organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Allyl-5-chloro­indoline-2,3-dione

aLaboratoire de Chimie Organique Appliquée-Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, cUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, France, and dDépartement de Chimie, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, 80000 Agadir, Morocco
*Correspondence e-mail: haoudi_amal@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 May 2016; accepted 28 May 2016; online 17 June 2016)

In the title compound, C11H8ClNO2, the allyl side chain is almost perpendicular to the 5-chloro­indoline-2,3-dione ring system, with a dihedral angle of 88.0 (3)°. In the crystal, C—H⋯O inter­actions link the mol­ecules into layers lying parallel to the bc plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our ongoing studies of 5-chloro­isatin derivatives (Kharbach et al., 2016[Kharbach, Y., Kandri Rodi, Y., Renard, C., Essassi, E. M. & El Ammari, L. (2016). IUCrData, 1, x160559.]), we now describe the structure of the title compound, C11H8ClNO2 (Fig. 1[link]), which was obtained by reaction of 5-chloro­isatin with allyl bromide in phase-transfer catalysis conditions.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule, showing displacement ellipsoids drawn at the 30% probability level.

The allyl group is almost perpendicular to the 5-chloro­indoline-2,3-dione ring system (r.m.s. deviation = 0.034 Å) with a dihedral angle of 88.0 (3)°: the N1—C9—C10—C11 torsion angle is −5.7 (5)°. In the crystal, C—H⋯O inter­actions (Fig. 2[link], Table 1[link]) link mol­ecules into layers running parallel to the bc plane (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.96 (2) 2.42 (2) 3.283 (2) 151.0 (19)
C11—H11A⋯O2ii 1.02 (4) 2.39 (3) 3.377 (3) 165 (3)
C11—H11B⋯O2iii 1.04 (3) 2.55 (3) 3.572 (3) 167 (2)
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal structure of the title compound, viewed along the c axis, showing layers parallel to the bc plane linked by C—H⋯O hydrogen bonds (dashed lines). For the sake of clarity, H atoms not involved in the hydrogen bonds have been omitted.
[Figure 3]
Figure 3
The crystal structure of the title compound, viewed along the b axis, showing chains parallel to the bc plane linked by C—H⋯O hydrogen bonds (dashed lines). For the sake of clarity, H atoms not involved in the hydrogen bonds have been omitted.

Synthesis and crystallization

To a solution of 5-chloro-1H-indole-2,3-dione (0.4 g, 2,20 mmol) in DMF (25 ml) was added K2CO3 (0.5 g, 3,30 mmol) as a base, tetra-n-butyl­ammoium bromide (0.1 g, 0,3 mmol) as catalyst and then 3-bromo­prop-1-ene (0.34 ml, 2.97 mmol). The reaction mixture was stirred for 48 h at room temperature; once the reaction was complete, the solvent was evaporated in vacuo. The title compound obtained was recrystallized from ethanol solution to afford red crystals (yield: 89%, m.p.: 415 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H8ClNO2
Mr 221.63
Crystal system, space group Orthorhombic, Pccn
Temperature (K) 296
a, b, c (Å) 31.2222 (6), 7.9107 (2), 8.3373 (2)
V3) 2059.23 (8)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.53 × 0.30 × 0.28
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS, Bruker, 2015[Bruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.705, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 33452, 2554, 1889
Rint 0.030
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.146, 1.02
No. of reflections 2554
No. of parameters 168
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.28, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

1-Allyl-5-chloroindoline-2,3-dione top
Crystal data top
C11H8ClNO2Dx = 1.430 Mg m3
Mr = 221.63Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 9899 reflections
a = 31.2222 (6) Åθ = 2.7–26.7°
b = 7.9107 (2) ŵ = 0.35 mm1
c = 8.3373 (2) ÅT = 296 K
V = 2059.23 (8) Å3Block, red
Z = 80.53 × 0.30 × 0.28 mm
F(000) = 912
Data collection top
Bruker APEXII CCD
diffractometer
1889 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS, Bruker, 2015)
θmax = 28.3°, θmin = 2.6°
Tmin = 0.705, Tmax = 0.746h = 4141
33452 measured reflectionsk = 1010
2554 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046All H-atom parameters refined
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0718P)2 + 0.7243P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2554 reflectionsΔρmax = 0.28 e Å3
168 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Experimental. SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0610 before and 0.0436 after correction. The Ratio of minimum to maximum transmission is 0.9447. The λ/2 correction factor is Not present.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.74155 (2)0.50698 (9)0.57033 (8)0.0830 (3)
O10.63056 (6)0.04791 (17)0.2249 (2)0.0740 (5)
N10.59967 (5)0.4519 (2)0.10974 (19)0.0534 (4)
O20.56737 (5)0.2127 (2)0.0112 (2)0.0819 (5)
C60.65189 (5)0.3371 (2)0.2739 (2)0.0442 (4)
C10.63365 (6)0.4861 (2)0.2156 (2)0.0442 (4)
C70.62735 (6)0.1975 (2)0.2048 (2)0.0527 (5)
C50.68569 (6)0.3403 (2)0.3809 (2)0.0503 (4)
C20.64914 (7)0.6414 (2)0.2625 (2)0.0536 (5)
C80.59347 (6)0.2826 (3)0.0950 (2)0.0573 (5)
C40.70061 (6)0.4964 (3)0.4293 (2)0.0545 (5)
C30.68305 (7)0.6445 (3)0.3703 (3)0.0568 (5)
C90.57319 (8)0.5799 (4)0.0313 (3)0.0660 (6)
C100.53684 (8)0.6399 (4)0.1317 (3)0.0751 (7)
C110.52504 (9)0.5846 (4)0.2675 (3)0.0843 (8)
H20.6377 (7)0.744 (3)0.220 (3)0.066 (6)*
H50.6966 (7)0.247 (3)0.423 (2)0.058 (6)*
H30.6932 (7)0.743 (3)0.409 (3)0.072 (7)*
H9A0.5617 (9)0.529 (3)0.069 (3)0.086 (8)*
H11A0.5430 (13)0.501 (4)0.331 (4)0.116 (11)*
H100.5239 (13)0.753 (6)0.133 (5)0.162 (15)*
H11B0.5002 (10)0.641 (4)0.330 (4)0.102 (9)*
H9B0.5925 (9)0.678 (4)0.002 (4)0.095 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0629 (4)0.1088 (6)0.0774 (4)0.0004 (3)0.0143 (3)0.0100 (3)
O10.0905 (11)0.0387 (7)0.0928 (11)0.0027 (7)0.0278 (9)0.0023 (7)
N10.0521 (8)0.0554 (9)0.0527 (8)0.0046 (7)0.0032 (7)0.0018 (7)
O20.0649 (9)0.0938 (12)0.0869 (11)0.0134 (8)0.0027 (8)0.0329 (10)
C60.0468 (9)0.0383 (8)0.0474 (9)0.0017 (6)0.0135 (7)0.0007 (7)
C10.0446 (8)0.0434 (8)0.0447 (8)0.0027 (7)0.0098 (7)0.0011 (7)
C70.0584 (10)0.0418 (9)0.0578 (10)0.0020 (7)0.0238 (9)0.0051 (8)
C50.0493 (9)0.0487 (10)0.0529 (10)0.0093 (8)0.0106 (8)0.0057 (8)
C20.0616 (11)0.0372 (9)0.0620 (11)0.0050 (8)0.0098 (9)0.0021 (8)
C80.0499 (9)0.0625 (12)0.0595 (11)0.0044 (9)0.0136 (9)0.0139 (9)
C40.0457 (9)0.0652 (12)0.0525 (10)0.0001 (8)0.0050 (8)0.0041 (9)
C30.0572 (11)0.0482 (10)0.0651 (12)0.0076 (8)0.0097 (9)0.0097 (9)
C90.0627 (13)0.0810 (15)0.0543 (11)0.0172 (11)0.0011 (10)0.0087 (11)
C100.0705 (14)0.0852 (17)0.0695 (14)0.0262 (12)0.0011 (11)0.0013 (12)
C110.0718 (15)0.111 (2)0.0702 (16)0.0296 (15)0.0040 (13)0.0046 (15)
Geometric parameters (Å, º) top
Cl1—C41.739 (2)C5—H50.89 (2)
O1—C71.200 (2)C2—C31.389 (3)
N1—C11.406 (2)C2—H20.95 (2)
N1—C81.359 (3)C4—C31.384 (3)
N1—C91.461 (3)C3—H30.91 (3)
O2—C81.208 (2)C9—C101.487 (3)
C6—C11.396 (2)C9—H9A1.00 (3)
C6—C71.462 (3)C9—H9B1.01 (3)
C6—C51.382 (3)C10—C111.269 (4)
C1—C21.377 (3)C10—H100.98 (5)
C7—C81.552 (3)C11—H11A1.02 (4)
C5—C41.380 (3)C11—H11B1.04 (3)
C1—N1—C9125.07 (18)O2—C8—C7127.1 (2)
C8—N1—C1110.69 (16)C5—C4—Cl1119.25 (16)
C8—N1—C9124.2 (2)C5—C4—C3121.34 (19)
C1—C6—C7106.63 (16)C3—C4—Cl1119.40 (16)
C5—C6—C1121.35 (16)C2—C3—H3121.0 (15)
C5—C6—C7131.98 (16)C4—C3—C2121.12 (18)
C6—C1—N1111.36 (15)C4—C3—H3117.8 (15)
C2—C1—N1127.91 (17)N1—C9—C10113.65 (19)
C2—C1—C6120.73 (17)N1—C9—H9A107.4 (16)
O1—C7—C6130.2 (2)N1—C9—H9B107.7 (17)
O1—C7—C8124.55 (19)C10—C9—H9A109.1 (16)
C6—C7—C8105.22 (15)C10—C9—H9B110.3 (17)
C6—C5—H5122.0 (14)H9A—C9—H9B109 (2)
C4—C5—C6117.58 (17)C9—C10—H10128 (3)
C4—C5—H5120.3 (14)C11—C10—C9127.8 (2)
C1—C2—C3117.86 (18)C11—C10—H10101 (3)
C1—C2—H2121.4 (14)C10—C11—H11A122 (2)
C3—C2—H2120.7 (14)C10—C11—H11B121.3 (16)
N1—C8—C7106.07 (16)H11A—C11—H11B116 (3)
O2—C8—N1126.8 (2)
Cl1—C4—C3—C2177.33 (15)C1—C2—C3—C40.3 (3)
O1—C7—C8—N1177.91 (18)C7—C6—C1—N11.66 (18)
O1—C7—C8—O23.3 (3)C7—C6—C1—C2178.41 (16)
N1—C1—C2—C3179.47 (17)C7—C6—C5—C4176.80 (17)
N1—C9—C10—C115.7 (5)C5—C6—C1—N1179.56 (15)
C6—C1—C2—C30.6 (3)C5—C6—C1—C20.5 (3)
C6—C7—C8—N11.16 (18)C5—C6—C7—O10.3 (3)
C6—C7—C8—O2177.59 (18)C5—C6—C7—C8179.26 (17)
C6—C5—C4—Cl1177.25 (13)C5—C4—C3—C21.3 (3)
C6—C5—C4—C31.4 (3)C8—N1—C1—C60.9 (2)
C1—N1—C8—O2178.56 (18)C8—N1—C1—C2179.15 (18)
C1—N1—C8—C70.19 (19)C8—N1—C9—C1092.4 (3)
C1—N1—C9—C1084.7 (3)C9—N1—C1—C6178.33 (17)
C1—C6—C7—O1177.32 (19)C9—N1—C1—C21.7 (3)
C1—C6—C7—C81.67 (17)C9—N1—C8—O24.0 (3)
C1—C6—C5—C40.5 (3)C9—N1—C8—C7177.24 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.96 (2)2.42 (2)3.283 (2)151.0 (19)
C11—H11A···O2ii1.02 (4)2.39 (3)3.377 (3)165 (3)
C11—H11B···O2iii1.04 (3)2.55 (3)3.572 (3)167 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKharbach, Y., Kandri Rodi, Y., Renard, C., Essassi, E. M. & El Ammari, L. (2016). IUCrData, 1, x160559.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds