organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Benzoyl-7-meth­­oxy-2H-chromen-2-one

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: yuanjinweigs@126.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 February 2017; accepted 8 March 2017; online 14 March 2017)

In the title compound, C17H12O4, the dihedral angle between the coumarin ring system (r.m.s. deviation = 0.018 Å) and the phenyl ring is 55.96 (8)°. In the crystal, weak C—H⋯O inter­actions connect the mol­ecules into a three-dimensional network and aromatic ππ stacking inter­actions are also observed [shortest centroid–centroid separation = 3.6692 (9) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

3-Carbonyl­coumarin represents an important structural element in anti­coagulant agents (Sandhu et al., 2014[Sandhu, S., Bansal, Y., Silakari, O. & Bansal, G. (2014). Bioorg. Med. Chem. 22, 3806-3814.]), and acts as a mono­amine oxidase (MAO)-B inhibitor (Mertens et al., 2014[Mertens, M. D., Hinz, S., Müller, C. E. & Gütschow, M. (2014). Bioorg. Med. Chem. 22, 1916-1928.]). As part of our work on the synthesis of 3-aroylcoumarins, we report the crystal structure of the title compound (Fig. 1[link]). This study provides an opportunity to investigate the geometry of 3-aroylcoumarin derivatives with no strong inter­molecular inter­actions.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids.

The C7—O1 and C8—O2 bond lengths are 1.218 (2) and 1.205 (2) Å, respectively. They are shorter than the standard C=O bond length (1.231 Å; Gao et al., 2014[Gao, Y. J., Deng, X. Y., Peng, H. & He, H. W. (2014). Chin. J. Struct. Chem. 33, 985-989.]) due to conjugation with the aromatic ring. The coumarin ring is almost planar (r.m.s. deviation = 0.018 Å) and subtends a dihedral angle of 55.96 (8)° with the phenyl ring. The main twist occurs about the C7—C9 bond [C6—C7—C9—C8 = −51.8 (2)°]. The methyl group (atom C17) is approximately coplanar with its attached ring [deviation = 0.111 (2) Å].

In the crystal, weak C—H⋯O inter­actions (Table 1[link]) connect the mol­ecules into a three-dimensional network and aromatic ππ stacking inter­actions are also observed [shortest centroid–centroid separation = 3.6692 (9) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4i 0.93 2.58 3.503 (2) 171
C5—H5⋯O2ii 0.93 2.49 3.330 (2) 151
C13—H13⋯O1iii 0.93 2.37 3.281 (2) 165
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Synthesis and crystallization

The synthesis of 3-benzoyl-7-meth­oxy-2H-chromen-2-one is based on our reported literature procedure (Yuan et al., 2015[Yuan, J. W., Yin, Q. Y., Yang, L. R., Mai, W. P., Mao, P., Xiao, Y. M. & Qu, L. B. (2015). RSC Adv. 5, 88258-88265.]). In a 25 ml Schlenk tube, 7-methoxyl coumarin (0.25 mmol, 44 mg), benzaldehyde (1.0 mmol, 106 mg), TBHP (1.0 mmol) and FeCl2 (0.025 mmol, 31.5 mg) were added and charged with nitro­gen (3 cycles). Chloro­benzene (2 ml) was then added, and the reaction mixture was heated on an oil bath at 120°C for 12 h (monitored by TLC). After the reaction mixture had cooled to room temperature and the solvent had been removed with the aid of a rotary evaporator, 2 ml ethyl­acetate was added to the residue. The solution was filtrated, and the filtrate was distilled under vacuum. The crude product was purified by silica gel column chromatography using ethyl acetate/petroleum ether (1:5) as eluant to obtain the desired product as colourless prismatic crystals, m.p. 134–135°C.

1H NMR (400 MHz, CDCl3) δ: 8.06 (s, 1H), 7.87 (d, JH—H = 7.2 Hz, 2H), 7.65 (td, JH—H = 8.7 Hz, JH—H = 1.5 Hz, 1H), 7.60 (dd, JH—H = 7.9 Hz, JH—H = 1.5 Hz, 1H), 7.48 (d, JH—H = 7.9 Hz, 2H), 7.40 (t, JH—H = 8.3 Hz, 1H), 7.35 (td, JH—H = 7.8 Hz, JH—H = 0.8 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ: 191.7 (C=O), 158.4 (C=O), 154.7, 145.4 (CH), 136.2, 133.8 (CH), 133.7 (CH), 129.6 (CH), 129.2 (CH), 128.6 (CH), 125.0 (CH), 118.2, 116.9 (CH). IR (KBr) ν (cm−1): 1714, 1654 (C=O), 1608, 1565, 1448 (Ar–). MS (ESI) m/z: 251.3 [M + H]+ (calculated for C16H11O3+ 251.1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H12O4
Mr 280.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 291
a, b, c (Å) 4.07206 (11), 11.9589 (3), 27.5626 (7)
β (°) 90.306 (2)
V3) 1342.21 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.82
Crystal size (mm) 0.3 × 0.2 × 0.2
 
Data collection
Diffractometer Agilent Xcalibur Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.])
Tmin, Tmax 0.946, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4863, 2384, 1994
Rint 0.022
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.07
No. of reflections 2384
No. of parameters 191
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.22
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3-Benzoyl-7-methoxy-2H-chromen-2-one top
Crystal data top
C17H12O4F(000) = 584
Mr = 280.27Dx = 1.387 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 4.07206 (11) ÅCell parameters from 2065 reflections
b = 11.9589 (3) Åθ = 3.7–71.9°
c = 27.5626 (7) ŵ = 0.82 mm1
β = 90.306 (2)°T = 291 K
V = 1342.21 (6) Å3Prism, colourless
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
2384 independent reflections
Radiation source: Enhance (Cu) X-ray Source1994 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.2312 pixels mm-1θmax = 67.1°, θmin = 3.2°
ω scansh = 34
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1114
Tmin = 0.946, Tmax = 1.000l = 3232
4863 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.064P)2 + 0.1354P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2384 reflectionsΔρmax = 0.14 e Å3
191 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0239 (5)0.58205 (12)0.35344 (5)0.0833 (5)
O20.1454 (3)0.88869 (10)0.30432 (4)0.0551 (3)
O30.1358 (3)0.86182 (9)0.23776 (4)0.0443 (3)
O40.6558 (4)0.80906 (12)0.08545 (4)0.0626 (4)
C10.0047 (5)0.71111 (17)0.43741 (7)0.0596 (5)
H10.11340.64470.43890.071*
C20.0569 (6)0.7723 (2)0.47901 (7)0.0698 (6)
H20.02630.74730.50840.084*
C30.2323 (6)0.8706 (2)0.47706 (7)0.0723 (6)
H30.26590.91230.50510.087*
C40.3582 (6)0.90725 (18)0.43354 (7)0.0664 (5)
H40.47820.97340.43240.080*
C50.3070 (4)0.84630 (15)0.39172 (6)0.0516 (4)
H50.39320.87130.36250.062*
C60.1279 (4)0.74808 (14)0.39307 (6)0.0454 (4)
C70.0744 (5)0.67775 (14)0.34951 (6)0.0506 (4)
C80.0393 (4)0.82732 (13)0.28306 (5)0.0422 (3)
C90.1607 (4)0.71949 (12)0.29987 (5)0.0434 (4)
C100.3356 (4)0.65378 (13)0.26960 (6)0.0465 (4)
H100.39840.58280.27990.056*
C110.4259 (4)0.69057 (12)0.22246 (6)0.0432 (4)
C120.3228 (4)0.79611 (12)0.20769 (5)0.0401 (3)
C130.3930 (4)0.84099 (13)0.16282 (5)0.0437 (4)
H130.32130.91220.15420.052*
C140.5743 (4)0.77607 (14)0.13099 (6)0.0478 (4)
C150.6868 (5)0.66990 (15)0.14458 (7)0.0543 (4)
H150.81120.62780.12310.065*
C160.6141 (4)0.62805 (13)0.18936 (6)0.0516 (4)
H160.68980.55750.19810.062*
C170.5324 (6)0.91387 (18)0.06893 (7)0.0675 (5)
H17A0.59420.92500.03570.101*
H17B0.62250.97280.08850.101*
H17C0.29740.91440.07140.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1370 (15)0.0514 (8)0.0617 (8)0.0372 (9)0.0034 (9)0.0076 (6)
O20.0616 (7)0.0509 (7)0.0531 (6)0.0095 (6)0.0150 (5)0.0038 (5)
O30.0553 (7)0.0364 (5)0.0413 (5)0.0069 (5)0.0065 (4)0.0026 (4)
O40.0776 (9)0.0641 (8)0.0462 (6)0.0104 (7)0.0148 (6)0.0017 (6)
C10.0651 (11)0.0604 (10)0.0534 (10)0.0051 (9)0.0078 (8)0.0128 (8)
C20.0811 (14)0.0863 (15)0.0422 (9)0.0055 (11)0.0101 (8)0.0071 (9)
C30.0889 (15)0.0808 (14)0.0472 (10)0.0024 (12)0.0054 (9)0.0113 (10)
C40.0786 (13)0.0625 (11)0.0581 (11)0.0120 (10)0.0084 (9)0.0057 (9)
C50.0548 (10)0.0535 (9)0.0466 (8)0.0071 (8)0.0004 (7)0.0034 (7)
C60.0480 (8)0.0460 (8)0.0421 (8)0.0007 (7)0.0018 (6)0.0060 (6)
C70.0598 (10)0.0399 (8)0.0521 (9)0.0081 (7)0.0010 (7)0.0071 (7)
C80.0461 (8)0.0377 (7)0.0428 (8)0.0039 (6)0.0022 (6)0.0005 (6)
C90.0512 (8)0.0352 (7)0.0438 (8)0.0069 (6)0.0033 (6)0.0008 (6)
C100.0552 (9)0.0334 (7)0.0508 (8)0.0013 (6)0.0080 (7)0.0010 (6)
C110.0477 (8)0.0346 (7)0.0473 (8)0.0004 (6)0.0040 (6)0.0035 (6)
C120.0417 (8)0.0365 (7)0.0419 (7)0.0000 (6)0.0011 (6)0.0055 (6)
C130.0491 (9)0.0380 (7)0.0440 (8)0.0033 (6)0.0002 (6)0.0011 (6)
C140.0498 (9)0.0493 (9)0.0443 (8)0.0002 (7)0.0023 (6)0.0073 (7)
C150.0603 (10)0.0475 (9)0.0551 (9)0.0064 (8)0.0062 (7)0.0143 (7)
C160.0587 (10)0.0360 (8)0.0603 (10)0.0077 (7)0.0024 (7)0.0067 (7)
C170.0833 (14)0.0706 (13)0.0488 (9)0.0062 (11)0.0108 (9)0.0070 (9)
Geometric parameters (Å, º) top
O1—C71.218 (2)C7—C91.500 (2)
O2—C81.205 (2)C8—C91.456 (2)
O3—C81.3744 (18)C9—C101.352 (2)
O3—C121.3751 (18)C10—H100.9300
O4—C141.359 (2)C10—C111.422 (2)
O4—C171.424 (2)C11—C121.390 (2)
C1—H10.9300C11—C161.410 (2)
C1—C21.376 (3)C12—C131.380 (2)
C1—C61.395 (2)C13—H130.9300
C2—H20.9300C13—C141.387 (2)
C2—C31.376 (3)C14—C151.400 (2)
C3—H30.9300C15—H150.9300
C3—C41.378 (3)C15—C161.366 (3)
C4—H40.9300C16—H160.9300
C4—C51.379 (3)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C5—C61.383 (2)C17—H17C0.9600
C6—C71.481 (2)
C8—O3—C12122.55 (12)C10—C9—C8119.85 (14)
C14—O4—C17117.61 (14)C9—C10—H10119.2
C2—C1—H1119.8C9—C10—C11121.57 (14)
C2—C1—C6120.45 (19)C11—C10—H10119.2
C6—C1—H1119.8C12—C11—C10118.00 (14)
C1—C2—H2120.0C12—C11—C16117.15 (14)
C3—C2—C1119.96 (18)C16—C11—C10124.85 (14)
C3—C2—H2120.0O3—C12—C11120.63 (14)
C2—C3—H3120.0O3—C12—C13115.85 (13)
C2—C3—C4120.08 (19)C13—C12—C11123.51 (14)
C4—C3—H3120.0C12—C13—H13121.2
C3—C4—H4119.9C12—C13—C14117.56 (14)
C3—C4—C5120.3 (2)C14—C13—H13121.2
C5—C4—H4119.9O4—C14—C13123.72 (16)
C4—C5—H5119.9O4—C14—C15115.43 (15)
C4—C5—C6120.25 (17)C13—C14—C15120.85 (15)
C6—C5—H5119.9C14—C15—H15119.9
C1—C6—C7118.57 (16)C16—C15—C14120.14 (15)
C5—C6—C1118.99 (16)C16—C15—H15119.9
C5—C6—C7122.38 (15)C11—C16—H16119.6
O1—C7—C6120.57 (16)C15—C16—C11120.78 (15)
O1—C7—C9118.22 (16)C15—C16—H16119.6
C6—C7—C9121.09 (14)O4—C17—H17A109.5
O2—C8—O3116.18 (14)O4—C17—H17B109.5
O2—C8—C9126.62 (14)O4—C17—H17C109.5
O3—C8—C9117.17 (13)H17A—C17—H17B109.5
C8—C9—C7120.28 (14)H17A—C17—H17C109.5
C10—C9—C7119.75 (14)H17B—C17—H17C109.5
O1—C7—C9—C8132.2 (2)C7—C9—C10—C11179.27 (15)
O1—C7—C9—C1043.9 (3)C8—O3—C12—C110.6 (2)
O2—C8—C9—C74.0 (3)C8—O3—C12—C13178.34 (14)
O2—C8—C9—C10172.08 (17)C8—C9—C10—C114.6 (2)
O3—C8—C9—C7178.13 (13)C9—C10—C11—C121.3 (2)
O3—C8—C9—C105.8 (2)C9—C10—C11—C16178.42 (16)
O3—C12—C13—C14178.47 (13)C10—C11—C12—O30.8 (2)
O4—C14—C15—C16179.02 (16)C10—C11—C12—C13179.67 (14)
C1—C2—C3—C40.6 (4)C10—C11—C16—C15179.45 (16)
C1—C6—C7—O112.3 (3)C11—C12—C13—C140.5 (2)
C1—C6—C7—C9171.84 (16)C12—O3—C8—O2174.28 (14)
C2—C1—C6—C50.9 (3)C12—O3—C8—C93.8 (2)
C2—C1—C6—C7178.16 (19)C12—C11—C16—C150.8 (2)
C2—C3—C4—C50.5 (4)C12—C13—C14—O4178.81 (15)
C3—C4—C5—C60.2 (3)C12—C13—C14—C151.3 (2)
C4—C5—C6—C10.9 (3)C13—C14—C15—C161.1 (3)
C4—C5—C6—C7178.07 (18)C14—C15—C16—C110.0 (3)
C5—C6—C7—O1164.90 (19)C16—C11—C12—O3179.44 (14)
C5—C6—C7—C911.0 (3)C16—C11—C12—C130.6 (2)
C6—C1—C2—C30.2 (3)C17—O4—C14—C133.4 (3)
C6—C7—C9—C851.8 (2)C17—O4—C14—C15176.72 (16)
C6—C7—C9—C10132.12 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.583.503 (2)171
C5—H5···O2ii0.932.493.330 (2)151
C13—H13···O1iii0.932.373.281 (2)165
Symmetry codes: (i) x1, y+3/2, z+1/2; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (award Nos. 21302042, 21172055); the Program for Innovative Research Team from Zhengzhou (award No. 131PCXTD605); Department of Henan Province Natural Science and Technology Foundation (award No. 142102210410); Natural Science Foundation in Henan Province Department of Education (award No. 14B150053).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, Y. J., Deng, X. Y., Peng, H. & He, H. W. (2014). Chin. J. Struct. Chem. 33, 985–989.  CAS Google Scholar
First citationMertens, M. D., Hinz, S., Müller, C. E. & Gütschow, M. (2014). Bioorg. Med. Chem. 22, 1916–1928.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSandhu, S., Bansal, Y., Silakari, O. & Bansal, G. (2014). Bioorg. Med. Chem. 22, 3806–3814.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYuan, J. W., Yin, Q. Y., Yang, L. R., Mai, W. P., Mao, P., Xiao, Y. M. & Qu, L. B. (2015). RSC Adv. 5, 88258–88265.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds