organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(Naphthalen-1-yl)ethanol

aChemistry Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, NY 14222, USA
*Correspondence e-mail: nazareay@buffalostate.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 March 2016; accepted 12 March 2016; online 18 March 2016)

The title compound, C12H11OH, crystallizes with two mol­ecules, A and B, in the asymmetric unit with different conformations of the ethanol side chain; one is gauche [torsion angle = 59.58 (17)°] and the other is anti [176.20 (13)°]. In the crystal, [100] chains of alternating A and B mol­ecules are linked by O—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was synthesized by selective hydrogenation of the corresponding ester C10H7CH2CH2CO2Et (Adkins & Burgoyne, 1949[Adkins, H. & Burgoyne, E. E. (1949). J. Am. Chem. Soc. 71, 2528-3531.]) and has some applications as a synthetic block (Huang et al., 2014[Huang, X., Li, X., Zou, M., Song, S., Tang, C., Yuan, Y. & Jiao, N. (2014). J. Am. Chem. Soc. 136, 14858-14865.]) and as a labeling agent. One of applications is detection of low concentrations of oxygen-containing functional groups through fluorescent labeling (Feng et al., 2006[Feng, X., Dementev, N., Feng, W., Vidic, R. & Borguet, E. (2006). Carbon, 44, 1203-1209.]).

The title compound crystallizes with two mol­ecules in the asymmetric uint: both mol­ecules exhibit standard bond lengths and angles and almost planar naphthalene rings (Fig. 1[link]). They differ in the conformations of the ethanol side-chains; the C1—C11—C12—O1 torsion angle of 176.20 (13)° indicates an anti orientation, whereas the equivalent angle in the second mol­ecule [C21—C31—C32—O2 = 59.58 (17)°] corresponds to a gauche conformation. In the crystal, chains of alternating C1- and C21-mol­ecules are linked by O—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]), generating C(2) [100] chains.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.86 (3) 1.96 (3) 2.7931 (17) 163 (2)
O2—H2A⋯O1 0.84 (3) 1.94 (3) 2.7834 (17) 176 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+1, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. An intramolecular hydrogen bond is shown as a dashed line.
[Figure 2]
Figure 2
An infinitive chain of 2-(naphthalen-1-yl)ethanol mol­ecules connected via hydrogen bonds. The view is along the c axis. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

The title compound is commercially available from Aldrich as 1-napthalene­ethanol. The bulk material is suitable for X-ray structure determination (Fig. 3[link]); re-crystallization from aceto­nitrile yields better quality crystals which were used in current study.

[Figure 3]
Figure 3
X-ray powder diffraction diagram of polycrystalline 2-(naphthalen-1-yl)ethanol. Blue line: experimental data after baseline correction. Red line: Simulation from single-crystal data (this structure).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H12O
Mr 172.22
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 173
a, b, c (Å) 9.8022 (6), 14.9047 (9), 12.6430 (7)
V3) 1847.13 (19)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.60
Crystal size (mm) 0.59 × 0.44 × 0.22
 
Data collection
Diffractometer Bruker PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.776, 0.931
No. of measured, independent and observed [I > 2σ(I)] reflections 60021, 3937, 3893
Rint 0.024
(sin θ/λ)max−1) 0.636
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.04
No. of reflections 3937
No. of parameters 261
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.16
Absolute structure Flack x determined using 1786 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.04 (3)
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Experimental top

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

Experimental top

The title compound is commercially available from Aldrich as 1-napthaleneethanol. The bulk material is suitable for X-ray structure determination (Fig. 3); re-crystallization from acetonitrile yields better quality crystals which were used in current study.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The title compound was synthesized by selective hydrogenation of the corresponding ester C10H7CH2CH2CO2Et (Adkins & Burgoyne, 1949) and has some applications as a synthetic block (Huang et al., 2014) and as a labeling agent. One of applications is detection of low concentrations of oxygen-containing functional groups through fluorescent labeling (Feng et al., 2006).

The title compound crystallizes with two molecules in the asymmetric uint: both molecules exhibit standard bond lengths and angles and almost planar naphthalene rings (Fig. 1). They differ in the conformations of the ethanol side-chains; the C1—C11—C12—O1 torsion angle of 176.20 (13)° indicates an anti orientation, whereas the equivalent angle in the second molecule [C21—C31—C32—O2 = 59.58 (17)°] corresponds to a gauche conformation. In the crystal, chains of alternating C1- and C21-molecules are linked by O—H···O hydrogen bonds (Table 1), generating C(2) [100] chains.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. An infinitive chain of 2-(naphthalen-1-yl)ethanol molecules connected via hydrogen bonds. The view is along the c axis.
[Figure 3] Fig. 3. X-ray powder diffraction diagram of polycrystalline 2-(naphthalen-1-yl)ethanol. Blue line: experimental data after baseline correction. Red line: Simulation from single-crystal data (this structure).
2-(Naphthalen-1-yl)ethanol top
Crystal data top
C12H12ODx = 1.239 Mg m3
Mr = 172.22Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pca21Cell parameters from 9816 reflections
a = 9.8022 (6) Åθ = 3.5–78.7°
b = 14.9047 (9) ŵ = 0.60 mm1
c = 12.6430 (7) ÅT = 173 K
V = 1847.13 (19) Å3Prism, colourless
Z = 80.59 × 0.44 × 0.22 mm
F(000) = 736
Data collection top
Bruker PHOTON 100 CMOS
diffractometer
3893 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.024
φ and ω scansθmax = 78.9°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1212
Tmin = 0.776, Tmax = 0.931k = 1818
60021 measured reflectionsl = 1615
3937 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.2448P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.14 e Å3
3937 reflectionsΔρmin = 0.16 e Å3
261 parametersAbsolute structure: Flack x determined using 1786 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.04 (3)
Crystal data top
C12H12OV = 1847.13 (19) Å3
Mr = 172.22Z = 8
Orthorhombic, Pca21Cu Kα radiation
a = 9.8022 (6) ŵ = 0.60 mm1
b = 14.9047 (9) ÅT = 173 K
c = 12.6430 (7) Å0.59 × 0.44 × 0.22 mm
Data collection top
Bruker PHOTON 100 CMOS
diffractometer
3937 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
3893 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.931Rint = 0.024
60021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.14 e Å3
S = 1.04Δρmin = 0.16 e Å3
3937 reflectionsAbsolute structure: Flack x determined using 1786 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
261 parametersAbsolute structure parameter: 0.04 (3)
1 restraint
Special details top

Experimental. SADABS2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0570 before and 0.0501 after correction. The Ratio of minimum to maximum transmission is 0.8328. The λ/2 correction factor is 0.00150.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49885 (12)0.45896 (7)0.36984 (11)0.0337 (3)
H10.580 (3)0.4703 (14)0.3905 (19)0.045 (6)*
C10.54796 (17)0.21367 (11)0.30591 (12)0.0309 (3)
C20.45133 (19)0.16711 (14)0.25009 (14)0.0406 (4)
H20.3956 (14)0.2000 (8)0.1943 (14)0.049*
C30.4267 (3)0.07555 (15)0.26726 (17)0.0538 (5)
H30.360 (2)0.0452 (9)0.2269 (12)0.065*
C40.4994 (3)0.03039 (13)0.34271 (19)0.0533 (5)
H40.4828 (5)0.0293 (17)0.3542 (4)0.064*
C50.5996 (2)0.07497 (11)0.40304 (15)0.0397 (4)
C60.6740 (2)0.03077 (14)0.48406 (19)0.0536 (5)
H60.6538 (6)0.0342 (17)0.4997 (5)0.064*
C70.7716 (2)0.07348 (17)0.54095 (18)0.0575 (6)
H70.8239 (16)0.0399 (10)0.5981 (17)0.069*
C80.8006 (2)0.16422 (15)0.52095 (16)0.0482 (5)
H80.8739 (19)0.1952 (8)0.5620 (11)0.058*
C90.72891 (17)0.21065 (12)0.44539 (13)0.0346 (3)
H90.7492 (5)0.2748 (14)0.4332 (3)0.042*
C100.62625 (17)0.16800 (11)0.38452 (12)0.0312 (3)
C110.56252 (17)0.31391 (11)0.29043 (13)0.0318 (3)
H11A0.5286 (5)0.3305 (3)0.2212 (11)0.038*
H11B0.6580 (15)0.3305 (3)0.29433 (14)0.038*
C120.48255 (17)0.36354 (10)0.37543 (14)0.0334 (3)
H12A0.3873 (16)0.3491 (3)0.36835 (17)0.040*
H12B0.5122 (5)0.3431 (3)0.4438 (11)0.040*
O20.26483 (13)0.54063 (8)0.44908 (10)0.0355 (3)
H2A0.333 (3)0.5135 (17)0.424 (2)0.051 (6)*
C210.21629 (15)0.37666 (10)0.58262 (12)0.0281 (3)
C220.14186 (16)0.33293 (11)0.50662 (14)0.0325 (3)
H220.0633 (18)0.3629 (7)0.4757 (7)0.039*
C230.17591 (18)0.24575 (11)0.47191 (13)0.0350 (4)
H230.1248 (13)0.2184 (7)0.4197 (13)0.042*
C240.28412 (17)0.20191 (10)0.51537 (14)0.0317 (3)
H240.3075 (5)0.1431 (13)0.4909 (6)0.038*
C250.36234 (15)0.24240 (10)0.59631 (12)0.0269 (3)
C260.47452 (17)0.19757 (11)0.64316 (13)0.0325 (3)
H260.4950 (5)0.1380 (14)0.6223 (5)0.039*
C270.55353 (18)0.23832 (13)0.71755 (13)0.0367 (4)
H270.6345 (18)0.2052 (8)0.7494 (7)0.044*
C280.52301 (17)0.32634 (12)0.75026 (13)0.0341 (4)
H280.5807 (14)0.3558 (7)0.8037 (13)0.041*
C290.41387 (16)0.37134 (11)0.70841 (12)0.0297 (3)
H290.3933 (5)0.4323 (13)0.7331 (6)0.036*
C300.33003 (15)0.33137 (10)0.63004 (11)0.0255 (3)
C310.18036 (16)0.47189 (11)0.61290 (13)0.0316 (3)
H31A0.18674 (18)0.47767 (14)0.6894 (12)0.038*
H31B0.0860 (15)0.4833 (2)0.5930 (3)0.038*
C320.27051 (17)0.54330 (11)0.56206 (14)0.0332 (4)
H32A0.2407 (5)0.6039 (9)0.5870 (4)0.040*
H32B0.3670 (15)0.53414 (16)0.5854 (4)0.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0312 (6)0.0279 (5)0.0422 (6)0.0007 (4)0.0011 (5)0.0058 (5)
C10.0316 (8)0.0341 (8)0.0269 (7)0.0009 (6)0.0062 (6)0.0008 (6)
C20.0405 (9)0.0497 (10)0.0316 (8)0.0042 (8)0.0002 (7)0.0046 (8)
C30.0626 (13)0.0508 (11)0.0481 (12)0.0178 (10)0.0068 (10)0.0190 (9)
C40.0698 (13)0.0313 (9)0.0588 (13)0.0084 (9)0.0208 (11)0.0102 (8)
C50.0457 (10)0.0296 (8)0.0439 (9)0.0089 (7)0.0158 (8)0.0006 (7)
C60.0608 (13)0.0387 (10)0.0611 (13)0.0213 (9)0.0209 (11)0.0127 (9)
C70.0501 (12)0.0701 (14)0.0523 (12)0.0306 (11)0.0102 (9)0.0245 (11)
C80.0333 (9)0.0717 (13)0.0397 (10)0.0109 (9)0.0026 (8)0.0093 (9)
C90.0306 (7)0.0420 (9)0.0312 (8)0.0043 (7)0.0051 (6)0.0040 (7)
C100.0322 (7)0.0322 (8)0.0290 (8)0.0043 (6)0.0090 (6)0.0002 (6)
C110.0308 (7)0.0347 (8)0.0298 (7)0.0013 (6)0.0025 (6)0.0070 (6)
C120.0308 (8)0.0292 (7)0.0402 (8)0.0000 (6)0.0085 (7)0.0060 (7)
O20.0316 (6)0.0351 (6)0.0396 (6)0.0069 (5)0.0010 (5)0.0029 (5)
C210.0249 (7)0.0311 (7)0.0283 (7)0.0033 (6)0.0054 (6)0.0001 (6)
C220.0266 (7)0.0375 (8)0.0334 (8)0.0037 (6)0.0014 (6)0.0023 (7)
C230.0360 (8)0.0370 (8)0.0320 (8)0.0125 (7)0.0024 (7)0.0040 (6)
C240.0361 (8)0.0261 (7)0.0330 (8)0.0077 (6)0.0049 (7)0.0034 (6)
C250.0276 (7)0.0277 (7)0.0255 (7)0.0043 (6)0.0055 (6)0.0009 (5)
C260.0351 (8)0.0301 (8)0.0324 (8)0.0029 (6)0.0055 (6)0.0010 (6)
C270.0308 (8)0.0457 (9)0.0337 (9)0.0045 (7)0.0006 (7)0.0061 (7)
C280.0304 (8)0.0444 (9)0.0274 (8)0.0026 (7)0.0014 (6)0.0020 (7)
C290.0308 (8)0.0327 (8)0.0256 (7)0.0035 (6)0.0029 (6)0.0031 (6)
C300.0244 (6)0.0276 (7)0.0244 (7)0.0040 (5)0.0046 (5)0.0009 (5)
C310.0260 (7)0.0340 (8)0.0349 (8)0.0041 (6)0.0023 (6)0.0031 (6)
C320.0298 (8)0.0304 (8)0.0393 (9)0.0026 (6)0.0014 (7)0.0023 (6)
Geometric parameters (Å, º) top
O1—H10.86 (3)O2—H2A0.84 (3)
O1—C121.4330 (18)O2—C321.430 (2)
C1—C21.370 (2)C21—C221.371 (2)
C1—C101.428 (2)C21—C301.435 (2)
C1—C111.514 (2)C21—C311.512 (2)
C2—H21.02 (2)C22—H220.97 (2)
C2—C31.403 (3)C22—C231.411 (2)
C3—H30.94 (3)C23—H230.92 (2)
C3—C41.367 (4)C23—C241.362 (3)
C4—H40.92 (3)C24—H240.96 (2)
C4—C51.410 (3)C24—C251.414 (2)
C5—C61.420 (3)C25—C261.417 (2)
C5—C101.430 (2)C25—C301.428 (2)
C6—H61.01 (3)C26—H260.95 (2)
C6—C71.356 (4)C26—C271.361 (3)
C7—H71.02 (3)C27—H271.02 (2)
C7—C81.405 (3)C27—C281.408 (3)
C8—H81.00 (3)C28—H280.98 (2)
C8—C91.373 (3)C28—C291.369 (2)
C9—H90.99 (2)C29—H290.98 (2)
C9—C101.417 (2)C29—C301.418 (2)
C11—H11A0.969 (15)C31—H31A0.973 (16)
C11—H11B0.969 (15)C31—H31B0.973 (16)
C11—C121.522 (2)C31—C321.525 (2)
C12—H12A0.962 (15)C32—H32A1.001 (15)
C12—H12B0.962 (15)C32—H32B1.001 (15)
C12—O1—H1106.5 (15)C32—O2—H2A110.5 (17)
C2—C1—C10119.24 (16)C22—C21—C30118.85 (14)
C2—C1—C11119.91 (16)C22—C21—C31119.99 (14)
C10—C1—C11120.65 (15)C30—C21—C31121.13 (14)
C1—C2—H2118.9C21—C22—H22119.0
C1—C2—C3122.13 (19)C21—C22—C23121.98 (15)
C3—C2—H2118.9C23—C22—H22119.0
C2—C3—H3120.1C22—C23—H23120.0
C4—C3—C2119.8 (2)C24—C23—C22120.04 (15)
C4—C3—H3120.1C24—C23—H23120.0
C3—C4—H4119.7C23—C24—H24119.7
C3—C4—C5120.54 (18)C23—C24—C25120.64 (14)
C5—C4—H4119.7C25—C24—H24119.7
C4—C5—C6121.98 (19)C24—C25—C26121.48 (15)
C4—C5—C10119.70 (18)C24—C25—C30119.47 (14)
C6—C5—C10118.30 (18)C26—C25—C30119.03 (14)
C5—C6—H6119.1C25—C26—H26119.3
C7—C6—C5121.84 (19)C27—C26—C25121.33 (15)
C7—C6—H6119.1C27—C26—H26119.3
C6—C7—H7120.0C26—C27—H27120.1
C6—C7—C8119.94 (19)C26—C27—C28119.86 (16)
C8—C7—H7120.0C28—C27—H27120.1
C7—C8—H8119.8C27—C28—H28119.7
C9—C8—C7120.5 (2)C29—C28—C27120.60 (16)
C9—C8—H8119.8C29—C28—H28119.7
C8—C9—H9119.5C28—C29—H29119.4
C8—C9—C10120.99 (18)C28—C29—C30121.13 (15)
C10—C9—H9119.5C30—C29—H29119.4
C1—C10—C5118.54 (16)C25—C30—C21118.97 (14)
C9—C10—C1123.06 (15)C29—C30—C21122.99 (14)
C9—C10—C5118.40 (16)C29—C30—C25118.03 (14)
C1—C11—H11A109.7C21—C31—H31A108.7
C1—C11—H11B109.7C21—C31—H31B108.7
C1—C11—C12109.87 (13)C21—C31—C32114.43 (13)
H11A—C11—H11B108.2H31A—C31—H31B107.6
C12—C11—H11A109.7C32—C31—H31A108.7
C12—C11—H11B109.7C32—C31—H31B108.7
O1—C12—C11112.96 (13)O2—C32—C31112.26 (14)
O1—C12—H12A109.0O2—C32—H32A109.2
O1—C12—H12B109.0O2—C32—H32B109.2
C11—C12—H12A109.0C31—C32—H32A109.2
C11—C12—H12B109.0C31—C32—H32B109.2
H12A—C12—H12B107.8H32A—C32—H32B107.9
C1—C2—C3—C40.8 (3)C21—C22—C23—C241.1 (2)
C1—C11—C12—O1176.20 (13)C21—C31—C32—O259.58 (17)
C2—C1—C10—C50.7 (2)C22—C21—C30—C250.2 (2)
C2—C1—C10—C9179.51 (15)C22—C21—C30—C29179.33 (14)
C2—C1—C11—C1295.94 (18)C22—C21—C31—C32100.07 (17)
C2—C3—C4—C50.4 (3)C22—C23—C24—C250.8 (2)
C3—C4—C5—C6178.1 (2)C23—C24—C25—C26179.43 (15)
C3—C4—C5—C100.5 (3)C23—C24—C25—C302.2 (2)
C4—C5—C6—C7179.09 (19)C24—C25—C26—C27176.88 (15)
C4—C5—C10—C11.1 (2)C24—C25—C30—C211.6 (2)
C4—C5—C10—C9179.13 (16)C24—C25—C30—C29177.53 (14)
C5—C6—C7—C80.6 (3)C25—C26—C27—C280.9 (3)
C6—C5—C10—C1177.61 (16)C26—C25—C30—C21179.92 (14)
C6—C5—C10—C92.2 (2)C26—C25—C30—C290.9 (2)
C6—C7—C8—C91.2 (3)C26—C27—C28—C290.4 (3)
C7—C8—C9—C101.2 (3)C27—C28—C29—C301.0 (2)
C8—C9—C10—C1179.27 (16)C28—C29—C30—C21178.79 (14)
C8—C9—C10—C50.5 (2)C28—C29—C30—C250.3 (2)
C10—C1—C2—C30.2 (3)C30—C21—C22—C231.6 (2)
C10—C1—C11—C1278.87 (18)C30—C21—C31—C3278.18 (18)
C10—C5—C6—C72.2 (3)C30—C25—C26—C271.5 (2)
C11—C1—C2—C3175.10 (17)C31—C21—C22—C23176.68 (15)
C11—C1—C10—C5174.12 (14)C31—C21—C30—C25178.05 (13)
C11—C1—C10—C95.6 (2)C31—C21—C30—C291.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.86 (3)1.96 (3)2.7931 (17)163 (2)
O2—H2A···O10.84 (3)1.94 (3)2.7834 (17)176 (2)
Symmetry code: (i) x+1/2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.86 (3)1.96 (3)2.7931 (17)163 (2)
O2—H2A···O10.84 (3)1.94 (3)2.7834 (17)176 (2)
Symmetry code: (i) x+1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H12O
Mr172.22
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)173
a, b, c (Å)9.8022 (6), 14.9047 (9), 12.6430 (7)
V3)1847.13 (19)
Z8
Radiation typeCu Kα
µ (mm1)0.60
Crystal size (mm)0.59 × 0.44 × 0.22
Data collection
DiffractometerBruker PHOTON 100 CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.776, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
60021, 3937, 3893
Rint0.024
(sin θ/λ)max1)0.636
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.04
No. of reflections3937
No. of parameters261
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.16
Absolute structureFlack x determined using 1786 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.04 (3)

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

Financial support from the State University of New York for acquisition and maintenance of the X-ray diffractometer is gratefully acknowledged.

References

First citationAdkins, H. & Burgoyne, E. E. (1949). J. Am. Chem. Soc. 71, 2528–3531.  Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, X., Dementev, N., Feng, W., Vidic, R. & Borguet, E. (2006). Carbon, 44, 1203–1209.  CrossRef CAS Google Scholar
First citationHuang, X., Li, X., Zou, M., Song, S., Tang, C., Yuan, Y. & Jiao, N. (2014). J. Am. Chem. Soc. 136, 14858–14865.  CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds