organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,4-Bis(1H-1,2,4-triazol-1-yl)benzene

CROSSMARK_Color_square_no_text.svg

aInstitute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: luliping@sxu.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 January 2017; accepted 17 February 2017; online 21 February 2017)

The complete mol­ecule of the title compound, C10H8N6, is generated by crystallographic inversion symmetry; the dihedral angle between the planes of the benzene and triazole rings is 16.7 (2)°. In the crystal, inversion dimers linked by pairs of weak C—H⋯N hydrogen bonds generate R22(6) loops. Weak aromatic ππ stacking inter­actions [centroid–centroid separation = 3.809 (1) Å] are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Derivatives of 1,2,4-triazole exhibit a wide range of bioactivities, including anti­cancer activity, anti­tubercular activity and kinase inhibition (Kaur et al., 2016[Kaur, R., Dwivedi, A. R., Kumar, B. & Kumar, V. (2016). Anticancer Agents Med. Chem. 16, 465-489.]; Keri et al., 2015[Keri, R. S., Patil, S. A., Budagumpi, S. & Nagaraja, B. M. (2015). Chem. Biol. Drug Des. 86, 410-423.]). Their copper complexes can inhibit the activity of protein tyrosine phosphatase (Lu & Zhu, 2014[Lu, L. P. & Zhu, M. L. (2014). Antioxid. Redox Signal. 20, 2210-2224.]). Thus, we reacted 2,5-bis­(1H-1,2,4-triazol-1-yl)terephthalic acid with CuCl2 under hydro­thermal conditions in an attempt to form a complex, but instead crystals of the title compound, (I), were obtained.

The mol­ecular structure of (I) is illustrated in Fig. 1[link]. The asymmetric unit consists of half a mol­ecule; the complete mol­ecule is generated by an inversion operation. The planes of the benzene and triazole rings are inclined at an angle of 16.7 (2)°. In the crystal, mol­ecules are connected through weak C—H⋯N hydrogen bonds (Table 1[link]) and ππ inter­actions [centroid–centroid separation = 3.809 (1) Å], leading to the formation of a supra­molecular network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N3i 0.93 2.55 3.3563 (19) 146
C5—H5⋯N2ii 0.93 2.71 3.6184 (18) 165
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids for non-H atoms drawn at the 50% probability level. [Symmetry code: (i) 2 − x, 1 − y, −z.]
[Figure 2]
Figure 2
The C—H⋯N hydrogen-bonded (dotted lines) network of (I).

Synthesis and crystallization

A mixture containing CuCl2·4H2O (0.10 mmol, 17 mg), 2,5-bis­(1H-1,2,4-triazol-1-yl)terephthalic acid (0.05 mmol, 15 mg), 1,10-phenanthroline (0.05 mmol, 8.5 mg), di­methyl­formamide (1.0 ml) and H2O (6.0 ml) was stirred for 30 min at room temperature. The reaction mixture was sealed in a Teflon-lined stainless steel vessel and then heated to 433 K for 3 d and then allowed to cool gradually to room temperature. Colourless blocks of the title compound were collected by filtration and washed with water.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H8N6
Mr 212.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 3.8091 (3), 10.2616 (9), 11.9768 (11)
β (°) 96.165 (3)
V3) 465.44 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.20 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.669, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 4210, 1057, 875
Rint 0.029
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 1.03
No. of reflections 1057
No. of parameters 73
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.17
Computer programs: APEX2 and SAINT (Bruker, 2000[Bruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1,4-Bis(1H-1,2,4-triazol-1-yl)benzene top
Crystal data top
C10H8N6F(000) = 220
Mr = 212.22Dx = 1.514 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.8091 (3) ÅCell parameters from 2111 reflections
b = 10.2616 (9) Åθ = 3.4–27.5°
c = 11.9768 (11) ŵ = 0.10 mm1
β = 96.165 (3)°T = 298 K
V = 465.44 (7) Å3Block, colorless
Z = 20.20 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
875 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
φ and ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 34
Tmin = 0.669, Tmax = 0.746k = 1313
4210 measured reflectionsl = 1515
1057 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.1337P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
1057 reflectionsΔρmax = 0.23 e Å3
73 parametersΔρmin = 0.17 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8017 (3)0.48118 (10)0.21842 (9)0.0307 (3)
N20.7691 (4)0.58859 (12)0.28330 (10)0.0451 (4)
N30.6288 (4)0.40718 (13)0.37506 (11)0.0459 (4)
C10.6654 (5)0.53760 (15)0.37491 (13)0.0467 (4)
H10.6200160.5885630.4359470.056*
C20.7160 (4)0.37557 (14)0.27543 (12)0.0417 (4)
H20.7180640.2908250.2479920.050*
C30.9038 (3)0.49129 (12)0.10767 (11)0.0282 (3)
C40.8869 (4)0.61044 (13)0.05306 (11)0.0331 (3)
H40.8110190.6842280.0886420.040*
C51.0163 (4)0.38103 (13)0.05481 (11)0.0341 (4)
H51.0267220.3012760.0918930.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0397 (7)0.0278 (6)0.0257 (6)0.0006 (5)0.0082 (5)0.0003 (4)
N20.0729 (9)0.0319 (7)0.0343 (7)0.0005 (6)0.0228 (6)0.0043 (5)
N30.0651 (9)0.0412 (7)0.0346 (7)0.0032 (6)0.0199 (6)0.0029 (5)
C10.0691 (11)0.0401 (8)0.0344 (8)0.0005 (7)0.0224 (7)0.0017 (6)
C20.0623 (10)0.0307 (7)0.0342 (7)0.0038 (7)0.0153 (7)0.0024 (6)
C30.0309 (7)0.0302 (7)0.0239 (6)0.0018 (5)0.0045 (5)0.0004 (5)
C40.0439 (8)0.0260 (7)0.0306 (7)0.0025 (5)0.0099 (6)0.0025 (5)
C50.0471 (8)0.0261 (6)0.0301 (7)0.0035 (6)0.0095 (6)0.0039 (5)
Geometric parameters (Å, º) top
N1—C21.3397 (17)C2—H20.9300
N1—N21.3620 (15)C3—C41.3848 (18)
N1—C31.4255 (16)C3—C51.3867 (18)
N2—C11.3141 (19)C4—C5i1.3839 (17)
N3—C21.3133 (18)C4—H40.9300
N3—C11.346 (2)C5—H50.9300
C1—H10.9300
C2—N1—N2108.77 (11)N1—C2—H2124.4
C2—N1—C3129.70 (11)C4—C3—C5120.38 (12)
N2—N1—C3121.51 (10)C4—C3—N1120.02 (11)
C1—N2—N1102.01 (12)C5—C3—N1119.60 (11)
C2—N3—C1102.01 (12)C5i—C4—C3119.55 (12)
N2—C1—N3115.95 (13)C5i—C4—H4120.2
N2—C1—H1122.0C3—C4—H4120.2
N3—C1—H1122.0C4i—C5—C3120.07 (12)
N3—C2—N1111.26 (13)C4i—C5—H5120.0
N3—C2—H2124.4C3—C5—H5120.0
C2—N1—N2—C10.02 (17)N2—N1—C3—C416.2 (2)
C3—N1—N2—C1178.56 (13)C2—N1—C3—C517.3 (2)
N1—N2—C1—N30.1 (2)N2—N1—C3—C5164.48 (13)
C2—N3—C1—N20.2 (2)C5—C3—C4—C5i0.1 (2)
C1—N3—C2—N10.19 (19)N1—C3—C4—C5i179.45 (12)
N2—N1—C2—N30.14 (19)C4—C3—C5—C4i0.1 (2)
C3—N1—C2—N3178.52 (13)N1—C3—C5—C4i179.46 (13)
C2—N1—C3—C4162.05 (15)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N3ii0.932.553.3563 (19)146
C5—H5···N2iii0.932.713.6184 (18)165
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+2, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (award No. 21571118).

References

First citationBruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaur, R., Dwivedi, A. R., Kumar, B. & Kumar, V. (2016). Anticancer Agents Med. Chem. 16, 465–489.  CrossRef CAS PubMed Google Scholar
First citationKeri, R. S., Patil, S. A., Budagumpi, S. & Nagaraja, B. M. (2015). Chem. Biol. Drug Des. 86, 410–423.  CrossRef CAS PubMed Google Scholar
First citationLu, L. P. & Zhu, M. L. (2014). Antioxid. Redox Signal. 20, 2210–2224.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds