organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N,N-Di­ethyl-2-[5-(4-meth­­oxy­benzyl­­idene)-2,4-dioxo-1,3-thia­zolidin-3-yl]acetamide

CROSSMARK_Color_square_no_text.svg

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835 215, Jharkhand, India
*Correspondence e-mail: shirai2011@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 31 March 2017; accepted 15 May 2017; online 19 May 2017)

In the title compound, C17H20N2O4S, the thia­zolidine (r.m.s. deviation = 0.022 Å) and phenyl rings (major and minor occupancies) are inclined to one another by 6.3 (3) and 10.5 (3)°, respectively. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯S inter­action. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, which generate R22(18), R22(24) and R21(7) ring motifs. Aromatic ππ stacking inter­actions are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thia­zolidine-2,4-dione derivatives show a number of biological properties including anti­cancer, anti­arthritic, anti-inflammatory, anti-oxidant and diabetes related effects (Fujita et al., 1983[Fujita, T., Sugiyama, Y., Taketomi, S., Sohda, T., Kawamatsu, Y., Iwatsuka, H. & Suzuoki, Z. (1983). Diabetes, 32, 804-810.]; Youssef et al., 2010[Youssef, A. M., Sydney White, M., Villanueva, E. B., El-Ashmawy, I. M. & Klegeris, A. (2010). Bioorg. Med. Chem. 18, 2019-2028.]; Albrecht et al., 2005[Albrecht, U., Gördes, D., Schmidt, E., Thurow, K., Lalk, M. & Langer, P. (2005). Bioorg. Med. Chem. 13, 4402-4407.]). As part of our investigations of thia­zolidine derivatives, we have undertaken the X-ray crystal structure analysis of the title compound.

The mol­ecular structure of the compound is shown in Fig. 1[link]. The thia­zolidine ring adopts its expected planar conformation with a maximum deviation of 0.0266 (4) Å for C11. The methoxy group and atoms C2 and C7 of the phenyl ring are disordered over two orientations with site occupancy factors of 0.579 (15):0.421 (15). The mean planes of the thia­zolidine and phenyl rings (major and minor occupancies) are inclined to one another by 6.3 (3) and 10.5 (3)°, respectively. The 2-amino­acetamide moiety is in an extended conformation, as can be seen from the N1—C12—C13—N2 torsion angle of −166.4 (3)°. The torsion angles of the di­ethyl­amine group are C13—N2—C16—C17 = 83.3 (5)° and C13—N2—C14—C15 = 90.8 (4)°. An intra­molecular C—H⋯S contact (Table 1[link]) generates an S(6) ring.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯S1 0.93 2.56 3.259 (4) 133
C1B—H1B3⋯O2i 0.96 2.51 3.160 (14) 125
C3—H3⋯O2i 0.93 2.58 3.481 (5) 164
C12—H12B⋯O3ii 0.97 2.43 3.342 (4) 157
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

In the crystal, the C3—H3⋯O2 inter­action generates an [R_{2}^{2}](18) loop and the C1B—H13B⋯O2 hydrogen bond leads to an [R_{2}^{2}](24) loop (Fig. 2[link]). The C12—H12B⋯O3 hydrogen bond generates a C(5) zigzag chain running along [101], as shown in Fig. 3[link]. Aromatic ππ stacking inter­actions are observed, as shown in Fig. 4[link], with a Cg1⋯Cg2(x, −1 + y, z) distance of 3.879 (3) Å where Cg1 and Cg2 are the centroids of the thia­zolidine and phenyl rings, respectively.

[Figure 2]
Figure 2
The C—H⋯O inter­molecular inter­actions generating [R_{2}^{2}](14) and [R_{2}^{2}](24) ring motifs, viewed along the b axis. H atoms not involved in hydrogen bonds have been excluded for clarity.
[Figure 3]
Figure 3
The C12—H12B⋯O3 inter­molecular hydrogen bond generates C(5) zigzag chains.
[Figure 4]
Figure 4
The weak ππ inter­action of the title compound, viewed along the c axis.

Synthesis and crystallization

To a stirred solution of p-meth­oxy­benzyl­idine thia­zolidinedione (0.5 g; 2.2 mmol) in 25 ml of aceto­nitrile was added 2-chloro-N,N-di­ethyl­acetamide (0.3 g; 2.4 mmol) and the mixture was refluxed for 16 h and cooled to room temperature. The reaction mixture was then poured into ice-cooled water. The crude brown-colored solid that separated was filtered and dried to give the title compound as a crystalline powder (yield = 82%). After purification, the compound was recrystallized from CHCl3 solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The methoxy group and atoms C2/C7 of the phenyl ring are disordered over two orientations with site occupancy factors of 0.579 (15):0.421 (15).

Table 2
Experimental details

Crystal data
Chemical formula C17H20N2O4S
Mr 348.41
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 11.6978 (6), 7.1331 (4), 21.1822 (12)
β (°) 95.311 (4)
V3) 1759.89 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.28 × 0.23 × 0.17
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.752, 0.863
No. of measured, independent and observed [I > 2σ(I)] reflections 12523, 4146, 1342
Rint 0.053
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.212, 0.84
No. of reflections 4146
No. of parameters 258
No. of restraints 56
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015).

N,N-Diethyl-2-[5-(4-methoxybenzylidene)-2,4-dioxo-1,3-thiazolidin-3-yl]acetamide top
Crystal data top
C17H20N2O4SF(000) = 736
Mr = 348.41Dx = 1.315 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.6978 (6) ÅCell parameters from 4146 reflections
b = 7.1331 (4) Åθ = 1.9–28.0°
c = 21.1822 (12) ŵ = 0.21 mm1
β = 95.311 (4)°T = 293 K
V = 1759.89 (17) Å3Block, brown
Z = 40.28 × 0.23 × 0.17 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1342 reflections with I > 2σ(I)
ω and φ scansRint = 0.053
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 28.0°, θmin = 1.9°
Tmin = 0.752, Tmax = 0.863h = 1511
12523 measured reflectionsk = 99
4146 independent reflectionsl = 2724
Refinement top
Refinement on F256 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.212 w = 1/[σ2(Fo2) + (0.1074P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max < 0.001
4146 reflectionsΔρmax = 0.17 e Å3
258 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were placed in calculated positions with C—H = 0.93 Å to 0.97 Å, refined in the riding model with fixed isotropic displacement parameters:Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C30.6852 (4)0.3920 (6)0.98139 (18)0.0889 (12)
H30.6459230.4044221.0173860.107*
C40.6695 (3)0.2315 (6)0.94622 (18)0.0798 (11)
H40.6086470.1531210.9536300.096*
C50.7400 (3)0.1804 (5)0.90020 (17)0.0692 (10)
C60.8256 (4)0.3040 (7)0.8900 (2)0.1029 (14)
H60.8850740.2690850.8662100.124*
C80.7292 (3)0.0126 (6)0.86181 (16)0.0716 (10)
H80.7873180.0033830.8351530.086*
C90.6511 (3)0.1225 (5)0.85793 (16)0.0693 (10)
C100.6611 (3)0.2856 (5)0.81545 (17)0.0713 (10)
C110.4918 (4)0.3558 (6)0.86037 (18)0.0849 (12)
C120.5567 (3)0.5782 (5)0.78347 (16)0.0690 (10)
H12A0.5215850.6745780.8075650.083*
H12B0.6309960.6238180.7733820.083*
C130.4810 (3)0.5400 (7)0.72212 (18)0.0680 (10)
C140.4522 (3)0.8817 (5)0.71029 (19)0.0840 (11)
H14A0.5232340.8944180.7374390.101*
H14B0.4570940.9623990.6737890.101*
C150.3535 (4)0.9451 (6)0.7461 (2)0.1128 (15)
H15A0.3532260.8744790.7846710.169*
H15B0.3619741.0760360.7560100.169*
H15C0.2825030.9253140.7204590.169*
C160.3669 (4)0.6514 (6)0.6298 (2)0.1011 (14)
H16A0.3185320.5437710.6359580.121*
H16B0.3172240.7585990.6203710.121*
C170.4347 (5)0.6150 (9)0.5744 (2)0.139 (2)
H17A0.4837200.5085360.5833190.209*
H17B0.3831430.5903040.5374290.209*
H17C0.4806380.7229810.5670510.209*
N10.5719 (2)0.4109 (4)0.82111 (13)0.0699 (8)
N20.4399 (3)0.6879 (5)0.68896 (15)0.0787 (9)
O20.4063 (3)0.4452 (4)0.86787 (13)0.1112 (10)
O30.7349 (2)0.3119 (3)0.78051 (12)0.0892 (9)
O40.4629 (2)0.3782 (4)0.70499 (12)0.0911 (8)
S10.52785 (9)0.14350 (16)0.89820 (5)0.0943 (5)
O1A0.8368 (13)0.629 (2)1.0134 (6)0.130 (5)0.416 (16)
C1A0.7701 (18)0.694 (3)1.0625 (9)0.115 (6)0.416 (16)
H1A10.7081810.7706871.0442790.173*0.416 (16)
H1A20.8179390.7659891.0926960.173*0.416 (16)
H1A30.7395030.5881081.0833040.173*0.416 (16)
C7A0.8220 (12)0.4863 (13)0.9161 (6)0.065 (4)0.416 (16)
H7A0.8658550.5793020.8992980.078*0.416 (16)
C2A0.7561 (12)0.536 (2)0.9662 (7)0.100 (7)0.416 (16)
C2B0.7809 (10)0.4968 (13)0.9732 (6)0.093 (5)0.584 (16)
C1B0.7046 (13)0.7394 (19)1.0444 (6)0.113 (4)0.584 (16)
H1B10.6254420.7173291.0300280.170*0.584 (16)
H1B20.7150290.8690881.0555570.170*0.584 (16)
H1B30.7260550.6626181.0807450.170*0.584 (16)
C7B0.8638 (11)0.4416 (18)0.9326 (6)0.118 (5)0.584 (16)
H7B0.9371250.4929410.9343970.142*0.584 (16)
O1B0.7743 (8)0.6939 (9)0.9952 (4)0.093 (3)0.584 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.129 (3)0.086 (3)0.056 (3)0.022 (3)0.027 (2)0.011 (2)
C40.100 (3)0.082 (3)0.060 (2)0.014 (2)0.025 (2)0.003 (2)
C50.082 (2)0.079 (3)0.049 (2)0.010 (2)0.0145 (19)0.002 (2)
C60.124 (3)0.114 (4)0.077 (3)0.041 (3)0.044 (3)0.027 (3)
C80.081 (2)0.087 (3)0.049 (2)0.002 (2)0.0207 (18)0.000 (2)
C90.078 (2)0.079 (3)0.054 (2)0.009 (2)0.0191 (18)0.009 (2)
C100.082 (3)0.080 (3)0.055 (2)0.004 (2)0.023 (2)0.003 (2)
C110.088 (3)0.108 (3)0.063 (3)0.019 (2)0.034 (2)0.015 (2)
C120.076 (2)0.077 (3)0.056 (2)0.0049 (18)0.0196 (19)0.003 (2)
C130.074 (2)0.076 (3)0.056 (3)0.008 (2)0.020 (2)0.001 (2)
C140.094 (3)0.077 (3)0.080 (3)0.006 (2)0.004 (2)0.012 (2)
C150.109 (3)0.103 (3)0.127 (4)0.008 (3)0.016 (3)0.016 (3)
C160.104 (3)0.127 (4)0.069 (3)0.008 (3)0.012 (3)0.006 (3)
C170.144 (4)0.213 (6)0.060 (3)0.053 (4)0.012 (3)0.006 (3)
N10.0775 (19)0.085 (2)0.0514 (18)0.0103 (17)0.0247 (15)0.0113 (17)
N20.093 (2)0.082 (2)0.061 (2)0.0030 (18)0.0035 (17)0.0002 (19)
O20.0970 (19)0.143 (3)0.102 (2)0.0388 (19)0.0535 (17)0.0404 (19)
O30.0999 (18)0.098 (2)0.0784 (19)0.0146 (14)0.0527 (15)0.0159 (14)
O40.118 (2)0.0776 (19)0.079 (2)0.0135 (15)0.0182 (15)0.0101 (16)
S10.0933 (8)0.1155 (9)0.0805 (8)0.0162 (6)0.0426 (6)0.0324 (7)
O1A0.139 (8)0.135 (8)0.122 (8)0.032 (6)0.038 (6)0.031 (6)
C1A0.116 (12)0.127 (12)0.107 (12)0.022 (9)0.032 (10)0.038 (9)
C7A0.060 (6)0.075 (7)0.062 (6)0.010 (5)0.014 (5)0.009 (5)
C2A0.110 (9)0.102 (11)0.085 (10)0.004 (7)0.005 (7)0.002 (8)
C2B0.143 (8)0.070 (6)0.073 (7)0.042 (6)0.042 (6)0.026 (5)
C1B0.143 (10)0.105 (7)0.093 (7)0.016 (7)0.012 (8)0.026 (6)
C7B0.120 (8)0.136 (8)0.102 (7)0.039 (6)0.029 (6)0.012 (6)
O1B0.120 (6)0.081 (4)0.081 (4)0.021 (3)0.027 (4)0.016 (3)
Geometric parameters (Å, º) top
C3—C41.369 (5)C14—C151.509 (5)
C3—C2B1.371 (7)C14—H14A0.9700
C3—C2A1.377 (9)C14—H14B0.9700
C3—H30.9300C15—H15A0.9600
C4—C51.383 (5)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C5—C61.366 (5)C16—N21.472 (4)
C5—C81.446 (5)C16—C171.498 (6)
C6—C7B1.380 (8)C16—H16A0.9700
C6—C7A1.415 (8)C16—H16B0.9700
C6—H60.9300C17—H17A0.9600
C8—C91.325 (4)C17—H17B0.9600
C8—H80.9300C17—H17C0.9600
C9—C101.482 (5)O1A—C2A1.469 (9)
C9—S11.748 (4)O1A—C1A1.432 (19)
C10—O31.203 (4)C1A—H1A10.9600
C10—N11.387 (4)C1A—H1A20.9600
C11—O21.210 (4)C1A—H1A30.9600
C11—N11.367 (4)C7A—C2A1.413 (9)
C11—S11.746 (4)C7A—H7A0.9300
C12—N11.437 (4)C2B—C7B1.410 (8)
C12—C131.528 (5)C2B—O1B1.486 (9)
C12—H12A0.9700C1B—O1B1.418 (14)
C12—H12B0.9700C1B—H1B10.9600
C13—O41.222 (4)C1B—H1B20.9600
C13—N21.332 (4)C1B—H1B30.9600
C14—N21.457 (4)C7B—H7B0.9300
C4—C3—C2B117.2 (5)H15B—C15—H15C109.5
C4—C3—C2A123.4 (7)N2—C16—C17112.9 (4)
C4—C3—H3118.3N2—C16—H16A109.0
C2A—C3—H3118.3C17—C16—H16A109.0
C3—C4—C5123.1 (4)N2—C16—H16B109.0
C3—C4—H4118.5C17—C16—H16B109.0
C5—C4—H4118.5H16A—C16—H16B107.8
C6—C5—C4115.8 (4)C16—C17—H17A109.5
C6—C5—C8118.2 (3)C16—C17—H17B109.5
C4—C5—C8126.0 (3)H17A—C17—H17B109.5
C5—C6—C7B123.6 (6)C16—C17—H17C109.5
C5—C6—C7A118.8 (6)H17A—C17—H17C109.5
C5—C6—H6120.6H17B—C17—H17C109.5
C7A—C6—H6120.6C11—N1—C10115.5 (3)
C9—C8—C5131.4 (3)C11—N1—C12121.3 (3)
C9—C8—H8114.3C10—N1—C12122.8 (3)
C5—C8—H8114.3C13—N2—C14124.6 (3)
C8—C9—C10121.0 (3)C13—N2—C16117.4 (3)
C8—C9—S1128.8 (3)C14—N2—C16117.7 (3)
C10—C9—S1110.1 (3)C11—S1—C991.45 (19)
O3—C10—N1122.8 (3)C2A—O1A—C1A106.3 (11)
O3—C10—C9126.7 (3)O1A—C1A—H1A1109.5
N1—C10—C9110.5 (3)O1A—C1A—H1A2109.5
O2—C11—N1123.4 (4)H1A1—C1A—H1A2109.5
O2—C11—S1124.4 (3)O1A—C1A—H1A3109.5
N1—C11—S1112.3 (3)H1A1—C1A—H1A3109.5
N1—C12—C13110.9 (3)H1A2—C1A—H1A3109.5
N1—C12—H12A109.5C2A—C7A—C6124.3 (11)
C13—C12—H12A109.5C2A—C7A—H7A117.9
N1—C12—H12B109.5C6—C7A—H7A117.9
C13—C12—H12B109.5C3—C2A—C7A111.7 (12)
H12A—C12—H12B108.1C3—C2A—O1A122.9 (12)
O4—C13—N2123.2 (4)C7A—C2A—O1A105.3 (10)
O4—C13—C12119.4 (4)C3—C2B—C7B122.8 (7)
N2—C13—C12117.3 (3)C3—C2B—O1B114.1 (8)
N2—C14—C15112.5 (3)C7B—C2B—O1B121.0 (7)
N2—C14—H14A109.1O1B—C1B—H1B1109.5
C15—C14—H14A109.1O1B—C1B—H1B2109.5
N2—C14—H14B109.1H1B1—C1B—H1B2109.5
C15—C14—H14B109.1O1B—C1B—H1B3109.5
H14A—C14—H14B107.8H1B1—C1B—H1B3109.5
C14—C15—H15A109.5H1B2—C1B—H1B3109.5
C14—C15—H15B109.5C6—C7B—C2B113.4 (8)
H15A—C15—H15B109.5C6—C7B—H7B123.3
C14—C15—H15C109.5C2B—C7B—H7B123.3
H15A—C15—H15C109.5C1B—O1B—C2B119.8 (8)
C2B—C3—C4—C55.2 (9)C13—C12—N1—C1090.0 (4)
C2A—C3—C4—C513.9 (11)O4—C13—N2—C14175.0 (3)
C3—C4—C5—C62.1 (6)C12—C13—N2—C146.7 (5)
C3—C4—C5—C8179.4 (4)O4—C13—N2—C161.7 (5)
C4—C5—C6—C7B18.5 (11)C12—C13—N2—C16180.0 (3)
C8—C5—C6—C7B162.8 (9)C15—C14—N2—C1390.8 (4)
C4—C5—C6—C7A12.8 (8)C15—C14—N2—C1682.5 (4)
C8—C5—C6—C7A165.8 (7)C17—C16—N2—C1383.3 (5)
C6—C5—C8—C9174.3 (4)C17—C16—N2—C14102.9 (4)
C4—C5—C8—C94.1 (6)O2—C11—S1—C9178.0 (4)
C5—C8—C9—C10178.2 (3)N1—C11—S1—C92.3 (3)
C5—C8—C9—S11.4 (6)C8—C9—S1—C11179.9 (4)
C8—C9—C10—O31.7 (6)C10—C9—S1—C110.3 (3)
S1—C9—C10—O3178.6 (3)C5—C6—C7A—C2A18.5 (17)
C8—C9—C10—N1177.9 (3)C4—C3—C2A—C7A8.5 (18)
S1—C9—C10—N11.7 (4)C4—C3—C2A—O1A135.0 (14)
N1—C12—C13—O415.3 (4)C6—C7A—C2A—C37 (2)
N1—C12—C13—N2166.4 (3)C6—C7A—C2A—O1A128.3 (16)
O2—C11—N1—C10176.3 (4)C1A—O1A—C2A—C355 (2)
S1—C11—N1—C103.9 (4)C1A—O1A—C2A—C7A175.7 (13)
O2—C11—N1—C122.7 (6)C4—C3—C2B—C7B2.6 (16)
S1—C11—N1—C12177.5 (3)C4—C3—C2B—O1B161.0 (8)
O3—C10—N1—C11176.7 (3)C5—C6—C7B—C2B25.2 (16)
C9—C10—N1—C113.6 (4)C3—C2B—C7B—C616.7 (18)
O3—C10—N1—C123.2 (5)O1B—C2B—C7B—C6145.8 (15)
C9—C10—N1—C12177.2 (3)C3—C2B—O1B—C1B27.2 (16)
C13—C12—N1—C1183.2 (4)C7B—C2B—O1B—C1B168.9 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S10.932.563.259 (4)133
C1B—H1B3···O2i0.962.513.160 (14)125
C3—H3···O2i0.932.583.481 (5)164
C12—H12B···O3ii0.972.433.342 (4)157
Symmetry codes: (i) x+1, y, z+2; (ii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

SY acknowledges the UGC–MANF for a JRF. The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

First citationAlbrecht, U., Gördes, D., Schmidt, E., Thurow, K., Lalk, M. & Langer, P. (2005). Bioorg. Med. Chem. 13, 4402–4407.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFujita, T., Sugiyama, Y., Taketomi, S., Sohda, T., Kawamatsu, Y., Iwatsuka, H. & Suzuoki, Z. (1983). Diabetes, 32, 804–810.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYoussef, A. M., Sydney White, M., Villanueva, E. B., El-Ashmawy, I. M. & Klegeris, A. (2010). Bioorg. Med. Chem. 18, 2019–2028.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds