organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(1aR*,2R*,7S*,7aS*)-rel-3,6-Dimeth­­oxy-2-methyl-1a,2,7,7a-tetra­hydro-2,7-ep­­oxy-1H-cyclo­propa[b]naphthalene

aDepartment of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada, and bDepartment of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
*Correspondence e-mail: alough@chem.utoronto.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 February 2016; accepted 26 February 2016; online 4 March 2016)

In the racemic title compound, C14H16O3, the dihedral angle formed by the mean planes of the cyclo­propane and benzene rings is 5.0 (2)°. In the crystal, a pair of weak C—H⋯O hydrogen bonds connect two mol­ecules related by a twofold rotation axis, thus forming a dimer with an R22(10) motif.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We have recently investigated the palladium-catalysed cyclo­propanation reactions of [2.2.1] heterobicyclic compounds (Carlson et al., 2016[Carlson, E., Duret, G., Blanchard, N. & Tam, W. (2016). Synth. Commun. 46, 55-62.]). Substituted 7-oxabenzonorbornadiene (I) reacts with diazo­methane in the presence of catalytic Pd(OAc)2 in THF to give the cyclo­propane (II) as a single stereoisomer (see Fig. 1[link]). The stereochemistry of (II) was determined by this single-crystal X-ray analysis. Of the exo or endo isomers which could be formed, the reaction was found to give solely the exo stereoisomer.

[Figure 1]
Figure 1
The reaction scheme.

The mol­ecular structure of the title compound is shown in Fig. 2[link]. The dihedral angle formed by the mean planes of the cyclo­propane and benzene rings C3/C4/C5 and C1/C7/C8/C9/C10/C11, respectively is 5.0 (2)°. In the crystal, a pair of weak C—H⋯O hydrogen bonds (Table 1[link] and Fig. 3[link]) between two mol­ecules related by a twofold rotation axis forms a dimer with an [R_{2}^{2}](10) motif.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 1.00 2.44 3.2777 (17) 141
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of the title compound showing 30% probability ellipsoids.
[Figure 3]
Figure 3
A pair of mol­ecules connected by weak hydrogen bonds shown as dashed lines.

Synthesis and crystallization

HAZARD ALERT! Diazo­methane can be fatal if inhaled and capable of detonation if appreciably concentrated. See Carlson et al. (2016[Carlson, E., Duret, G., Blanchard, N. & Tam, W. (2016). Synth. Commun. 46, 55-62.]) for a detailed figure of the experimental apparatus. Alkene (I) (9.2 mmol), Pd(OAc)2 (0.092 mmol) and THF (40 ml) were stirred in a sealed reaction flask at 273 K, connected to a 1:1 glacial acetic acid: water trap and vented to the back of the fumehood. Diazo­methane was generated in a separate flask by dropwise addition (2 ml min−1) of 12.5 M aqueous NaOH (1.3 mol) to Di­azald (23.8 mmol) stirred in 95% EtOH (50 ml), and directed under a steady stream of argon to the reaction flask. Formation of the light-yellow CH2N2 was observed with the dissolution of Di­azald. Upon completion of the reaction (monitored by TLC and dissipation of any yellow colour), the crude reaction mixture was filtered through Celite, rinsed with Et2O (3 × 10 ml), concentrated and purified by column chromatography (EtOAc:hexa­nes = 1:9) followed by recrystallization from pentane solution to give the exo cyclo­propane (II) in the form of colourless plates in 82% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H16O3
Mr 232.27
Crystal system, space group Monoclinic, C2/c
Temperature (K) 147
a, b, c (Å) 16.401 (2), 6.9386 (9), 20.666 (2)
β (°) 97.089 (3)
V3) 2333.8 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.33 × 0.23 × 0.06
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.703, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 17093, 2681, 1972
Rint 0.037
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.02
No. of reflections 2681
No. of parameters 157
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.20
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

HAZARD ALERT! Diazomethane can be fatal if inhaled and capable of detonation if appreciably concentrated. See Carlson et al. (2016) for a detailed figure of the experimental apparatus. Alkene (I) (9.2 mmol), Pd(OAc)2 (0.092 mmol) and THF (40 ml) were stirred in a sealed reaction flask at 273 K, connected to a 1:1 glacial acetic acid: water trap and vented to the back of the fumehood. Diazomethane was generated in a separate flask by dropwise addition (2 ml min−1) of 12.5 M aqueous NaOH (1.3 mol) to Diazald (23.8 mmol) stirred in 95% EtOH (50 ml), and directed under a steady stream of argon to the reaction flask. Formation of the light-yellow CH2N2 was observed with the dissolution of Diazald. Upon completion of the reaction (monitored by TLC and dissipation of any yellow colour), the crude reaction mixture was filtered through Celite, rinsed with Et2O (3 × 10 ml), concentrated and purified by column chromatography (EtOAc:hexanes = 1:9) followed by recrystallization from pentane solution to give the exo cyclopropane (II) in the form of colourless plates in 82% yield.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

We have recently investigated the palladium-catalysed cyclopropanation reactions of [2.2.1] heterobicyclic compounds (Carlson et al., 2016). Substituted 7-oxabenzonorbornadiene (I) reacts with diazomethane in the presence of catalytic Pd(OAc)2 in THF to give the cyclopropane (II) as a single stereoisomer (see Fig. 1). The stereochemistry of (II) was determined by this single-crystal X-ray analysis. Of the exo or endo isomers which could be formed, the reaction was found to give solely the exo stereoisomer.

The molecular structure of the title compound is shown in Fig. 2. The dihedral angle formed by the mean planes of the cyclopropane and benzene rings C3/C4/C5 and C1/C7/C8/C9/C10/C11, respectively is 5.0 (2)°. In the crystal, a pair of weak C—H···O hydrogen bonds (Table 1) between two molecules related by a twofold rotation axis forms a dimer with an R22(10) motif.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The reaction scheme.
[Figure 2] Fig. 2. The molecular structure of the title compound showing 30% probability ellipsoids.
[Figure 3] Fig. 3. A pair of molecules connected by weak hydrogen bonds shown as dashed lines.
(1aR*,2R*,7S*,7aS*)-rel-3,6-Dimethoxy-2-methyl-1a,2,7,7a-tetrahydro-2,7-epoxy-1H-cyclopropa[b]naphthalene top
Crystal data top
C14H16O3F(000) = 992
Mr = 232.27Dx = 1.322 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.401 (2) ÅCell parameters from 4973 reflections
b = 6.9386 (9) Åθ = 2.5–27.4°
c = 20.666 (2) ŵ = 0.09 mm1
β = 97.089 (3)°T = 147 K
V = 2333.8 (5) Å3Plate, colourless
Z = 80.33 × 0.23 × 0.06 mm
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
1972 reflections with I > 2σ(I)
Radiation source: sealed tube with Bruker Triumph monochromatorRint = 0.037
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 2121
Tmin = 0.703, Tmax = 0.746k = 89
17093 measured reflectionsl = 1726
2681 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0431P)2 + 2.2112P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2681 reflectionsΔρmax = 0.27 e Å3
157 parametersΔρmin = 0.20 e Å3
Crystal data top
C14H16O3V = 2333.8 (5) Å3
Mr = 232.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.401 (2) ŵ = 0.09 mm1
b = 6.9386 (9) ÅT = 147 K
c = 20.666 (2) Å0.33 × 0.23 × 0.06 mm
β = 97.089 (3)°
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
2681 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
1972 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.746Rint = 0.037
17093 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
2681 reflectionsΔρmin = 0.20 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02986 (6)0.82417 (15)0.09283 (5)0.0194 (2)
O20.09941 (7)1.03830 (15)0.28403 (5)0.0253 (3)
O30.26711 (6)1.04938 (15)0.06547 (5)0.0248 (3)
C10.11743 (8)0.9435 (2)0.17734 (7)0.0167 (3)
C20.04984 (9)0.7949 (2)0.16232 (7)0.0190 (3)
H2A0.00270.80640.18850.023*
C30.09260 (9)0.5976 (2)0.16523 (7)0.0207 (3)
H3A0.12120.54760.20740.025*
C40.06766 (10)0.4617 (2)0.10921 (8)0.0249 (3)
H4A0.08220.32390.11540.030*
H4B0.01480.48640.08180.030*
C50.13667 (9)0.6032 (2)0.10507 (7)0.0191 (3)
H5A0.19460.55650.10730.023*
C60.11289 (9)0.8013 (2)0.07536 (7)0.0185 (3)
C70.15865 (9)0.9463 (2)0.12220 (7)0.0167 (3)
C80.22780 (9)1.0607 (2)0.12042 (7)0.0177 (3)
C90.25244 (9)1.1778 (2)0.17404 (7)0.0189 (3)
H9A0.29881.25960.17350.023*
C100.20992 (9)1.1766 (2)0.22880 (7)0.0187 (3)
H10A0.22731.25870.26460.022*
C110.14249 (9)1.0565 (2)0.23120 (7)0.0173 (3)
C120.11176 (10)0.8263 (2)0.00304 (7)0.0260 (4)
H12A0.16760.81130.00850.039*
H12B0.09110.95510.00970.039*
H12C0.07580.72870.01980.039*
C130.10349 (12)1.1913 (3)0.32903 (8)0.0383 (5)
H13A0.06521.16710.36090.057*
H13B0.08861.31200.30590.057*
H13C0.15951.20130.35160.057*
C140.33542 (10)1.1738 (3)0.06247 (8)0.0320 (4)
H14A0.35771.15380.02110.048*
H14B0.37791.14520.09880.048*
H14C0.31771.30810.06540.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0152 (5)0.0205 (5)0.0219 (5)0.0000 (4)0.0003 (4)0.0001 (4)
O20.0300 (6)0.0246 (6)0.0233 (5)0.0053 (5)0.0113 (5)0.0050 (5)
O30.0249 (6)0.0280 (6)0.0232 (5)0.0074 (5)0.0095 (4)0.0026 (5)
C10.0156 (7)0.0139 (7)0.0203 (7)0.0002 (5)0.0009 (6)0.0015 (6)
C20.0181 (7)0.0195 (8)0.0194 (7)0.0016 (6)0.0029 (6)0.0003 (6)
C30.0221 (8)0.0168 (7)0.0233 (7)0.0014 (6)0.0026 (6)0.0009 (6)
C40.0266 (8)0.0165 (7)0.0311 (8)0.0032 (6)0.0024 (7)0.0021 (6)
C50.0177 (7)0.0157 (7)0.0239 (7)0.0002 (6)0.0030 (6)0.0027 (6)
C60.0178 (7)0.0171 (7)0.0206 (7)0.0008 (6)0.0028 (6)0.0009 (6)
C70.0184 (7)0.0131 (7)0.0181 (7)0.0015 (5)0.0000 (6)0.0004 (5)
C80.0179 (7)0.0165 (7)0.0189 (7)0.0012 (6)0.0034 (6)0.0024 (6)
C90.0163 (7)0.0159 (7)0.0242 (7)0.0030 (6)0.0010 (6)0.0008 (6)
C100.0203 (7)0.0161 (7)0.0192 (7)0.0001 (6)0.0004 (6)0.0025 (6)
C110.0186 (7)0.0156 (7)0.0179 (7)0.0023 (6)0.0029 (6)0.0009 (6)
C120.0314 (9)0.0264 (8)0.0198 (7)0.0061 (7)0.0016 (7)0.0013 (6)
C130.0530 (12)0.0355 (10)0.0302 (9)0.0071 (9)0.0204 (9)0.0129 (8)
C140.0301 (9)0.0336 (9)0.0350 (9)0.0122 (8)0.0153 (7)0.0030 (8)
Geometric parameters (Å, º) top
O1—C21.4474 (17)C5—H5A1.0000
O1—C61.4598 (16)C6—C121.503 (2)
O2—C111.3776 (16)C6—C71.527 (2)
O2—C131.4074 (19)C7—C81.3886 (19)
O3—C81.3755 (16)C8—C91.393 (2)
O3—C141.4218 (18)C9—C101.4006 (19)
C1—C111.382 (2)C9—H9A0.9500
C1—C71.3951 (19)C10—C111.391 (2)
C1—C21.5177 (19)C10—H10A0.9500
C2—C31.536 (2)C12—H12A0.9800
C2—H2A1.0000C12—H12B0.9800
C3—C41.510 (2)C12—H12C0.9800
C3—C51.5137 (19)C13—H13A0.9800
C3—H3A1.0000C13—H13B0.9800
C4—C51.509 (2)C13—H13C0.9800
C4—H4A0.9900C14—H14A0.9800
C4—H4B0.9900C14—H14B0.9800
C5—C61.536 (2)C14—H14C0.9800
C2—O1—C697.26 (10)C7—C6—C5104.78 (11)
C11—O2—C13117.86 (12)C8—C7—C1120.60 (13)
C8—O3—C14116.97 (12)C8—C7—C6134.34 (12)
C11—C1—C7121.62 (13)C1—C7—C6105.01 (12)
C11—C1—C2133.42 (12)O3—C8—C7117.17 (12)
C7—C1—C2104.93 (12)O3—C8—C9124.78 (13)
O1—C2—C1100.24 (10)C7—C8—C9118.05 (12)
O1—C2—C3102.13 (11)C8—C9—C10120.98 (13)
C1—C2—C3106.21 (11)C8—C9—H9A119.5
O1—C2—H2A115.4C10—C9—H9A119.5
C1—C2—H2A115.4C11—C10—C9120.64 (13)
C3—C2—H2A115.4C11—C10—H10A119.7
C4—C3—C559.87 (9)C9—C10—H10A119.7
C4—C3—C2116.57 (13)O2—C11—C1117.11 (12)
C5—C3—C2101.93 (12)O2—C11—C10124.83 (13)
C4—C3—H3A120.4C1—C11—C10118.04 (12)
C5—C3—H3A120.4C6—C12—H12A109.5
C2—C3—H3A120.4C6—C12—H12B109.5
C5—C4—C360.20 (9)H12A—C12—H12B109.5
C5—C4—H4A117.8C6—C12—H12C109.5
C3—C4—H4A117.8H12A—C12—H12C109.5
C5—C4—H4B117.8H12B—C12—H12C109.5
C3—C4—H4B117.8O2—C13—H13A109.5
H4A—C4—H4B114.9O2—C13—H13B109.5
C4—C5—C359.93 (10)H13A—C13—H13B109.5
C4—C5—C6116.73 (12)O2—C13—H13C109.5
C3—C5—C6103.18 (11)H13A—C13—H13C109.5
C4—C5—H5A120.1H13B—C13—H13C109.5
C3—C5—H5A120.1O3—C14—H14A109.5
C6—C5—H5A120.1O3—C14—H14B109.5
O1—C6—C12109.65 (12)H14A—C14—H14B109.5
O1—C6—C799.92 (10)O3—C14—H14C109.5
C12—C6—C7119.96 (12)H14A—C14—H14C109.5
O1—C6—C5101.35 (11)H14B—C14—H14C109.5
C12—C6—C5118.17 (12)
C6—O1—C2—C153.68 (11)C11—C1—C7—C6179.16 (13)
C6—O1—C2—C355.53 (11)C2—C1—C7—C61.12 (14)
C11—C1—C2—O1147.94 (15)O1—C6—C7—C8150.61 (15)
C7—C1—C2—O134.35 (13)C12—C6—C7—C830.9 (2)
C11—C1—C2—C3106.10 (17)C5—C6—C7—C8104.75 (17)
C7—C1—C2—C371.61 (14)O1—C6—C7—C132.10 (13)
O1—C2—C3—C427.71 (15)C12—C6—C7—C1151.76 (13)
C1—C2—C3—C4132.31 (13)C5—C6—C7—C172.55 (13)
O1—C2—C3—C534.38 (13)C14—O3—C8—C7176.96 (13)
C1—C2—C3—C570.21 (13)C14—O3—C8—C93.2 (2)
C2—C3—C4—C588.68 (14)C1—C7—C8—O3177.28 (13)
C3—C4—C5—C690.21 (14)C6—C7—C8—O30.3 (2)
C2—C3—C5—C4113.95 (13)C1—C7—C8—C92.6 (2)
C4—C3—C5—C6113.46 (13)C6—C7—C8—C9179.56 (14)
C2—C3—C5—C60.49 (14)O3—C8—C9—C10178.34 (13)
C2—O1—C6—C12179.66 (12)C7—C8—C9—C101.5 (2)
C2—O1—C6—C752.73 (11)C8—C9—C10—C110.8 (2)
C2—O1—C6—C554.68 (12)C13—O2—C11—C1158.53 (14)
C4—C5—C6—O129.64 (15)C13—O2—C11—C1022.9 (2)
C3—C5—C6—O133.09 (13)C7—C1—C11—O2177.80 (13)
C4—C5—C6—C1290.13 (16)C2—C1—C11—O20.4 (2)
C3—C5—C6—C12152.87 (13)C7—C1—C11—C100.9 (2)
C4—C5—C6—C7133.21 (13)C2—C1—C11—C10178.31 (14)
C3—C5—C6—C770.48 (13)C9—C10—C11—O2176.62 (13)
C11—C1—C7—C81.4 (2)C9—C10—C11—C12.0 (2)
C2—C1—C7—C8176.63 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i1.002.443.2777 (17)141
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i1.002.443.2777 (17)141
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H16O3
Mr232.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)147
a, b, c (Å)16.401 (2), 6.9386 (9), 20.666 (2)
β (°) 97.089 (3)
V3)2333.8 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.33 × 0.23 × 0.06
Data collection
DiffractometerBruker Kappa APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.703, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
17093, 2681, 1972
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.02
No. of reflections2681
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

References

First citationBruker (2014). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlson, E., Duret, G., Blanchard, N. & Tam, W. (2016). Synth. Commun. 46, 55–62.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds