metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-ethano­lato-bis­­[di­ethano­lato(2-methyl­quinolin-8-olato)titanium(IV)]

aDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: m-pouramini@cc.sbu.ac.ir

(Received 21 October 2009; accepted 31 October 2009; online 7 November 2009)

In the centrosymmetric dinuclear title compound, [Ti2(C10H8NO)2(C2H5O)6], the Ti atom is bonded to an N,O-bidentate quinolin-8-olate ligand, two terminal ethano­late anions and two bridging ethano­late anions in a distorted TiNO5 octa­hedral geometry. An intra­molecular C—H⋯O hydrogen bond occurs; in the crystal, inter­molecular C—H⋯O inter­actions help to establish the packing.

Related literature

For TiIV–8-hydroxy­quinolinates, see: Amini et al. (2004[Amini, M. M., Mirzaee, M. & Ng, S. W. (2004). Acta Cryst. E60, m145-m146.]); Birdet et al. (1973[Birdet, P. H., Fraser, A. R. & Lau, C. F. (1973). Inorg. Chem. 12, 1322-1328.]); Studd & Swallow (1968[Studd, B. F. & Swallow, A. G. (1968). J. Chem. Soc. A, pp. 1961-1967.]). For a related structure, see: Faza­eli et al. (2008[Fazaeli, Y., Amini, M. M., Gao, S. & Ng, S. W. (2008). Acta Cryst. E64, o97.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti2(C10H8NO)2(C2H5O)6]

  • Mr = 682.51

  • Monoclinic, P 21 /n

  • a = 9.0497 (18) Å

  • b = 13.086 (3) Å

  • c = 14.189 (3) Å

  • β = 95.21 (3)°

  • V = 1673.4 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 120 K

  • 0.45 × 0.28 × 0.23 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.686, Tmax = 0.905

  • 12962 measured reflections

  • 4503 independent reflections

  • 3540 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.097

  • wR(F2) = 0.197

  • S = 1.14

  • 4503 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 1.26 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Selected bond lengths (Å)

Ti1—N1 2.387 (3)
Ti1—O1 1.950 (3)
Ti1—O2 1.808 (3)
Ti1—O3 1.817 (3)
Ti1—O4i 2.008 (3)
Ti1—O4 2.061 (2)
Symmetry code: (i) -x+2, -y+2, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O1 0.97 2.46 3.061 (5) 120
C1—H1C⋯O3i 0.96 2.38 3.292 (5) 159
C3—H3⋯O1ii 0.93 2.41 3.310 (5) 163
Symmetry codes: (i) -x+2, -y+2, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

8-Hydroxyquinoline and its derivatives are reagents for the gravimetric analysis of metal ions and the crystal structures of a large number of metal 8-hydroxyquinolinates have been documented. However, for TiIV, only three 8-hydroxyquinolinates are known (Amini et al., 2004), (Birdet et al., 1973; Studd & Swallow, 1968). Recently, we have reported the structure of 2-methyl-8-hydroxyquinoline (Fazaeli et al., 2008). In continuation our work in preparation of 8-hydroxyquinoline derivatives of transition metal elements from corresponding alkoxides, here we report synthesis and characterization of the title compound, (I).

This molecule lie across crystallographic inversion centre and the assymetric unit therefore contains one-half of a molecule. The 8-hydroxy-2-methylquinolinate anion chelates to Ti in the triethanolate derivative; however, the coordination number is raised to six as two of the four ethanolate groups are bridging (Table 1) (Fig. 1).

Related literature top

For TiIV–8-hydroxyquinolinates, see: Amini et al. (2004); Birdet et al. (1973); Studd & Swallow (1968). For a related structure, see: Fazaeli et al. (2008).

Experimental top

Manipulations were carried out under nitrogen, using standard Schlenk techniques. TitaniumIV tetraethoxide was prepared from titaniumIV tetrapropoxide (Fluka) and dry ethanol by the alkoxide exchange method and it was puried by vacuum distillation. 8-Hydroxyquinoline (1.6 g, 10 mmol) was added to the reagent (2.28 g, 10 mmol) in toluene (10 ml). The mixture was stirred for a day and the solvent then removed under reduced pressure to furnish a yellow solid. The solid was crystallized from a dichloromethane n-hexane mixture to give yellow prisms of (I).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å, 0.96Å and 0.97Å for aromatic, methyl and CH2 hydrogen atoms respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. Atoms with the suffix a are generated by (2–x, 2–y, –z).
Di-µ-ethanolato-bis[diethanolato(2-methylquinolin-8-olato)titanium(IV)] top
Crystal data top
[Ti2(C10H8NO)2(C2H5O)6]F(000) = 720
Mr = 682.51Dx = 1.354 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1633 reflections
a = 9.0497 (18) Åθ = 2.1–29.2°
b = 13.086 (3) ŵ = 0.53 mm1
c = 14.189 (3) ÅT = 120 K
β = 95.21 (3)°Prism, yellow
V = 1673.4 (6) Å30.45 × 0.28 × 0.23 mm
Z = 2
Data collection top
Stoe IPDS II
diffractometer
4503 independent reflections
Radiation source: fine-focus sealed tube3540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.1°
rotation method scansh = 1212
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
k = 1717
Tmin = 0.686, Tmax = 0.905l = 1915
12962 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.097Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.1579P)2 + 0.3709P]
where P = (Fo2 + 2Fc2)/3
4503 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 1.26 e Å3
0 restraintsΔρmin = 1.14 e Å3
Crystal data top
[Ti2(C10H8NO)2(C2H5O)6]V = 1673.4 (6) Å3
Mr = 682.51Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.0497 (18) ŵ = 0.53 mm1
b = 13.086 (3) ÅT = 120 K
c = 14.189 (3) Å0.45 × 0.28 × 0.23 mm
β = 95.21 (3)°
Data collection top
Stoe IPDS II
diffractometer
4503 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
3540 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.905Rint = 0.099
12962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0970 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.14Δρmax = 1.26 e Å3
4503 reflectionsΔρmin = 1.14 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7281 (4)0.8994 (3)0.1775 (3)0.0353 (7)
H1A0.67380.90580.12270.053*
H1B0.65980.89140.23290.053*
H1C0.78690.95960.18390.053*
C20.8274 (3)0.8079 (3)0.1667 (2)0.0306 (7)
C30.8266 (4)0.7345 (3)0.2396 (3)0.0354 (7)
H30.76500.74360.29500.042*
C40.9155 (4)0.6503 (3)0.2294 (3)0.0349 (7)
H40.91650.60320.27840.042*
C51.0064 (4)0.6351 (3)0.1439 (2)0.0310 (6)
C61.0989 (4)0.5492 (3)0.1246 (3)0.0356 (7)
H61.10490.49850.17000.043*
C71.1805 (4)0.5410 (3)0.0376 (3)0.0380 (8)
H71.24140.48440.02520.046*
C81.1734 (4)0.6166 (3)0.0329 (3)0.0349 (7)
H81.22980.60940.09070.042*
C91.0831 (4)0.7011 (3)0.0164 (2)0.0305 (7)
C100.9996 (3)0.7110 (3)0.0735 (2)0.0284 (6)
C110.6511 (5)0.7812 (4)0.0572 (4)0.0516 (11)
H11A0.65600.74900.00400.062*
H11B0.55570.81490.05730.062*
C120.6658 (9)0.7025 (4)0.1327 (6)0.081 (2)
H12A0.76180.67100.13400.122*
H12B0.59030.65150.12020.122*
H12C0.65490.73400.19280.122*
C130.9606 (5)0.8822 (4)0.2620 (3)0.0431 (9)
H13A0.98890.81090.25850.052*
H13B0.85400.88530.26500.052*
C141.0373 (5)0.9294 (4)0.3496 (3)0.0512 (11)
H14A1.14270.92740.34620.077*
H14B1.01250.89180.40420.077*
H14C1.00570.99900.35470.077*
C151.2662 (4)0.9251 (3)0.0154 (3)0.0347 (7)
H15A1.28250.86550.02490.042*
H15B1.34210.97500.00420.042*
C161.2818 (4)0.8944 (3)0.1167 (3)0.0444 (9)
H16A1.20540.84640.13710.067*
H16B1.37720.86360.12100.067*
H16C1.27280.95390.15650.067*
N10.9147 (3)0.7980 (2)0.0847 (2)0.0284 (6)
O11.0681 (3)0.7744 (2)0.07988 (17)0.0338 (5)
O20.7640 (3)0.8529 (2)0.07192 (19)0.0356 (6)
O30.9989 (3)0.9345 (2)0.17872 (19)0.0364 (6)
O41.1230 (2)0.96763 (19)0.00251 (17)0.0302 (5)
Ti10.94929 (6)0.89765 (5)0.05650 (4)0.0280 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0283 (15)0.0410 (18)0.0341 (17)0.0002 (13)0.0110 (13)0.0000 (13)
C20.0241 (13)0.0379 (16)0.0286 (15)0.0053 (12)0.0048 (11)0.0032 (12)
C30.0296 (15)0.0430 (18)0.0320 (17)0.0047 (13)0.0059 (12)0.0010 (14)
C40.0361 (16)0.0386 (18)0.0288 (16)0.0035 (14)0.0032 (13)0.0046 (13)
C50.0260 (13)0.0359 (16)0.0312 (16)0.0044 (12)0.0024 (11)0.0014 (13)
C60.0354 (16)0.0327 (16)0.0387 (18)0.0010 (13)0.0034 (14)0.0022 (14)
C70.0332 (16)0.0360 (17)0.044 (2)0.0052 (14)0.0013 (14)0.0007 (15)
C80.0311 (15)0.0390 (18)0.0331 (17)0.0036 (13)0.0055 (13)0.0010 (13)
C90.0254 (13)0.0358 (17)0.0293 (16)0.0001 (12)0.0031 (11)0.0016 (12)
C100.0237 (13)0.0350 (16)0.0258 (14)0.0027 (12)0.0007 (11)0.0008 (12)
C110.0382 (19)0.061 (3)0.056 (3)0.0186 (19)0.0044 (18)0.009 (2)
C120.112 (5)0.039 (3)0.101 (5)0.006 (3)0.055 (4)0.002 (3)
C130.0396 (18)0.060 (2)0.0292 (17)0.0043 (17)0.0005 (14)0.0001 (16)
C140.045 (2)0.076 (3)0.0309 (19)0.013 (2)0.0030 (16)0.0061 (19)
C150.0218 (13)0.0404 (18)0.0420 (19)0.0031 (12)0.0028 (12)0.0011 (14)
C160.0322 (17)0.056 (2)0.046 (2)0.0024 (16)0.0101 (16)0.0103 (18)
N10.0224 (11)0.0346 (14)0.0269 (13)0.0025 (10)0.0045 (10)0.0011 (10)
O10.0329 (11)0.0380 (13)0.0287 (12)0.0023 (10)0.0073 (9)0.0014 (9)
O20.0270 (11)0.0408 (14)0.0385 (13)0.0043 (10)0.0009 (9)0.0014 (10)
O30.0329 (12)0.0463 (15)0.0295 (12)0.0052 (10)0.0000 (9)0.0013 (10)
O40.0217 (9)0.0372 (12)0.0313 (12)0.0014 (9)0.0008 (8)0.0026 (9)
Ti10.0224 (3)0.0344 (4)0.0264 (3)0.0008 (2)0.0020 (2)0.0018 (2)
Geometric parameters (Å, º) top
C1—C21.496 (5)C12—H12A0.9600
C1—H1A0.9600C12—H12B0.9600
C1—H1B0.9600C12—H12C0.9600
C1—H1C0.9600C13—O31.435 (5)
C2—N11.352 (4)C13—C141.501 (6)
C2—C31.411 (5)C13—H13A0.9700
C3—C41.364 (5)C13—H13B0.9700
C3—H30.9300C14—H14A0.9600
C4—C51.417 (5)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—C61.414 (5)C15—O41.438 (4)
C5—C101.414 (5)C15—C161.512 (6)
C6—C71.384 (5)C15—H15A0.9700
C6—H60.9300C15—H15B0.9700
C7—C81.412 (5)C16—H16A0.9600
C7—H70.9300C16—H16B0.9600
C8—C91.383 (5)C16—H16C0.9600
C8—H80.9300Ti1—N12.387 (3)
C9—O11.331 (4)Ti1—O11.950 (3)
C9—C101.428 (4)Ti1—O21.808 (3)
C10—N11.375 (4)Ti1—O31.817 (3)
C11—O21.389 (5)Ti1—O4i2.008 (3)
C11—C121.483 (9)Ti1—O42.061 (2)
C11—H11A0.9700Ti1—Ti1i3.2948 (13)
C11—H11B0.9700
C2—C1—H1A109.5C14—C13—H13A109.4
C2—C1—H1B109.5O3—C13—H13B109.4
H1A—C1—H1B109.5C14—C13—H13B109.4
C2—C1—H1C109.5H13A—C13—H13B108.0
H1A—C1—H1C109.5C13—C14—H14A109.5
H1B—C1—H1C109.5C13—C14—H14B109.5
N1—C2—C3121.9 (3)H14A—C14—H14B109.5
N1—C2—C1117.6 (3)C13—C14—H14C109.5
C3—C2—C1120.4 (3)H14A—C14—H14C109.5
C4—C3—C2120.6 (3)H14B—C14—H14C109.5
C4—C3—H3119.7O4—C15—C16112.8 (3)
C2—C3—H3119.7O4—C15—H15A109.0
C3—C4—C5119.6 (3)C16—C15—H15A109.0
C3—C4—H4120.2O4—C15—H15B109.0
C5—C4—H4120.2C16—C15—H15B109.0
C6—C5—C10119.0 (3)H15A—C15—H15B107.8
C6—C5—C4124.4 (3)C15—C16—H16A109.5
C10—C5—C4116.6 (3)C15—C16—H16B109.5
C7—C6—C5119.5 (3)H16A—C16—H16B109.5
C7—C6—H6120.2C15—C16—H16C109.5
C5—C6—H6120.2H16A—C16—H16C109.5
C6—C7—C8121.5 (3)H16B—C16—H16C109.5
C6—C7—H7119.2C2—N1—C10117.1 (3)
C8—C7—H7119.2C2—N1—Ti1133.8 (2)
C9—C8—C7120.3 (3)C10—N1—Ti1109.0 (2)
C9—C8—H8119.9C9—O1—Ti1124.7 (2)
C7—C8—H8119.9C11—O2—Ti1151.4 (3)
O1—C9—C8123.8 (3)C13—O3—Ti1127.0 (2)
O1—C9—C10117.4 (3)C15—O4—Ti1i123.9 (2)
C8—C9—C10118.7 (3)C15—O4—Ti1127.5 (2)
N1—C10—C5124.0 (3)Ti1i—O4—Ti1108.13 (10)
N1—C10—C9115.0 (3)O2—Ti1—O397.01 (12)
C5—C10—C9120.9 (3)O2—Ti1—O1102.40 (12)
O2—C11—C12110.1 (5)O3—Ti1—O188.43 (12)
O2—C11—H11A109.6O2—Ti1—O4i93.27 (11)
C12—C11—H11A109.6O3—Ti1—O4i100.06 (12)
O2—C11—H11B109.6O1—Ti1—O4i161.18 (11)
C12—C11—H11B109.6O2—Ti1—O4160.52 (12)
H11A—C11—H11B108.2O3—Ti1—O497.94 (11)
C11—C12—H12A109.5O1—Ti1—O490.44 (10)
C11—C12—H12B109.5O4i—Ti1—O471.87 (10)
H12A—C12—H12B109.5O2—Ti1—N182.66 (11)
C11—C12—H12C109.5O3—Ti1—N1161.53 (12)
H12A—C12—H12C109.5O1—Ti1—N173.70 (10)
H12B—C12—H12C109.5O4i—Ti1—N198.39 (10)
O3—C13—C14111.0 (4)O4—Ti1—N187.05 (10)
O3—C13—H13A109.4
N1—C2—C3—C40.2 (5)C11—O2—Ti1—N127.3 (6)
C1—C2—C3—C4179.1 (3)C11—O2—Ti1—Ti1i115.5 (6)
C2—C3—C4—C51.7 (5)C13—O3—Ti1—O238.1 (3)
C3—C4—C5—C6177.8 (3)C13—O3—Ti1—O164.2 (3)
C3—C4—C5—C100.7 (5)C13—O3—Ti1—O4i132.7 (3)
C10—C5—C6—C70.1 (5)C13—O3—Ti1—O4154.4 (3)
C4—C5—C6—C7178.5 (4)C13—O3—Ti1—N149.7 (5)
C5—C6—C7—C80.2 (6)C13—O3—Ti1—Ti1i169.8 (3)
C6—C7—C8—C90.3 (6)C9—O1—Ti1—O281.3 (3)
C7—C8—C9—O1178.5 (3)C9—O1—Ti1—O3178.2 (3)
C7—C8—C9—C101.0 (5)C9—O1—Ti1—O4i64.3 (4)
C6—C5—C10—N1179.4 (3)C9—O1—Ti1—O483.9 (3)
C4—C5—C10—N11.9 (5)C9—O1—Ti1—N12.9 (2)
C6—C5—C10—C90.8 (5)C9—O1—Ti1—Ti1i79.3 (3)
C4—C5—C10—C9177.9 (3)C15—O4—Ti1—O2130.7 (4)
O1—C9—C10—N11.5 (4)Ti1i—O4—Ti1—O241.8 (4)
C8—C9—C10—N1178.9 (3)C15—O4—Ti1—O389.5 (3)
O1—C9—C10—C5178.3 (3)Ti1i—O4—Ti1—O398.04 (13)
C8—C9—C10—C51.3 (5)C15—O4—Ti1—O11.0 (3)
C3—C2—N1—C102.3 (5)Ti1i—O4—Ti1—O1173.48 (12)
C1—C2—N1—C10176.6 (3)C15—O4—Ti1—O4i172.5 (3)
C3—C2—N1—Ti1178.5 (2)Ti1i—O4—Ti1—O4i0.0
C1—C2—N1—Ti10.5 (5)C15—O4—Ti1—N172.7 (3)
C5—C10—N1—C23.4 (5)Ti1i—O4—Ti1—N199.83 (12)
C9—C10—N1—C2176.4 (3)C15—O4—Ti1—Ti1i172.5 (3)
C5—C10—N1—Ti1179.5 (3)C2—N1—Ti1—O269.3 (3)
C9—C10—N1—Ti10.7 (3)C10—N1—Ti1—O2107.0 (2)
C8—C9—O1—Ti1176.8 (3)C2—N1—Ti1—O3159.5 (3)
C10—C9—O1—Ti13.6 (4)C10—N1—Ti1—O316.8 (4)
C12—C11—O2—Ti188.3 (7)C2—N1—Ti1—O1174.6 (3)
C14—C13—O3—Ti1173.2 (3)C10—N1—Ti1—O11.8 (2)
C16—C15—O4—Ti1i67.7 (4)C2—N1—Ti1—O4i22.9 (3)
C16—C15—O4—Ti1103.7 (3)C10—N1—Ti1—O4i160.7 (2)
C11—O2—Ti1—O3134.1 (6)C2—N1—Ti1—O494.1 (3)
C11—O2—Ti1—O144.2 (6)C10—N1—Ti1—O489.6 (2)
C11—O2—Ti1—O4i125.3 (6)C2—N1—Ti1—Ti1i59.2 (3)
C11—O2—Ti1—O485.9 (7)C10—N1—Ti1—Ti1i124.4 (2)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O10.972.463.061 (5)120
C1—H1C···O3i0.962.383.292 (5)159
C3—H3···O1ii0.932.413.310 (5)163
Symmetry codes: (i) x+2, y+2, z; (ii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ti2(C10H8NO)2(C2H5O)6]
Mr682.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)9.0497 (18), 13.086 (3), 14.189 (3)
β (°) 95.21 (3)
V3)1673.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.45 × 0.28 × 0.23
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.686, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
12962, 4503, 3540
Rint0.099
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.097, 0.197, 1.14
No. of reflections4503
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.26, 1.14

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Ti1—N12.387 (3)Ti1—O31.817 (3)
Ti1—O11.950 (3)Ti1—O4i2.008 (3)
Ti1—O21.808 (3)Ti1—O42.061 (2)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O10.972.463.061 (5)120
C1—H1C···O3i0.962.383.292 (5)159
C3—H3···O1ii0.932.413.310 (5)163
Symmetry codes: (i) x+2, y+2, z; (ii) x1/2, y+3/2, z1/2.
 

Acknowledgements

We are grateful to Shahid Beheshti University for financial support.

References

First citationAmini, M. M., Mirzaee, M. & Ng, S. W. (2004). Acta Cryst. E60, m145–m146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBirdet, P. H., Fraser, A. R. & Lau, C. F. (1973). Inorg. Chem. 12, 1322–1328.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFazaeli, Y., Amini, M. M., Gao, S. & Ng, S. W. (2008). Acta Cryst. E64, o97.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStudd, B. F. & Swallow, A. G. (1968). J. Chem. Soc. A, pp. 1961–1967.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds