O4i0.882.533.3542 (12)156
O2—H2A···O1ii0.841.892.7259 (11)174
O3—H3A···O1iii0.841.882.6762 (13)157
C10—H10A···O2iv0.952.583.4786 (14)158
C15—H15B···Cg1v0.982.853.7211 (16)149
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+5/2, z1/2; (iii) x+1, y1/2, z+3/2; (iv) x, y+5/2, z+1/2; (v) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC15H14N2O4
Mr286.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.7484 (5), 9.4669 (4), 15.7198 (5)
β (°) 122.166 (2)
V3)1354.04 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.29 × 0.19
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.958, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
16525, 3910, 3438
Rint0.021
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.125, 1.03
No. of reflections3910
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.49

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.882.302.9798 (12)134
N1—H1A···O4i0.882.533.3542 (12)156
O2—H2A···O1ii0.841.892.7259 (11)174
O3—H3A···O1iii0.841.882.6762 (13)157
C10—H10A···O2iv0.952.583.4786 (14)158
C15—H15B···Cg1v0.982.853.7211 (16)149
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+5/2, z1/2; (iii) x+1, y1/2, z+3/2; (iv) x, y+5/2, z+1/2; (v) x, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5085-2009. Additional correspondence author, email: suchada.c@psu.ac.th.

Acknowledgements

JH thanks the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, for financial support. The authors thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBhole, R. P. & Bhusari, K. P. (2009). QSAR Comb. Sci. 28, 1405–1417.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRaj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z. (2011). Acta Cryst. E67, o300.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds