organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-[(1,3-Di­methyl-5-oxo-2-sulfanylideneimidazolidin-4-yl­­idene)amino]-2-methyl­isoindoline-1,3-dione

crossmark logo

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India
*Correspondence e-mail: srk@chem.iitb.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 March 2021; accepted 26 March 2021; online 9 April 2021)

The title N,N-di­methyl­thio­hydantoin containing an N-methyl­ated pthalimide group, C14H12N4O3S, arose from an unexpected reaction in a deep eutectic di­methyl­thio­urea–tartaric acid solvent system. The mean planes of the ring systems are twisted at an angle of 73.84 (17)°. In the crystal, weak C—H⋯O hydrogen bonds connect the mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thio­hydantoins are effective in treating various biological disorders (Spicer et al., 2013[Spicer, J. A., Lena, G., Lyons, D. M., Huttunen, K. M., Miller, C. K., O'Connor, P. D., Bull, M., Helsby, N., Jamieson, S. M. F., Denny, W. A., Ciccone, A., Browne, K. A., Lopez, J. A., Rudd-Schmidt, J., Voskoboinik, I. & Trapani, J. A. (2013). J. Med. Chem. 56, 9542-9555.]; Wang et al., 2021[Wang, A., Wang, Y., Meng, X. & Yang, Y. (2021). Bioorg. Med. Chem. 31, 115953.]; Huang et al., 2018[Huang, Y., Guo, Z., Song, H., Liu, Y., Wang, L. & Wang, Q. (2018). J. Agric. Food Chem. 66, 8253-8261.]; Manzanaro et al., 2006[Manzanaro, S., Salvá, J. & de la Fuente, J. Á. (2006). J. Nat. Prod. 69, 1485-1487.]). In an attempt to synthesize 5-amino-substituted hydantoins and thio­hydantoins (Kotha et al., 2019[Kotha, S., Gupta, N. K. & Aswar, V. R. (2019). Chem. Asian J. 14, 3188-3197.]), we unexpectedly obtained the title imino-substituted thio­hydantoin 1.

The 1H NMR spectrum confirmed the absence of two H atoms (CH—NH grouping) and the 13C spectrum showed the downfield shift for the carbon atom of the C—N bond. To establish its structure unambiguously, the crystal structure was determined, which confirmed the presence of the C10=N3 double bond [1.252 (4) Å] (Fig. 1[link]). The remaining geometrical parameters are comparable with those of a 5-aniline-substituted thio­hydantoin reported by our group (Kotha et al., 2019[Kotha, S., Gupta, N. K. & Aswar, V. R. (2019). Chem. Asian J. 14, 3188-3197.]; Cambridge Structural Database refcode FOWGOQ).

[Figure 1]
Figure 1
The mol­ecular structure of 1, showing 50% displacement ellipsoids.

The mol­ecular structure of 1 has an angular shape and the mean planes defined by the C10–C12/N1/N2 imidazole ring and C1–C9/N4 pthalimide ring system subtend a dihedral angle of 73.84 (17)°. The bond angle of the C8—N3—C10 linker , which connects the thio­hydantoin ring with the N-phenyl substituent is 120.6 (3)°, some 4° less than the corresponding angle in FOWGOQ (Fig. 2[link]).

[Figure 2]
Figure 2
The crystal packing of 1, viewed along the a-axis direction.

The N1 and N2 nitro­gen atoms in the imidazole ring are protected by methyl groups, which rules out the possibility of classical hydrogen bonding in the packing (Fig. 2[link]), but several weak C—H⋯O links occur (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5C⋯O2i 0.98 2.60 3.519 (5) 157
C7—H7⋯O3ii 0.95 2.37 3.302 (4) 166
C9—H9⋯O1iii 0.95 2.47 3.319 (4) 149
C14—H14B⋯O2iv 0.98 2.32 3.272 (5) 164
Symmetry codes: (i) [x-1, y, z]; (ii) x+1, y, z; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+1, -y+2, -z+1].

Synthesis and crystallization

Initially, a deep eutectic mixture was obtained by mixing di­methyl­thio­urea and L-tartaric acid (DMTU:L–(+)TA) in 70:30 ratio at 80°C. After obtaining the melt, aniline 2 (100 mg, 0.57 mmol) and ethyl­glyoxalate 3 (0.12 ml, 1.14 mmol) were added and the mixture was stirred at the same temperature for 6 h. After completion of the reaction (TLC monitoring), the product was concentrated and purified by silica-gel column chromatography using petroleum ether and ethyl acetate as the eluent to afford the title compound 1 (Fig. 3[link]). Yellow plates were recrystallized from chloro­form solution (Kotha et al., 2019[Kotha, S., Gupta, N. K. & Aswar, V. R. (2019). Chem. Asian J. 14, 3188-3197.]).

[Figure 3]
Figure 3
Synthesis scheme for 1

Yield 108 mg, 60%, m.p. 268–270°C, Rf = 0.76 (60% EtOAc–petroleum ether),1H NMR (500 MHz, CDCl3) δ 7.79 (d, J = 7.5 Hz, 1H), 7.38 (d, J = 2.0 Hz, 1H), 7.20 (dd, J = 8.0, 1.5 Hz, 1H), 3.42 (s, 3H), 3.15 (s, 3H), 3.03 (s, 3H) p.p.m., 13C NMR (125 MHz, CDCl3) δ 180.7, 168.3, 168.3, 154.3, 151.9, 141.4, 133.7, 128.3, 125.3, 124.1, 115.3, 29.6, 28.1, 24.2 p.p.m., HRMS (ESI) calculated for C14H12N4NaO3S [M + Na] 339.0522, found 339.0526, IR (neat) 3376, 3028, 1767, 1749, 1738, 1712, 1615, 1405, 1383 cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H12N4O3S
Mr 316.34
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 5.4887 (9), 9.2470 (12), 27.457 (2)
β (°) 94.75 (1)
V3) 1388.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.31 × 0.27 × 0.22
 
Data collection
Diffractometer Rigaku Oxford Diffraction Saturn724+
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Inc., Tokyo, Japan.])
Tmin, Tmax 0.340, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8048, 2343, 1624
Rint 0.105
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.153, 1.04
No. of reflections 2343
No. of parameters 202
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.35
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Inc., Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5-[(1,3-Dimethyl-5-oxo-2-sulfanylideneimidazolidin-4-ylidene)amino]-2-methylisoindoline-1,3-dione top
Crystal data top
C14H12N4O3SF(000) = 656
Mr = 316.34Dx = 1.513 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.4887 (9) ÅCell parameters from 2419 reflections
b = 9.2470 (12) Åθ = 2.3–31.0°
c = 27.457 (2) ŵ = 0.25 mm1
β = 94.75 (1)°T = 150 K
V = 1388.7 (3) Å3Plate, yellow
Z = 40.31 × 0.27 × 0.22 mm
Data collection top
Rigaku Oxford Diffraction Saturn724+
diffractometer
2343 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = 66
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2015)
k = 910
Tmin = 0.340, Tmax = 1.000l = 3232
8048 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.3068P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2343 reflectionsΔρmax = 0.38 e Å3
202 parametersΔρmin = 0.34 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.6276 (2)0.57457 (11)0.24925 (3)0.0309 (3)
O30.5648 (5)0.8470 (2)0.40427 (8)0.0257 (7)
O20.9716 (5)0.9678 (3)0.63093 (8)0.0257 (7)
O10.4516 (5)0.6022 (3)0.57964 (8)0.0316 (7)
N40.6704 (5)0.7946 (3)0.61393 (9)0.0209 (7)
N20.5470 (6)0.7361 (3)0.32835 (9)0.0221 (7)
N10.8657 (6)0.5885 (3)0.33889 (9)0.0220 (7)
N31.0073 (6)0.6355 (3)0.41971 (9)0.0248 (8)
C40.8759 (7)0.8769 (4)0.60409 (11)0.0207 (9)
C30.9437 (7)0.8266 (4)0.55580 (11)0.0203 (9)
C20.7823 (7)0.7184 (4)0.53916 (11)0.0227 (9)
C100.8555 (7)0.6584 (4)0.38396 (11)0.0213 (9)
C10.6097 (7)0.6926 (4)0.57754 (11)0.0216 (9)
C120.6818 (7)0.6322 (4)0.30574 (11)0.0214 (9)
C110.6395 (7)0.7596 (4)0.37603 (11)0.0221 (9)
C80.9789 (7)0.7009 (4)0.46559 (11)0.0250 (9)
C50.5476 (7)0.8074 (4)0.65885 (11)0.0289 (10)
H5A0.6649310.8400360.6854270.043*
H5B0.4811370.7131150.6672370.043*
H5C0.4141370.8777380.6540780.043*
C71.1494 (7)0.8039 (4)0.48344 (11)0.0268 (10)
H71.2796480.8293870.4643940.032*
C90.7927 (7)0.6529 (4)0.49413 (11)0.0247 (9)
H90.6803600.5795700.4830040.030*
C61.1326 (7)0.8698 (4)0.52850 (11)0.0238 (9)
H61.2462890.9418220.5401860.029*
C140.3422 (7)0.8152 (4)0.30389 (12)0.0284 (10)
H14A0.4039020.8867510.2816100.043*
H14B0.2518190.8646610.3283260.043*
H14C0.2332470.7475040.2852780.043*
C131.0409 (8)0.4761 (4)0.33055 (13)0.0360 (11)
H13A1.1759750.4798630.3562010.054*
H13B1.1046670.4907140.2986110.054*
H13C0.9607550.3814590.3311760.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0393 (8)0.0339 (7)0.0201 (5)0.0062 (5)0.0060 (4)0.0072 (4)
O30.0335 (18)0.0206 (15)0.0247 (12)0.0004 (12)0.0136 (12)0.0036 (11)
O20.0278 (17)0.0253 (15)0.0248 (12)0.0008 (12)0.0064 (11)0.0070 (11)
O10.0362 (19)0.0289 (16)0.0305 (13)0.0074 (14)0.0077 (13)0.0029 (12)
N40.024 (2)0.0215 (17)0.0180 (13)0.0009 (14)0.0059 (13)0.0003 (12)
N20.025 (2)0.0213 (17)0.0200 (14)0.0033 (14)0.0048 (13)0.0030 (13)
N10.028 (2)0.0238 (18)0.0148 (13)0.0072 (14)0.0045 (14)0.0038 (12)
N30.032 (2)0.0265 (19)0.0169 (14)0.0020 (15)0.0070 (15)0.0017 (13)
C40.024 (2)0.017 (2)0.0221 (17)0.0047 (16)0.0056 (17)0.0017 (16)
C30.026 (2)0.016 (2)0.0191 (16)0.0056 (16)0.0027 (16)0.0020 (14)
C20.028 (3)0.022 (2)0.0189 (16)0.0036 (17)0.0056 (16)0.0011 (15)
C100.027 (2)0.019 (2)0.0197 (17)0.0010 (17)0.0116 (17)0.0003 (15)
C10.024 (2)0.023 (2)0.0182 (16)0.0041 (18)0.0024 (16)0.0017 (15)
C120.023 (2)0.017 (2)0.0257 (17)0.0012 (16)0.0101 (17)0.0025 (15)
C110.026 (2)0.019 (2)0.0225 (16)0.0058 (16)0.0115 (16)0.0010 (15)
C80.037 (3)0.021 (2)0.0177 (16)0.0078 (18)0.0074 (17)0.0006 (15)
C50.037 (3)0.032 (2)0.0193 (16)0.0032 (19)0.0157 (17)0.0030 (16)
C70.035 (3)0.026 (2)0.0208 (17)0.0046 (19)0.0112 (17)0.0000 (16)
C90.027 (3)0.024 (2)0.0228 (17)0.0017 (17)0.0048 (17)0.0029 (15)
C60.026 (3)0.021 (2)0.0243 (17)0.0019 (17)0.0055 (17)0.0022 (15)
C140.031 (3)0.026 (2)0.0290 (18)0.0074 (18)0.0048 (17)0.0010 (17)
C130.047 (3)0.032 (2)0.0284 (18)0.020 (2)0.0041 (19)0.0047 (18)
Geometric parameters (Å, º) top
S1—C121.644 (3)C2—C11.493 (4)
O3—C111.215 (4)C2—C91.382 (4)
O2—C41.209 (4)C10—C111.512 (5)
O1—C11.210 (4)C8—C71.395 (5)
N4—C41.405 (5)C8—C91.410 (5)
N4—C11.394 (4)C5—H5A0.9800
N4—C51.459 (4)C5—H5B0.9800
N2—C121.390 (4)C5—H5C0.9800
N2—C111.382 (4)C7—H70.9500
N2—C141.458 (5)C7—C61.389 (4)
N1—C101.401 (4)C9—H90.9500
N1—C121.363 (5)C6—H60.9500
N1—C131.448 (4)C14—H14A0.9800
N3—C101.252 (4)C14—H14B0.9800
N3—C81.417 (4)C14—H14C0.9800
C4—C31.481 (4)C13—H13A0.9800
C3—C21.389 (5)C13—H13B0.9800
C3—C61.387 (5)C13—H13C0.9800
C4—N4—C5123.6 (3)C7—C8—N3118.9 (3)
C1—N4—C4112.1 (3)C7—C8—C9121.0 (3)
C1—N4—C5124.1 (3)C9—C8—N3119.9 (3)
C12—N2—C14124.0 (3)N4—C5—H5A109.5
C11—N2—C12111.4 (3)N4—C5—H5B109.5
C11—N2—C14124.5 (3)N4—C5—H5C109.5
C10—N1—C13123.1 (3)H5A—C5—H5B109.5
C12—N1—C10111.8 (3)H5A—C5—H5C109.5
C12—N1—C13124.9 (3)H5B—C5—H5C109.5
C10—N3—C8120.6 (3)C8—C7—H7119.3
O2—C4—N4125.1 (3)C6—C7—C8121.4 (3)
O2—C4—C3129.4 (3)C6—C7—H7119.3
N4—C4—C3105.5 (3)C2—C9—C8116.4 (3)
C2—C3—C4108.7 (3)C2—C9—H9121.8
C6—C3—C4130.4 (3)C8—C9—H9121.8
C6—C3—C2121.0 (3)C3—C6—C7117.5 (3)
C3—C2—C1107.9 (3)C3—C6—H6121.2
C9—C2—C3122.5 (3)C7—C6—H6121.2
C9—C2—C1129.6 (3)N2—C14—H14A109.5
N1—C10—C11104.3 (3)N2—C14—H14B109.5
N3—C10—N1122.8 (3)N2—C14—H14C109.5
N3—C10—C11132.9 (3)H14A—C14—H14B109.5
O1—C1—N4124.3 (3)H14A—C14—H14C109.5
O1—C1—C2130.1 (3)H14B—C14—H14C109.5
N4—C1—C2105.7 (3)N1—C13—H13A109.5
N2—C12—S1125.7 (3)N1—C13—H13B109.5
N1—C12—S1126.9 (3)N1—C13—H13C109.5
N1—C12—N2107.4 (3)H13A—C13—H13B109.5
O3—C11—N2126.3 (3)H13A—C13—H13C109.5
O3—C11—C10128.5 (3)H13B—C13—H13C109.5
N2—C11—C10105.1 (3)
O2—C4—C3—C2179.0 (4)C12—N2—C11—C100.3 (4)
O2—C4—C3—C60.2 (7)C12—N1—C10—N3179.6 (3)
N4—C4—C3—C20.5 (4)C12—N1—C10—C111.4 (4)
N4—C4—C3—C6179.6 (4)C11—N2—C12—S1179.7 (3)
N1—C10—C11—O3176.8 (3)C11—N2—C12—N10.6 (4)
N1—C10—C11—N21.0 (3)C8—N3—C10—N1175.4 (3)
N3—C10—C11—O31.1 (6)C8—N3—C10—C117.1 (6)
N3—C10—C11—N2178.9 (4)C8—C7—C6—C31.8 (6)
N3—C8—C7—C6179.0 (3)C5—N4—C4—O21.0 (6)
N3—C8—C9—C2177.7 (3)C5—N4—C4—C3178.5 (3)
C4—N4—C1—O1174.2 (4)C5—N4—C1—O11.3 (6)
C4—N4—C1—C24.0 (4)C5—N4—C1—C2179.5 (3)
C4—C3—C2—C11.9 (4)C7—C8—C9—C23.1 (5)
C4—C3—C2—C9177.7 (3)C9—C2—C1—O15.9 (7)
C4—C3—C6—C7179.1 (3)C9—C2—C1—N4175.9 (4)
C3—C2—C1—O1174.6 (4)C9—C8—C7—C64.3 (6)
C3—C2—C1—N43.6 (4)C6—C3—C2—C1177.4 (3)
C3—C2—C9—C80.6 (5)C6—C3—C2—C93.1 (6)
C2—C3—C6—C71.9 (5)C14—N2—C12—S13.3 (5)
C10—N1—C12—S1179.0 (3)C14—N2—C12—N1176.4 (3)
C10—N1—C12—N21.3 (4)C14—N2—C11—O30.6 (5)
C10—N3—C8—C7113.3 (4)C14—N2—C11—C10177.2 (3)
C10—N3—C8—C972.0 (5)C13—N1—C10—N34.7 (5)
C1—N4—C4—O2176.6 (3)C13—N1—C10—C11177.1 (3)
C1—N4—C4—C32.9 (4)C13—N1—C12—S13.4 (5)
C1—C2—C9—C8180.0 (4)C13—N1—C12—N2176.9 (3)
C12—N2—C11—O3177.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5C···O2i0.982.603.519 (5)157
C7—H7···O3ii0.952.373.302 (4)166
C9—H9···O1iii0.952.473.319 (4)149
C14—H14B···O2iv0.982.323.272 (5)164
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1.
 

Acknowledgements

We thank Darshan S Mhatre for his help in collecting the X-ray data and the structure refinement.

Funding information

Funding for this research was provided by: Department of Science and Technology, Ministry of Science and Technology, India (grant No. SR/S2/JCB33/2010 to Prof. Sambasivarao Kotha); Council of Scientific and Industrial Research, India (scholarship to Naveen Kumar Gupta); University Grants Commission (scholarship to Saima Ansari).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuang, Y., Guo, Z., Song, H., Liu, Y., Wang, L. & Wang, Q. (2018). J. Agric. Food Chem. 66, 8253–8261.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKotha, S., Gupta, N. K. & Aswar, V. R. (2019). Chem. Asian J. 14, 3188–3197.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationManzanaro, S., Salvá, J. & de la Fuente, J. Á. (2006). J. Nat. Prod. 69, 1485–1487.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Inc., Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpicer, J. A., Lena, G., Lyons, D. M., Huttunen, K. M., Miller, C. K., O'Connor, P. D., Bull, M., Helsby, N., Jamieson, S. M. F., Denny, W. A., Ciccone, A., Browne, K. A., Lopez, J. A., Rudd-Schmidt, J., Voskoboinik, I. & Trapani, J. A. (2013). J. Med. Chem. 56, 9542–9555.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, A., Wang, Y., Meng, X. & Yang, Y. (2021). Bioorg. Med. Chem. 31, 115953.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds