Download citation
Download citation
link to html
In the title compound, [Mn(C4H2O4)(C7H6N2)3]n, maleate dianions bridge neighbouring MnII ions to form helical polymeric chains. The Mn ion assumes a distorted octa­hedral coordination geometry, formed by two maleate and three benzimidazole ligands. One maleate carboxyl group chelates to the Mn atom with longer Mn—O bond distances while the other carboxyl group coordinates in a monodentate manner to the Mn atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805028333/hb6259sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805028333/hb6259Isup2.hkl
Contains datablock I

CCDC reference: 287563

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.038
  • wR factor = 0.106
  • Data-to-parameter ratio = 13.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.86 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C16
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.50 From the CIF: _reflns_number_total 4528 Count of symmetry unique reflns 2593 Completeness (_total/calc) 174.62% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1935 Fraction of Friedel pairs measured 0.746 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The chemical behavior of manganese complexes has attracted much attention in terms of their catalytic activity in some industrial and biochemical process (Kono & Fridovich, 1983; Wu et al., 2001). As part of our ongoing investigation on polymerization reactions catalysed by variable valance manganese complexes, we present here the X-ray structure of the title MnII complex, (I).

The crystal of (I) consists of polymeric complex chains (Fig. 1). The maleate dianions bridge neighboring MnII ions through both carboxyl groups, one in a chelating mode and the other in a monodentate mode. The Mn—O bond distances involving the chelating carboxyl group [O1—Mn—O2 = 55.76 (7)°] are much longer than that involving the monodentate carboxyl group (Table 1). Three benzimidazole N atoms coordinate to the Mn atom to complete the distorted octahedral coordination geometry. The large N23—Mn—O3i angle of 117.82 (10)° [symmetry code: (i) −1/2 + x, 3/2 − y, 1 − z] indicates a significant degree of distortion.

The C1-carboxyl group of the maleate dianion is twisted with respect to the carbon backbone mean plane by 28.1 (3)°; the Mn ion bonded to the C1-carboxyl group is thus displaced from the backbone mean plane by a relatively small amount [0.145 (8) Å]. The maleate C3-carboxyl group is nearly perpendicular to the carbon backbone [dihedral angle = 80.6 (2)°], resulting in the O3-bridging Mnii atom being out of the backbone best plane by −1.318 (8) Å [symmetry code: (ii) 1/2 + x, 3/2 − y, 1 − z]. Overall, the maleate dianions bridge neighboring Mn atoms to form a helical polymeric chain (Fig. 2), in agreement with the situation found in the isostructural CoII analogue (Xue et al., 2003).

The crystal packing is stabilized by N—H···O hydrogen bonds between benzimidazole ligands and neighbouring carboxyl groups (Table 2).

Experimental top

A hot aqueous solution (5 ml) of maleic acid (2 mmol) and Na2CO3 (2 mmol) was mixed with an aqueous solution (5 ml) of MnCl2·2H2O (2 mmol). The mixture was refluxed for 1 h, after which time an ethanol solution (5 ml) of benzimidazole (4 mmol) was added dropwise and the resulting mixture refluxed for another 3 h and filtered. Single crystals of (I) were obtained from the solution after 10 d.

Refinement top

H atoms were placed in calculated positions, with C—H = 0.93 Å and N—H = 0.86 Å, and were included in the final cycles of refinement in riding mode, with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A segment of polymeric structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). [Symmetry codes: (i) x − 1/2, 3/2 − y, 1 − z; (ii) 1/2 + x, 3/2 − y, 1 − z.]
[Figure 2] Fig. 2. The packing of (I), showing a fragment of the helical complex chain. H atoms have been omitted for clarity.
catena-Poly[[tris(1H-benzimidazole-κN3)manganese(II)]-µ-maleato- κ3O,O':κO''] top
Crystal data top
[Mn(C4H2O4)(C7H6N2)3]F(000) = 1076
Mr = 523.41Dx = 1.421 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 17602 reflections
a = 9.3455 (13) Åθ = 2.4–25.0°
b = 12.2596 (13) ŵ = 0.58 mm1
c = 21.3592 (19) ÅT = 295 K
V = 2447.2 (5) Å3Block, colourless
Z = 40.29 × 0.13 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4528 independent reflections
Radiation source: fine-focus sealed tube3945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 10.00 pixels mm-1θmax = 25.5°, θmin = 1.9°
ω scansh = 1011
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1414
Tmin = 0.838, Tmax = 0.935l = 2525
19932 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0618P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
4528 reflectionsΔρmax = 0.39 e Å3
325 parametersΔρmin = 0.54 e Å3
0 restraintsAbsolute structure: Flack (1983), 1935 Friedel Pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
[Mn(C4H2O4)(C7H6N2)3]V = 2447.2 (5) Å3
Mr = 523.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.3455 (13) ŵ = 0.58 mm1
b = 12.2596 (13) ÅT = 295 K
c = 21.3592 (19) Å0.29 × 0.13 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4528 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3945 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.935Rint = 0.048
19932 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.39 e Å3
S = 1.18Δρmin = 0.54 e Å3
4528 reflectionsAbsolute structure: Flack (1983), 1935 Friedel Pairs
325 parametersAbsolute structure parameter: 0.01 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.51711 (5)0.72570 (4)0.387056 (19)0.03921 (14)
O10.6373 (2)0.8878 (2)0.37049 (9)0.0466 (6)
O20.6163 (2)0.83497 (19)0.46816 (10)0.0469 (5)
O30.9331 (2)0.8778 (2)0.53924 (10)0.0474 (6)
O40.7556 (3)0.9371 (2)0.59944 (10)0.0562 (7)
N110.1215 (3)0.8881 (3)0.43417 (13)0.0539 (8)
H110.06120.90360.46330.065*
N130.3171 (3)0.8235 (2)0.38927 (13)0.0460 (6)
N210.4436 (3)0.5595 (3)0.20920 (13)0.0542 (8)
H210.40010.50970.18820.065*
N230.4995 (3)0.6668 (2)0.28923 (11)0.0477 (6)
N310.9542 (3)0.5962 (3)0.40759 (14)0.0528 (7)
H311.04460.60830.41040.063*
N330.7229 (3)0.6293 (2)0.39332 (14)0.0449 (6)
C10.6533 (3)0.9048 (3)0.42852 (14)0.0378 (7)
C20.7174 (3)1.0094 (3)0.44882 (16)0.0444 (8)
H20.70541.06970.42290.053*
C30.7912 (4)1.0231 (3)0.50160 (16)0.0468 (8)
H30.82531.09310.50930.056*
C40.8255 (3)0.9379 (3)0.55029 (14)0.0411 (7)
C120.2448 (4)0.8362 (3)0.44091 (15)0.0481 (8)
H120.27710.81080.47940.058*
C140.2542 (5)0.8828 (4)0.27967 (17)0.0693 (12)
H140.33590.85530.26040.083*
C150.1490 (6)0.9362 (6)0.2458 (2)0.0995 (19)
H150.16080.94460.20280.119*
C160.0274 (5)0.9772 (6)0.2738 (2)0.107 (2)
H160.04061.01240.24930.129*
C170.0044 (4)0.9673 (4)0.3368 (2)0.0813 (14)
H170.07700.99570.35580.098*
C180.1087 (3)0.9126 (3)0.37103 (16)0.0492 (8)
C190.2324 (3)0.8720 (3)0.34372 (15)0.0446 (8)
C220.4181 (4)0.5872 (3)0.26893 (15)0.0528 (9)
H220.34930.55310.29360.063*
C240.6949 (4)0.7699 (4)0.23258 (18)0.0665 (11)
H240.71910.81540.26580.080*
C250.7651 (5)0.7763 (5)0.1761 (2)0.0872 (15)
H250.83870.82660.17120.105*
C260.7280 (5)0.7085 (4)0.12605 (19)0.0802 (13)
H260.77680.71590.08830.096*
C270.6228 (5)0.6321 (4)0.13064 (17)0.0627 (11)
H270.59960.58670.09730.075*
C280.5517 (4)0.6254 (3)0.18777 (15)0.0492 (8)
C290.5869 (4)0.6933 (3)0.23818 (15)0.0471 (8)
C320.8529 (3)0.6693 (3)0.39397 (16)0.0505 (8)
H320.87290.74220.38570.061*
C340.6439 (4)0.4334 (3)0.4079 (2)0.0642 (10)
H340.54710.44560.40080.077*
C350.6941 (6)0.3308 (4)0.4200 (3)0.0893 (16)
H350.63060.27250.42050.107*
C360.8400 (6)0.3120 (4)0.4318 (3)0.0910 (16)
H360.87030.24160.44100.109*
C370.9380 (5)0.3939 (3)0.4301 (2)0.0683 (11)
H371.03450.38100.43770.082*
C380.8869 (4)0.4981 (3)0.41630 (15)0.0482 (8)
C390.7413 (4)0.5187 (3)0.40648 (15)0.0430 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0426 (2)0.0406 (2)0.0345 (2)0.0008 (2)0.0000 (2)0.0006 (2)
O10.0595 (14)0.0467 (14)0.0337 (11)0.0007 (11)0.0030 (10)0.0008 (9)
O20.0548 (13)0.0442 (13)0.0417 (12)0.0031 (11)0.0060 (11)0.0057 (11)
O30.0361 (11)0.0531 (14)0.0531 (13)0.0059 (10)0.0025 (10)0.0097 (11)
O40.0525 (13)0.0746 (19)0.0414 (13)0.0087 (13)0.0007 (11)0.0056 (12)
N110.0560 (18)0.060 (2)0.0452 (15)0.0069 (15)0.0137 (14)0.0057 (14)
N130.0538 (15)0.0489 (16)0.0353 (13)0.0047 (13)0.0009 (14)0.0025 (13)
N210.0587 (17)0.065 (2)0.0389 (14)0.0095 (15)0.0036 (13)0.0109 (14)
N230.0483 (15)0.0573 (17)0.0375 (12)0.0028 (16)0.0025 (13)0.0051 (12)
N310.0393 (14)0.0564 (19)0.0626 (17)0.0024 (13)0.0093 (13)0.0054 (14)
N330.0433 (14)0.0432 (16)0.0482 (15)0.0007 (12)0.0014 (13)0.0033 (13)
C10.0356 (15)0.0349 (17)0.0430 (16)0.0035 (13)0.0040 (13)0.0004 (14)
C20.0497 (18)0.0356 (18)0.0480 (18)0.0033 (15)0.0080 (15)0.0046 (14)
C30.0522 (19)0.0353 (19)0.0528 (19)0.0009 (15)0.0067 (16)0.0014 (14)
C40.0374 (16)0.0435 (19)0.0425 (17)0.0044 (14)0.0065 (14)0.0049 (14)
C120.058 (2)0.049 (2)0.0365 (17)0.0089 (18)0.0015 (15)0.0046 (15)
C140.058 (2)0.106 (4)0.044 (2)0.006 (2)0.0014 (18)0.018 (2)
C150.081 (3)0.164 (6)0.054 (2)0.015 (4)0.005 (2)0.038 (3)
C160.068 (3)0.180 (6)0.075 (3)0.032 (4)0.008 (3)0.053 (3)
C170.049 (2)0.115 (4)0.080 (3)0.019 (3)0.004 (2)0.030 (3)
C180.0405 (17)0.059 (2)0.0478 (19)0.0011 (16)0.0022 (14)0.0126 (16)
C190.0404 (17)0.056 (2)0.0377 (16)0.0072 (16)0.0001 (14)0.0054 (15)
C220.0486 (19)0.069 (3)0.0407 (17)0.0110 (18)0.0002 (15)0.0006 (17)
C240.082 (3)0.065 (3)0.053 (2)0.021 (2)0.0153 (19)0.013 (2)
C250.097 (3)0.093 (4)0.072 (3)0.031 (3)0.025 (3)0.005 (3)
C260.098 (3)0.091 (4)0.051 (2)0.011 (3)0.029 (2)0.005 (2)
C270.077 (3)0.069 (3)0.0415 (19)0.000 (2)0.0056 (18)0.0066 (17)
C280.054 (2)0.057 (2)0.0363 (16)0.0047 (17)0.0046 (15)0.0025 (15)
C290.055 (2)0.047 (2)0.0393 (17)0.0027 (16)0.0049 (15)0.0039 (14)
C320.0503 (18)0.0440 (19)0.057 (2)0.0044 (15)0.0020 (17)0.0040 (17)
C340.054 (2)0.049 (2)0.089 (3)0.0059 (18)0.012 (2)0.014 (2)
C350.084 (3)0.047 (3)0.137 (5)0.007 (2)0.022 (3)0.002 (3)
C360.102 (4)0.052 (3)0.119 (4)0.008 (3)0.012 (3)0.018 (3)
C370.068 (2)0.061 (3)0.076 (3)0.016 (2)0.008 (2)0.004 (2)
C380.058 (2)0.048 (2)0.0382 (16)0.0073 (17)0.0035 (15)0.0035 (15)
C390.0472 (17)0.0431 (19)0.0385 (16)0.0006 (15)0.0037 (14)0.0075 (14)
Geometric parameters (Å, º) top
Mn—O12.310 (2)C14—C191.389 (5)
Mn—O22.378 (2)C14—H140.9300
Mn—O3i2.169 (2)C15—C161.380 (7)
Mn—N132.221 (3)C15—H150.9300
Mn—N232.217 (2)C16—C171.367 (6)
Mn—N332.261 (3)C16—H160.9300
O1—C11.266 (4)C17—C181.391 (5)
O2—C11.253 (4)C17—H170.9300
O3—C41.269 (4)C18—C191.388 (5)
O4—C41.237 (4)C22—H220.9300
N11—C121.324 (5)C24—C251.375 (5)
N11—C181.387 (4)C24—C291.385 (5)
N11—H110.8600C24—H240.9300
N13—C121.303 (4)C25—C261.397 (6)
N13—C191.388 (4)C25—H250.9300
N21—C221.341 (4)C26—C271.362 (6)
N21—C281.372 (5)C26—H260.9300
N21—H210.8600C27—C281.392 (5)
N23—C221.311 (5)C27—H270.9300
N23—C291.400 (4)C28—C291.400 (5)
N31—C321.336 (5)C32—H320.9300
N31—C381.369 (5)C34—C351.366 (6)
N31—H310.8600C34—C391.387 (5)
N33—C321.310 (4)C34—H340.9300
N33—C391.395 (4)C35—C361.405 (7)
C1—C21.480 (5)C35—H350.9300
C2—C31.332 (5)C36—C371.359 (7)
C2—H20.9300C36—H360.9300
C3—C41.509 (5)C37—C381.396 (5)
C3—H30.9300C37—H370.9300
C12—H120.9300C38—C391.400 (5)
C14—C151.385 (6)
O3i—Mn—N23117.82 (10)C14—C15—H15119.0
O3i—Mn—N1389.76 (10)C17—C16—C15121.6 (4)
N23—Mn—N1397.68 (10)C17—C16—H16119.2
O3i—Mn—N3387.67 (10)C15—C16—H16119.2
N23—Mn—N3387.06 (11)C16—C17—C18116.7 (4)
N13—Mn—N33175.25 (11)C16—C17—H17121.6
O3i—Mn—O1142.22 (8)C18—C17—H17121.6
N23—Mn—O199.91 (9)N11—C18—C19105.0 (3)
N13—Mn—O187.02 (10)N11—C18—C17132.6 (4)
N33—Mn—O192.58 (9)C19—C18—C17122.4 (3)
O3i—Mn—O286.66 (8)C18—C19—N13109.5 (3)
N23—Mn—O2154.04 (9)C18—C19—C14120.1 (3)
N13—Mn—O290.48 (9)N13—C19—C14130.3 (3)
N33—Mn—O285.38 (9)N23—C22—N21113.5 (3)
O1—Mn—O255.76 (7)N23—C22—H22123.2
C1—O1—Mn92.84 (19)N21—C22—H22123.2
C1—O2—Mn90.02 (18)C25—C24—C29117.5 (4)
C4—O3—Mnii119.5 (2)C25—C24—H24121.2
C12—N11—C18106.6 (3)C29—C24—H24121.2
C12—N11—H11126.7C24—C25—C26121.3 (4)
C18—N11—H11126.7C24—C25—H25119.4
C12—N13—C19104.3 (3)C26—C25—H25119.4
C12—N13—Mn121.3 (2)C27—C26—C25122.2 (4)
C19—N13—Mn134.1 (2)C27—C26—H26118.9
C22—N21—C28107.4 (3)C25—C26—H26118.9
C22—N21—H21126.3C26—C27—C28116.7 (4)
C28—N21—H21126.3C26—C27—H27121.7
C22—N23—C29104.7 (3)C28—C27—H27121.7
C22—N23—Mn126.7 (2)N21—C28—C27132.8 (3)
C29—N23—Mn127.9 (2)N21—C28—C29105.5 (3)
C32—N31—C38107.1 (3)C27—C28—C29121.8 (4)
C32—N31—H31126.5C24—C29—N23130.6 (3)
C38—N31—H31126.5C24—C29—C28120.6 (3)
C32—N33—C39104.4 (3)N23—C29—C28108.9 (3)
C32—N33—Mn126.4 (2)N33—C32—N31114.1 (3)
C39—N33—Mn128.6 (2)N33—C32—H32123.0
O2—C1—O1121.1 (3)N31—C32—H32123.0
O2—C1—C2120.4 (3)C35—C34—C39118.2 (4)
O1—C1—C2118.5 (3)C35—C34—H34120.9
C3—C2—C1124.5 (3)C39—C34—H34120.9
C3—C2—H2117.7C34—C35—C36121.2 (5)
C1—C2—H2117.7C34—C35—H35119.4
C2—C3—C4127.3 (3)C36—C35—H35119.4
C2—C3—H3116.3C37—C36—C35121.9 (4)
C4—C3—H3116.3C37—C36—H36119.1
O4—C4—O3124.9 (3)C35—C36—H36119.1
O4—C4—C3118.6 (3)C36—C37—C38116.8 (4)
O3—C4—C3116.3 (3)C36—C37—H37121.6
N13—C12—N11114.6 (3)C38—C37—H37121.6
N13—C12—H12122.7N31—C38—C37132.5 (4)
N11—C12—H12122.7N31—C38—C39105.5 (3)
C15—C14—C19117.1 (4)C37—C38—C39122.0 (4)
C15—C14—H14121.5C34—C39—N33131.1 (3)
C19—C14—H14121.5C34—C39—C38119.9 (3)
C16—C15—C14122.0 (4)N33—C39—C38109.0 (3)
C16—C15—H15119.0
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O3iii0.862.042.855 (3)158
N21—H21···O1iv0.861.982.811 (4)162
N31—H31···O4ii0.862.062.850 (4)152
Symmetry codes: (ii) x+1/2, y+3/2, z+1; (iii) x1, y, z; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C4H2O4)(C7H6N2)3]
Mr523.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)9.3455 (13), 12.2596 (13), 21.3592 (19)
V3)2447.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.29 × 0.13 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.838, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
19932, 4528, 3945
Rint0.048
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.18
No. of reflections4528
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.54
Absolute structureFlack (1983), 1935 Friedel Pairs
Absolute structure parameter0.01 (2)

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Mn—O12.310 (2)Mn—N132.221 (3)
Mn—O22.378 (2)Mn—N232.217 (2)
Mn—O3i2.169 (2)Mn—N332.261 (3)
C1—O1—Mn92.84 (19)C4—O3—Mnii119.5 (2)
C1—O2—Mn90.02 (18)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O3iii0.862.042.855 (3)158
N21—H21···O1iv0.861.982.811 (4)162
N31—H31···O4ii0.862.062.850 (4)152
Symmetry codes: (ii) x+1/2, y+3/2, z+1; (iii) x1, y, z; (iv) x+1, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds