organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(7,8-Di­methyl-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbodi­thio­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and bDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad, Karnataka 580 001, India
*Correspondence e-mail: devarajegowda@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 January 2016; accepted 27 January 2016; online 3 February 2016)

In the title compound, C18H21NO2S2, the 2H-chromene ring systems is nearly planar, with a maximum deviation of 0.023 (2) Å. The coumarin unit makes a dihedral angle of 60.54 (8)° with the piperidine ring, which adopts a chair conformation. The carbodi­thio­ate group is present in a synperiplanar conformation with respect to the piperidine ring, as indicated by the torsion angle of −4.7 (2)°. A short intra­molecular C—H⋯S conatct generates an S(5) ring. No directional inter­actions beyond van der Waals contacts could be identified in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As partof our onging structural studies of coumarin derivatives (Kumar et al., 2012[Kumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878-o879.]; Anitha et al., 2016[Anitha, B. R., Roopashree, K. R., Mahesh Kumar, K., Ravi, A. J. & Devarajegowda, H. C. (2016). IUCrData, 1, x160169.]), we now describe the structure of the title compound.

The asymmetric unit is shown in Fig. 1[link]. The 2H-chromene ring systems is nearly planar, with a maximum deviation of 0.0233 (20) Å for atom C10. The coumarin unit makes a dihedral angle of 60.54 (8)° with the mean plane of the piperidine ring. The carbodi­thio­ate group is present in a synperiplanar conformation with respect to the piperidine ring, as indicated by the torsion angle value of −4.7 (2)°. A short intra­molecular C—H⋯S contact (Table 1[link]) generates an S(5) ring. No directional inter­actions beyond van der Waals' contacts could be identified in the crystal.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯S2 0.97 2.45 3.134 (2) 127
[Figure 1]
Figure 1
Displacement ellipsoid plot of the title compound.

Synthesis and crystallization

The title compound was synthesized according to the reported method (Kumar et al., 2012[Kumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878-o879.]). The compound was recrystallized from an ethanol–chloro­form solvent mixture (v/v = 2/1) to yield colourless needles. Yield = 80%. m.p. 439–441, IR (KBr, cm−1): 999, 1220, 1424, 1479, 1721. GCMS: m/e: 347. 1H NMR (400 MHz, CDCl3, δ, p.p.m): d 7.03 (s, 1H, Ar—H), 6.92 (s, 1H, Ar—H), 6.53 (s, 1H, Ar—H), 4.80 (s, 2H, CH2), 4.29 (s, 2H, CH2), 3.90 (s, 2H, CH2), 2.79 (s, 3H, CH3), 2.38 (s, 3H, CH3), 1.73 (m, 6H, CH3). Mol. formula: C18H21NO2S2. Elemental analysis: C, 62.21; H, 6.09; N, 4.03 (calculated); C, 62.25; H, 6.04; N, 4.07 (found).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H21NO2S2
Mr 347.48
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.6767 (3), 16.2058 (3), 9.1417 (2)
β (°) 99.486 (2)
V3) 1706.23 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.32
Crystal size (mm) 0.24 × 0.20 × 0.12
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.770, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19606, 5070, 3111
Rint 0.036
(sin θ/λ)max−1) 0.711
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.140, 1.06
No. of reflections 5070
No. of parameters 208
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.18
Computer programs: SMART (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(7,8-Dimethyl-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbodithioate top
Crystal data top
C18H21NO2S2Dx = 1.353 Mg m3
Mr = 347.48Melting point: 439 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.6767 (3) ÅCell parameters from 5070 reflections
b = 16.2058 (3) Åθ = 1.8–30.3°
c = 9.1417 (2) ŵ = 0.32 mm1
β = 99.486 (2)°T = 296 K
V = 1706.23 (7) Å3Plate, colourless
Z = 40.24 × 0.20 × 0.12 mm
F(000) = 736
Data collection top
Bruker SMART CCD area-detector
diffractometer
5070 independent reflections
Radiation source: fine-focus sealed tube3111 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and φ scansθmax = 30.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1416
Tmin = 0.770, Tmax = 1.000k = 2222
19606 measured reflectionsl = 1112
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.1225P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5070 reflectionsΔρmax = 0.29 e Å3
208 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72757 (4)0.85043 (3)0.04750 (6)0.05596 (17)
S20.97470 (5)0.86854 (3)0.20673 (7)0.06158 (18)
O30.52322 (11)1.12401 (7)0.20252 (15)0.0522 (3)
O40.43238 (14)1.02016 (9)0.2869 (2)0.0849 (5)
N50.85029 (13)0.73033 (9)0.18090 (18)0.0505 (4)
C60.52787 (18)1.29307 (12)0.1852 (3)0.0624 (5)
H6A0.47571.25810.22780.094*
H6B0.56891.32820.26070.094*
H6C0.48441.32630.10850.094*
C70.7133 (2)1.36691 (12)0.0386 (3)0.0676 (6)
H7A0.77701.37860.01250.101*
H7B0.64331.39010.01570.101*
H7C0.72851.39070.13610.101*
C80.69952 (16)1.27483 (11)0.0510 (2)0.0502 (4)
C90.77554 (17)1.22298 (12)0.0077 (2)0.0560 (5)
H90.83181.24620.05620.067*
C100.77018 (16)1.13909 (11)0.0036 (2)0.0500 (4)
H100.82231.10620.03680.060*
C110.68595 (14)1.10240 (10)0.07637 (19)0.0419 (4)
C120.60991 (14)1.15510 (10)0.13132 (19)0.0419 (4)
C130.61317 (15)1.24084 (11)0.1205 (2)0.0456 (4)
C140.67517 (14)1.01447 (10)0.0980 (2)0.0438 (4)
C150.59226 (16)0.98717 (11)0.1716 (2)0.0511 (4)
H150.58700.93080.18840.061*
C160.51136 (17)1.04126 (12)0.2253 (2)0.0547 (5)
C170.75634 (18)0.95856 (11)0.0327 (2)0.0565 (5)
H17A0.83510.96950.08170.068*
H17B0.75220.97230.07130.068*
C180.85766 (15)0.81038 (11)0.15314 (18)0.0440 (4)
C190.95023 (19)0.68230 (13)0.2544 (2)0.0607 (5)
H19A0.93150.65680.34350.073*
H19B1.01630.71850.28270.073*
C200.98043 (19)0.61655 (13)0.1501 (3)0.0673 (6)
H20A1.00570.64250.06530.081*
H20B1.04410.58340.20050.081*
C210.8778 (2)0.56170 (13)0.0977 (3)0.0731 (7)
H21A0.85870.53040.18080.088*
H21B0.89760.52300.02490.088*
C220.77386 (19)0.61218 (12)0.0296 (2)0.0609 (5)
H22A0.78930.63760.06120.073*
H22B0.70700.57630.00470.073*
C230.74742 (16)0.67820 (11)0.1354 (2)0.0533 (5)
H23A0.68340.71200.08760.064*
H23B0.72450.65270.22210.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0489 (3)0.0383 (3)0.0793 (4)0.00565 (19)0.0064 (2)0.0011 (2)
S20.0517 (3)0.0575 (3)0.0752 (4)0.0109 (2)0.0093 (3)0.0097 (2)
O30.0466 (7)0.0446 (7)0.0696 (9)0.0051 (5)0.0225 (6)0.0014 (6)
O40.0832 (11)0.0629 (10)0.1247 (14)0.0001 (8)0.0649 (11)0.0065 (9)
N50.0483 (9)0.0424 (8)0.0579 (10)0.0004 (6)0.0000 (7)0.0011 (7)
C60.0590 (13)0.0456 (11)0.0829 (15)0.0110 (9)0.0125 (11)0.0083 (10)
C70.0735 (15)0.0421 (11)0.0856 (16)0.0061 (10)0.0086 (13)0.0034 (10)
C80.0484 (10)0.0398 (10)0.0593 (12)0.0009 (8)0.0001 (9)0.0008 (8)
C90.0506 (11)0.0480 (11)0.0719 (13)0.0061 (8)0.0174 (10)0.0064 (9)
C100.0431 (10)0.0471 (10)0.0623 (12)0.0029 (8)0.0163 (9)0.0026 (8)
C110.0381 (9)0.0385 (9)0.0487 (10)0.0030 (7)0.0062 (7)0.0021 (7)
C120.0367 (9)0.0405 (9)0.0483 (10)0.0012 (7)0.0064 (7)0.0017 (7)
C130.0414 (9)0.0410 (9)0.0524 (10)0.0033 (7)0.0015 (8)0.0032 (7)
C140.0428 (9)0.0365 (9)0.0519 (10)0.0040 (7)0.0073 (8)0.0021 (7)
C150.0521 (11)0.0401 (9)0.0638 (12)0.0014 (8)0.0181 (9)0.0054 (8)
C160.0519 (11)0.0471 (10)0.0688 (13)0.0009 (8)0.0212 (10)0.0031 (9)
C170.0575 (12)0.0383 (10)0.0786 (14)0.0069 (8)0.0260 (10)0.0031 (9)
C180.0459 (10)0.0450 (10)0.0428 (10)0.0024 (7)0.0126 (8)0.0070 (7)
C190.0600 (12)0.0545 (12)0.0633 (13)0.0082 (9)0.0025 (10)0.0071 (10)
C200.0577 (13)0.0602 (13)0.0856 (16)0.0086 (10)0.0169 (11)0.0068 (11)
C210.0715 (15)0.0473 (12)0.1060 (19)0.0015 (10)0.0307 (14)0.0117 (11)
C220.0647 (13)0.0533 (12)0.0672 (13)0.0136 (10)0.0182 (11)0.0062 (10)
C230.0498 (11)0.0409 (9)0.0695 (13)0.0025 (8)0.0104 (10)0.0029 (9)
Geometric parameters (Å, º) top
S1—C181.7825 (18)C11—C121.385 (2)
S1—C171.7937 (18)C11—C141.447 (2)
S2—C181.6660 (18)C12—C131.394 (2)
O3—C161.368 (2)C14—C151.342 (2)
O3—C121.385 (2)C14—C171.504 (2)
O4—C161.206 (2)C15—C161.434 (2)
N5—C181.327 (2)C15—H150.9300
N5—C191.470 (2)C17—H17A0.9700
N5—C231.471 (2)C17—H17B0.9700
C6—C131.501 (2)C19—C201.510 (3)
C6—H6A0.9600C19—H19A0.9700
C6—H6B0.9600C19—H19B0.9700
C6—H6C0.9600C20—C211.506 (3)
C7—C81.507 (3)C20—H20A0.9700
C7—H7A0.9600C20—H20B0.9700
C7—H7B0.9600C21—C221.510 (3)
C7—H7C0.9600C21—H21A0.9700
C8—C131.391 (3)C21—H21B0.9700
C8—C91.392 (3)C22—C231.508 (3)
C9—C101.366 (3)C22—H22A0.9700
C9—H90.9300C22—H22B0.9700
C10—C111.407 (2)C23—H23A0.9700
C10—H100.9300C23—H23B0.9700
C18—S1—C17104.07 (9)O4—C16—C15125.74 (18)
C16—O3—C12121.90 (14)O3—C16—C15117.27 (15)
C18—N5—C19122.23 (16)C14—C17—S1114.87 (13)
C18—N5—C23125.64 (15)C14—C17—H17A108.5
C19—N5—C23112.02 (15)S1—C17—H17A108.5
C13—C6—H6A109.5C14—C17—H17B108.5
C13—C6—H6B109.5S1—C17—H17B108.5
H6A—C6—H6B109.5H17A—C17—H17B107.5
C13—C6—H6C109.5N5—C18—S2124.93 (14)
H6A—C6—H6C109.5N5—C18—S1112.53 (13)
H6B—C6—H6C109.5S2—C18—S1122.54 (11)
C8—C7—H7A109.5N5—C19—C20109.61 (17)
C8—C7—H7B109.5N5—C19—H19A109.7
H7A—C7—H7B109.5C20—C19—H19A109.7
C8—C7—H7C109.5N5—C19—H19B109.7
H7A—C7—H7C109.5C20—C19—H19B109.7
H7B—C7—H7C109.5H19A—C19—H19B108.2
C13—C8—C9119.55 (16)C21—C20—C19111.18 (18)
C13—C8—C7121.40 (17)C21—C20—H20A109.4
C9—C8—C7119.05 (18)C19—C20—H20A109.4
C10—C9—C8122.10 (17)C21—C20—H20B109.4
C10—C9—H9118.9C19—C20—H20B109.4
C8—C9—H9118.9H20A—C20—H20B108.0
C9—C10—C11120.07 (17)C20—C21—C22110.78 (17)
C9—C10—H10120.0C20—C21—H21A109.5
C11—C10—H10120.0C22—C21—H21A109.5
C12—C11—C10116.80 (15)C20—C21—H21B109.5
C12—C11—C14118.84 (15)C22—C21—H21B109.5
C10—C11—C14124.35 (15)H21A—C21—H21B108.1
C11—C12—O3120.53 (15)C23—C22—C21110.82 (18)
C11—C12—C13124.22 (16)C23—C22—H22A109.5
O3—C12—C13115.24 (14)C21—C22—H22A109.5
C8—C13—C12117.23 (16)C23—C22—H22B109.5
C8—C13—C6122.32 (17)C21—C22—H22B109.5
C12—C13—C6120.44 (16)H22A—C22—H22B108.1
C15—C14—C11118.65 (15)N5—C23—C22110.17 (15)
C15—C14—C17123.66 (16)N5—C23—H23A109.6
C11—C14—C17117.67 (15)C22—C23—H23A109.6
C14—C15—C16122.75 (17)N5—C23—H23B109.6
C14—C15—H15118.6C22—C23—H23B109.6
C16—C15—H15118.6H23A—C23—H23B108.1
O4—C16—O3116.98 (17)
C13—C8—C9—C101.6 (3)C11—C14—C15—C162.2 (3)
C7—C8—C9—C10178.0 (2)C17—C14—C15—C16176.22 (19)
C8—C9—C10—C110.0 (3)C12—O3—C16—O4179.19 (18)
C9—C10—C11—C121.2 (3)C12—O3—C16—C150.4 (3)
C9—C10—C11—C14178.15 (19)C14—C15—C16—O4176.9 (2)
C10—C11—C12—O3179.04 (16)C14—C15—C16—O31.8 (3)
C14—C11—C12—O31.6 (3)C15—C14—C17—S14.6 (3)
C10—C11—C12—C130.9 (3)C11—C14—C17—S1173.78 (14)
C14—C11—C12—C13178.49 (17)C18—S1—C17—C14119.89 (15)
C16—O3—C12—C112.0 (3)C19—N5—C18—S24.7 (2)
C16—O3—C12—C13178.05 (17)C23—N5—C18—S2179.53 (14)
C9—C8—C13—C121.9 (3)C19—N5—C18—S1174.31 (14)
C7—C8—C13—C12177.70 (18)C23—N5—C18—S11.5 (2)
C9—C8—C13—C6179.57 (18)C17—S1—C18—N5177.30 (13)
C7—C8—C13—C60.9 (3)C17—S1—C18—S23.67 (13)
C11—C12—C13—C80.6 (3)C18—N5—C19—C20116.9 (2)
O3—C12—C13—C8179.44 (16)C23—N5—C19—C2059.4 (2)
C11—C12—C13—C6179.25 (18)N5—C19—C20—C2156.5 (2)
O3—C12—C13—C60.8 (3)C19—C20—C21—C2254.5 (3)
C12—C11—C14—C150.5 (3)C20—C21—C22—C2354.1 (3)
C10—C11—C14—C15178.87 (18)C18—N5—C23—C22116.7 (2)
C12—C11—C14—C17178.01 (17)C19—N5—C23—C2259.4 (2)
C10—C11—C14—C172.7 (3)C21—C22—C23—N555.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···S20.972.453.134 (2)127
 

Acknowledgements

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the X-ray data collection.

References

First citationAnitha, B. R., Roopashree, K. R., Mahesh Kumar, K., Ravi, A. J. & Devarajegowda, H. C. (2016). IUCrData, 1, x160169.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878–o879.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds