organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6,8-Di­chloro-3-(pyridin-2-yl)-2-[1-(pyridin-2-yl)eth­yl]-1,2-di­hydro­quinoxaline

crossmark logo

aDepartment of Chemistry, University of Pretoria, 0002, Pretoria, South Africa, bDepartment of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt, and cDepartment of Chemistry, Tshwane, University of Technology, 0001, Pretoria, South Africa
*Correspondence e-mail: ManicumAE@tut.ac.za

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 29 June 2023; accepted 31 July 2023; online 4 August 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The crystal structure of the racemic title compound, C20H16Cl2N4 is described, where the formation of a di-substituted 6,8-di­chloro quinoxaline, containing two stereogenic centres, is confirmed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The family of functionalized quinoxaline compounds is an important class of heterocyclic compounds because of their synthetic utility and electroluminescent properties, as well as the different biological properties they have been found to exhibit (Pereira et al., 2015[Pereira, J. A., Pessoa, A. M., Cordeiro, M. N. D. S., Fernandes, R., Prudêncio, C., Noronha, J. P. & Vieira, M. (2015). Eur. J. Med. Chem. 97, 664-672.]). The gradually expanding library of active compounds has lead to a growing inter­est into their solid- and solution-state characterization, including single-crystal X-ray diffraction. As part of our studies in this area, we now describe the synthesis and structure of the title compound, C20H16Cl2N4.

The compound crystallizes in the monoclinic space group P21/c with Z = 4. The asymmetric unit (Fig. 1[link]) contains one mol­ecule, featuring the 6,8-di­chloro­quinoxaline-based skeleton with two pyridyl-based substituents attached to positions 2 and 3 (atoms C1 and C2, respectively). The compound contains two chiral centres, namely atoms C3 and C14: in the arbitrarily chosen asymmetric unit, these both have an R configuration, but crystal symmetry generates a racemic mixture. The quinoxalinyl ring system and the 2-pyridyl groups are close to co-planar [N3—C9—C1—N1 = −179.61 (14), C8—N1—C1—C9 = 175.17 (13)°], with the third picolyl-containing substituent more notably rotated out of plane [C1—C2—C14—C16 = −166.73 (12)°] with respect to the quinoxalinyl group. In the quinoxaline moiety, partial saturation on C2 (position 3) occurs and C2 is sp3-hybridized with bond angles of 113.58 (12)° (N2—C2—C14), 108.58 (12)° (N2—C2—C1) and 112.34 (12)° (C1—C2—C14). This leads C2 to be displaced by 0.383 (3) Å from the quinoxalinyl mean plane. Bonds lengths supporting the partially saturated character include: 1.290 (2) Å (N1—C1), 1.522 (2) Å (C1—C2), 1.4586 (19) Å (C2—N2) and 1.550 (2) Å (C2—C14). The remaining C—C, C—Cl, and C—N bond lengths and angles agree well with similar pyridyl-containing quinoxaline systems (Wang et al., 2015[Wang, X.-M., Chen, S. R.-Q., Fan, R. Q., Zhang, F.-Q. & Yang, Y.-L. (2015). Dalton Trans. 44, 8107-8125.]). A weak bifurcated intra­molecular N—H⋯(N,Cl) hydrogen bond occurs (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1 0.88 2.64 2.9941 (13) 105
N2—H2⋯N4 0.88 2.50 2.815 (2) 102
[Figure 1]
Figure 1
Perspective view of the mol­ecular structure of the title compound showing displacement ellipsoids at the 50% probability level.

In the crystal, the compound packs as layers that extend down the c-axis inter­linked by weak C—H⋯N hydrogen-bonding inter­actions (Fig. 2[link]). No aromatic ππ stacking inter­actions were observed.

[Figure 2]
Figure 2
Packing viewed along the a-axis direction. Hydrogen-bonding inter­actions are indicated by means of cyan lines.

Synthesis and crystallization

Picolyl­amine (1 mmol), 2-methyl-2-(2-pyrid­yl)ethyl­amine (1 mmol) and 3,5-di­chloro­cyclo­hexan-1,2-dione (1 mmol) were added to a round-bottom flask with methanol (20 ml). The resulting solution was carefully heated to 50°C for approximately 2 h. The yellow solution was left to crystallize, after which yellow crystals of the title compound (which in this case represents the major product) were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The highest calculated residual electron density is 0.62 e Å−3 at 0.91 Å from N2.

Table 2
Experimental details

Crystal data
Chemical formula C20H16Cl2N4
Mr 383.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 8.4245 (3), 20.7040 (6), 10.2055 (3)
β (°) 96.448 (3)
V3) 1768.79 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.38
Crystal size (mm) 0.27 × 0.19 × 0.09
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
Tmin, Tmax 0.576, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 29036, 4742, 3981
Rint 0.112
(sin θ/λ)max−1) 0.719
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 1.10
No. of reflections 4742
No. of parameters 236
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.62, −0.58
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO 1.171.42.89a (Rigaku OD, 2023); cell refinement: CrysAlis PRO 1.171.42.89a (Rigaku OD, 2023); data reduction: CrysAlis PRO 1.171.42.89a (Rigaku OD, 2023); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

6,8-Dichloro-3-(pyridin-2-yl)-2-[1-(pyridin-2-yl)ethyl]-1,2-dihydroquinoxaline top
Crystal data top
C20H16Cl2N4F(000) = 792
Mr = 383.27Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.4245 (3) ÅCell parameters from 18589 reflections
b = 20.7040 (6) Åθ = 2.6–31.0°
c = 10.2055 (3) ŵ = 0.38 mm1
β = 96.448 (3)°T = 150 K
V = 1768.79 (10) Å3Blade, yellow
Z = 40.27 × 0.19 × 0.09 mm
Data collection top
XtaLAB Synergy R, DW system, HyPix
diffractometer
4742 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source3981 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.112
Detector resolution: 10.0000 pixels mm-1θmax = 30.8°, θmin = 2.4°
ω scansh = 1210
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2019)
k = 2826
Tmin = 0.576, Tmax = 1.000l = 1413
29036 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.7299P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
4742 reflectionsΔρmax = 0.62 e Å3
236 parametersΔρmin = 0.58 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl21.12383 (5)0.09926 (2)0.40380 (4)0.02882 (13)
Cl10.83348 (6)0.03634 (2)0.83287 (5)0.03650 (15)
N10.81871 (15)0.26674 (6)0.64452 (13)0.0189 (3)
N20.73638 (16)0.17552 (6)0.82624 (13)0.0201 (3)
H20.74110.15270.89940.024*
N30.59274 (18)0.36766 (7)0.83720 (15)0.0261 (3)
N40.45284 (17)0.14108 (7)0.93078 (16)0.0279 (3)
C160.37494 (18)0.18777 (7)0.85957 (15)0.0179 (3)
C80.85917 (17)0.20116 (7)0.63224 (15)0.0181 (3)
C30.81853 (18)0.15560 (7)0.72517 (15)0.0187 (3)
C90.69244 (18)0.35242 (7)0.74782 (15)0.0189 (3)
C10.72267 (17)0.28236 (7)0.72928 (15)0.0175 (3)
C20.64108 (17)0.23446 (7)0.81296 (14)0.0169 (3)
H2A0.64230.25360.90300.020*
C61.00485 (19)0.12035 (8)0.52627 (16)0.0215 (3)
C140.46394 (18)0.22276 (7)0.75909 (15)0.0190 (3)
H140.41230.26590.74220.023*
C70.95056 (18)0.18329 (8)0.53247 (15)0.0205 (3)
H70.97550.21410.46900.025*
C100.76783 (19)0.39916 (8)0.67700 (17)0.0224 (3)
H100.83720.38680.61420.027*
C50.96985 (19)0.07447 (8)0.61717 (16)0.0236 (3)
H51.00820.03150.61260.028*
C40.8772 (2)0.09267 (8)0.71550 (17)0.0230 (3)
C170.2167 (2)0.20287 (8)0.87252 (19)0.0271 (4)
H170.16350.23600.82030.033*
C190.2179 (2)0.12117 (8)1.03820 (18)0.0263 (3)
H190.16720.09771.10180.032*
C200.3742 (2)0.10886 (9)1.01806 (19)0.0300 (4)
H200.42950.07571.06880.036*
C110.7391 (2)0.46377 (8)0.70050 (19)0.0288 (4)
H110.78860.49650.65410.035*
C120.6367 (2)0.47994 (9)0.7931 (2)0.0325 (4)
H120.61540.52380.81180.039*
C130.5664 (2)0.43017 (9)0.8576 (2)0.0330 (4)
H130.49540.44140.91990.040*
C180.1374 (2)0.16896 (9)0.9625 (2)0.0305 (4)
H180.02900.17840.97220.037*
C150.4450 (2)0.18517 (10)0.62926 (16)0.0290 (4)
H15A0.48890.14160.64410.044*
H15B0.50260.20760.56440.044*
H15C0.33150.18220.59610.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0285 (2)0.0321 (2)0.0284 (2)0.00069 (15)0.01460 (17)0.00866 (15)
Cl10.0531 (3)0.0222 (2)0.0386 (3)0.00890 (18)0.0247 (2)0.00922 (17)
N10.0183 (6)0.0205 (6)0.0189 (6)0.0000 (5)0.0063 (5)0.0003 (5)
N20.0214 (6)0.0216 (6)0.0188 (6)0.0054 (5)0.0087 (5)0.0045 (5)
N30.0305 (7)0.0215 (7)0.0287 (7)0.0010 (5)0.0135 (6)0.0030 (5)
N40.0194 (7)0.0333 (8)0.0324 (8)0.0030 (6)0.0085 (6)0.0137 (6)
C160.0175 (7)0.0186 (7)0.0182 (7)0.0023 (5)0.0043 (5)0.0000 (5)
C80.0163 (7)0.0203 (7)0.0184 (7)0.0002 (5)0.0054 (5)0.0002 (5)
C30.0170 (7)0.0207 (7)0.0192 (7)0.0010 (5)0.0054 (6)0.0005 (5)
C90.0180 (7)0.0188 (7)0.0205 (7)0.0004 (5)0.0044 (6)0.0006 (5)
C10.0159 (7)0.0192 (7)0.0179 (7)0.0007 (5)0.0040 (5)0.0012 (5)
C20.0168 (7)0.0176 (7)0.0172 (7)0.0008 (5)0.0056 (5)0.0006 (5)
C60.0195 (7)0.0256 (8)0.0206 (7)0.0008 (6)0.0074 (6)0.0066 (6)
C140.0163 (7)0.0217 (7)0.0196 (7)0.0002 (5)0.0047 (5)0.0053 (6)
C70.0209 (7)0.0226 (8)0.0190 (7)0.0017 (6)0.0071 (6)0.0016 (6)
C100.0205 (7)0.0220 (8)0.0254 (8)0.0009 (6)0.0062 (6)0.0017 (6)
C50.0241 (8)0.0208 (8)0.0266 (8)0.0031 (6)0.0059 (6)0.0035 (6)
C40.0249 (8)0.0204 (7)0.0248 (8)0.0014 (6)0.0085 (6)0.0018 (6)
C170.0213 (8)0.0252 (8)0.0368 (9)0.0047 (6)0.0116 (7)0.0079 (7)
C190.0277 (8)0.0256 (8)0.0276 (8)0.0060 (6)0.0120 (7)0.0010 (6)
C200.0239 (8)0.0332 (9)0.0337 (9)0.0010 (7)0.0068 (7)0.0146 (7)
C110.0287 (9)0.0221 (8)0.0361 (9)0.0044 (6)0.0056 (7)0.0010 (7)
C120.0383 (10)0.0196 (8)0.0407 (10)0.0001 (7)0.0093 (8)0.0041 (7)
C130.0409 (10)0.0247 (9)0.0363 (10)0.0023 (7)0.0177 (8)0.0053 (7)
C180.0231 (8)0.0275 (9)0.0442 (10)0.0020 (6)0.0176 (7)0.0059 (7)
C150.0264 (8)0.0428 (10)0.0181 (7)0.0098 (7)0.0033 (6)0.0003 (7)
Geometric parameters (Å, º) top
Cl2—C61.7432 (16)C9—C11.488 (2)
Cl1—C41.7406 (17)C9—C101.402 (2)
N1—C81.409 (2)C1—C21.522 (2)
N1—C11.290 (2)C2—C141.550 (2)
N2—C31.3687 (19)C6—C71.385 (2)
N2—C21.4586 (19)C6—C51.382 (2)
N3—C91.345 (2)C14—C151.529 (2)
N3—C131.333 (2)C10—C111.385 (2)
N4—C161.336 (2)C5—C41.391 (2)
N4—C201.346 (2)C17—C181.385 (2)
C16—C141.520 (2)C19—C201.379 (2)
C16—C171.390 (2)C19—C181.385 (3)
C8—C31.407 (2)C11—C121.390 (3)
C8—C71.394 (2)C12—C131.391 (3)
C3—C41.401 (2)
C1—N1—C8118.51 (13)C1—C2—C14112.34 (12)
C3—N2—C2120.11 (13)C7—C6—Cl2119.20 (13)
C13—N3—C9117.45 (15)C5—C6—Cl2119.49 (12)
C16—N4—C20118.06 (14)C5—C6—C7121.29 (14)
N4—C16—C14117.53 (13)C16—C14—C2111.30 (12)
N4—C16—C17121.91 (15)C16—C14—C15109.31 (13)
C17—C16—C14120.53 (14)C15—C14—C2112.90 (13)
C3—C8—N1120.43 (13)C6—C7—C8119.71 (15)
C7—C8—N1118.68 (14)C11—C10—C9118.64 (16)
C7—C8—C3120.70 (14)C6—C5—C4118.51 (15)
N2—C3—C8119.20 (14)C3—C4—Cl1118.10 (12)
N2—C3—C4123.06 (14)C5—C4—Cl1119.63 (12)
C4—C3—C8117.49 (14)C5—C4—C3122.26 (15)
N3—C9—C1116.33 (14)C18—C17—C16119.20 (15)
N3—C9—C10122.77 (15)C20—C19—C18117.70 (16)
C10—C9—C1120.88 (14)N4—C20—C19123.81 (16)
N1—C1—C9117.29 (14)C10—C11—C12118.95 (17)
N1—C1—C2124.72 (13)C11—C12—C13118.25 (17)
C9—C1—C2117.98 (13)N3—C13—C12123.93 (17)
N2—C2—C1108.58 (12)C19—C18—C17119.30 (16)
N2—C2—C14113.58 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl10.882.642.9941 (13)105
N2—H2···N40.882.502.815 (2)102
 

Acknowledgements

We would like to acknowledge the National Research Foundation, University of Pretoria and the Tshwane University of Technology for funding and institutional support provided.

Funding information

Funding for this research was provided by: National Research Foundation (grant No. 138280 to FPM; grant No. 129468 to ALEM).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPereira, J. A., Pessoa, A. M., Cordeiro, M. N. D. S., Fernandes, R., Prudêncio, C., Noronha, J. P. & Vieira, M. (2015). Eur. J. Med. Chem. 97, 664–672.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, X.-M., Chen, S. R.-Q., Fan, R. Q., Zhang, F.-Q. & Yang, Y.-L. (2015). Dalton Trans. 44, 8107–8125.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146