organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(3-Chloro­phen­yl)-1-(3-chloro­prop­yl)piperazin-1-ium chloride redetermined at 100 K

CROSSMARK_Color_square_no_text.svg

aSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, India, and bDepartment of Chemistry, Howard University, Washington DC 20059, USA
*Correspondence e-mail: sksrivas7@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 January 2016; accepted 27 January 2016; online 6 February 2016)

The crystal structure of the title salt, C13H19Cl2N2+·Cl, has been reported previously [Homrighausen & Krause Bauer (2002[Homrighausen, C. L. & Krause Bauer, J. A. (2002). Acta Cryst. E58, o1395-o1396.]). Acta Cryst. E58, o1395–o1396] based on room-temperature data, where it was found to contain a disordered chloro­propyl group. We now present the structure at 100 K in which the chloro­propyl group is ordered. The piperazine ring adopts a chair conformation with the exocyclic N—C bonds in equatorial orientations. The dihedral angle between the piperazine ring (all atoms) and the benzene ring is 28.47 (5)°. The chloro­propyl group has an extended conformation [N—C—C—C = −177.25 (8) ° and C—C—C—Cl = 174.23 (7)°]. In the crystal, charge-assisted N—H⋯Cl hydrogen bonds link the cation and anion into ion pairs. Numerous weak C—H⋯Cl inter­actions link the ion pairs into a three-dimensional network. Short Cl⋯Cl contacts [3.2419 (4) Å] are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound C13H19Cl2N2+Cl belongs to a class of 5-HT1 (5-hy­droxy­tryptamine1) subtype serotonin receptor ligands (Okamoto et al., 1993[Okamoto, K., Fujii, S. & Tomita, K. (1993). Acta Cryst. C49, 1125-1127.]; Verdonk et al., 1992[Verdonk, M. L., Kanters, J. A. & Kroon, J. (1992). Acta Cryst. C48, 2271-2273.]; Dalpiaz et al., 1996[Dalpiaz, A., Ferretti, V., Gilli, P. & Bertolasi, V. (1996). Acta Cryst. B52, 509-518.]). The structure of the title compound (Fig. 1[link]) has been previously reported (Homrighausen & Krause Bauer, 2002[Homrighausen, C. L. & Krause Bauer, J. A. (2002). Acta Cryst. E58, o1395-o1396.]) but was collected at 296 K and contained a disordered chloro­propyl group. This redetermination at 100 K shows that the chloro­propyl group is ordered. In the crystal, charge-assisted N—H⋯Cl hydrogen bonds and C—H⋯Cl secondary inter­actions occur (Table 1[link] and Fig. 2[link]), resulting in a three-dimensional supra­molecular architecture.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯Cl3 0.929 (15) 2.139 (15) 3.0629 (9) 172.4 (13)
C8—H8B⋯Cl3i 0.99 2.90 3.7757 (10) 147
C9—H9A⋯Cl3i 0.99 2.83 3.7200 (10) 150
C11—H11A⋯Cl3ii 0.99 2.78 3.6981 (11) 155
C12—H12A⋯Cl1iii 0.99 2.87 3.5172 (11) 123
C12—H12B⋯Cl3 0.99 2.94 3.6149 (10) 126
C13—H13A⋯Cl3ii 0.99 2.90 3.7940 (11) 150
C13—H13B⋯Cl1iii 0.99 2.95 3.6095 (12) 125
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) x+1, y, z.
[Figure 1]
Figure 1
Diagram of C13H19Cl2N2+Cl, with hydrogen bonds shown as dashed lines. Atomic displacement parameters are shown at the 30% probability level.
[Figure 2]
Figure 2
Packing daigram viewed along the a axis, showing the extensive network of N—H⋯Cl hydrogen bonds and C—H⋯Cl secondary inter­actions (indicated by dashed lines).

Synthesis and crystallization

The title compound was obtained from Sigma Aldrich and crystals suitable for a single-crystal X-ray diffraction study were obtained by dissolving the title compound in ethanol and allowing the solvent to evaporate slowly at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H19Cl2N2+·Cl
Mr 309.65
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.9608 (9), 9.5199 (8), 14.0262 (11)
β (°) 95.398 (1)
V3) 1457.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.61
Crystal size (mm) 0.55 × 0.32 × 0.30
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.610, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 32810, 4808, 4407
Rint 0.025
(sin θ/λ)max−1) 0.748
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.08
No. of reflections 4808
No. of parameters 167
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.69, −0.33
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-(3-Chlorophenyl)-1-(3-chloropropyl)piperazin-1-ium chloride top
Crystal data top
C13H19Cl2N2+·ClF(000) = 648
Mr = 309.65Dx = 1.412 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.9608 (9) ÅCell parameters from 9973 reflections
b = 9.5199 (8) Åθ = 2.6–31.8°
c = 14.0262 (11) ŵ = 0.61 mm1
β = 95.398 (1)°T = 100 K
V = 1457.1 (2) Å3Block, colourless
Z = 40.55 × 0.32 × 0.30 mm
Data collection top
Bruker APEXII
diffractometer
4407 reflections with I > 2σ(I)
ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 32.1°, θmin = 2.6°
Tmin = 0.610, Tmax = 0.746h = 1616
32810 measured reflectionsk = 1414
4808 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.537P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4808 reflectionsΔρmax = 0.69 e Å3
167 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.19355 (2)0.41129 (3)0.74761 (2)0.02408 (7)
Cl20.89868 (2)0.06195 (3)0.56586 (2)0.02604 (7)
Cl30.45091 (2)0.23674 (3)0.38594 (2)0.01897 (6)
N10.23210 (7)0.38855 (8)0.62774 (6)0.01511 (15)
N20.44985 (7)0.22760 (8)0.60415 (6)0.01394 (14)
H2N0.4481 (13)0.2217 (15)0.5379 (11)0.016 (3)*
C10.12197 (9)0.46460 (10)0.62867 (7)0.01423 (16)
C20.02649 (9)0.40667 (10)0.67638 (7)0.01616 (17)
H2A0.03460.31520.70330.019*
C30.07914 (9)0.48363 (10)0.68387 (7)0.01700 (17)
C40.09634 (10)0.61775 (11)0.64557 (8)0.01990 (19)
H4A0.17000.66850.65090.024*
C50.00117 (10)0.67422 (11)0.59915 (8)0.02107 (19)
H5A0.00970.76620.57310.025*
C60.10650 (10)0.59958 (10)0.58970 (7)0.01782 (18)
H6A0.16950.64040.55670.021*
C70.33718 (9)0.45553 (10)0.58992 (7)0.01646 (17)
H7A0.34090.55580.60880.020*
H7B0.32850.45040.51910.020*
C80.45436 (9)0.38120 (10)0.62920 (7)0.01595 (17)
H8A0.52540.42520.60230.019*
H8B0.46540.39200.69970.019*
C90.33685 (9)0.16198 (10)0.63727 (7)0.01506 (16)
H9A0.34240.16270.70810.018*
H9B0.33090.06300.61560.018*
C100.22316 (9)0.24111 (10)0.59790 (7)0.01574 (17)
H10A0.21450.23540.52710.019*
H10B0.14980.19780.62180.019*
C110.56026 (9)0.14857 (11)0.64726 (7)0.01708 (17)
H11A0.53820.04840.65370.020*
H11B0.58400.18560.71230.020*
C120.66940 (9)0.15917 (11)0.58844 (7)0.01750 (17)
H12A0.69650.25810.58500.021*
H12B0.64680.12500.52250.021*
C130.77155 (9)0.06936 (11)0.63720 (8)0.01945 (18)
H13A0.74060.02680.64690.023*
H13B0.79870.10950.70080.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01963 (12)0.02193 (12)0.03227 (14)0.00122 (8)0.01077 (10)0.00347 (9)
Cl20.01862 (12)0.02468 (13)0.03645 (15)0.00401 (9)0.01116 (10)0.00181 (10)
Cl30.02473 (12)0.02111 (12)0.01101 (10)0.00293 (8)0.00141 (8)0.00052 (7)
N10.0135 (3)0.0116 (3)0.0205 (4)0.0004 (3)0.0030 (3)0.0001 (3)
N20.0142 (3)0.0143 (3)0.0136 (3)0.0015 (3)0.0030 (3)0.0010 (3)
C10.0152 (4)0.0133 (4)0.0140 (4)0.0014 (3)0.0002 (3)0.0016 (3)
C20.0162 (4)0.0148 (4)0.0176 (4)0.0015 (3)0.0023 (3)0.0006 (3)
C30.0160 (4)0.0173 (4)0.0178 (4)0.0009 (3)0.0023 (3)0.0037 (3)
C40.0196 (4)0.0188 (4)0.0209 (4)0.0062 (3)0.0002 (3)0.0022 (3)
C50.0239 (5)0.0166 (4)0.0225 (5)0.0051 (4)0.0008 (4)0.0021 (3)
C60.0200 (4)0.0154 (4)0.0179 (4)0.0014 (3)0.0012 (3)0.0022 (3)
C70.0152 (4)0.0136 (4)0.0208 (4)0.0006 (3)0.0026 (3)0.0019 (3)
C80.0149 (4)0.0141 (4)0.0189 (4)0.0006 (3)0.0018 (3)0.0005 (3)
C90.0152 (4)0.0134 (4)0.0171 (4)0.0001 (3)0.0044 (3)0.0010 (3)
C100.0150 (4)0.0127 (4)0.0196 (4)0.0002 (3)0.0018 (3)0.0013 (3)
C110.0158 (4)0.0193 (4)0.0165 (4)0.0044 (3)0.0032 (3)0.0036 (3)
C120.0158 (4)0.0215 (4)0.0156 (4)0.0032 (3)0.0035 (3)0.0020 (3)
C130.0165 (4)0.0207 (4)0.0216 (5)0.0042 (3)0.0045 (3)0.0028 (3)
Geometric parameters (Å, º) top
Cl1—C31.7485 (11)C7—C81.5234 (13)
Cl2—C131.7918 (11)C7—H7A0.9900
N1—C11.4087 (12)C7—H7B0.9900
N1—C71.4592 (12)C8—H8A0.9900
N1—C101.4654 (12)C8—H8B0.9900
N2—C91.4995 (12)C9—C101.5151 (13)
N2—C111.5029 (12)C9—H9A0.9900
N2—C81.5037 (12)C9—H9B0.9900
N2—H2N0.929 (15)C10—H10A0.9900
C1—C61.4005 (13)C10—H10B0.9900
C1—C21.4067 (14)C11—C121.5191 (14)
C2—C31.3824 (13)C11—H11A0.9900
C2—H2A0.9500C11—H11B0.9900
C3—C41.3912 (14)C12—C131.5193 (14)
C4—C51.3888 (16)C12—H12A0.9900
C4—H4A0.9500C12—H12B0.9900
C5—C61.3945 (14)C13—H13A0.9900
C5—H5A0.9500C13—H13B0.9900
C6—H6A0.9500
C1—N1—C7119.02 (8)C7—C8—H8A109.4
C1—N1—C10117.42 (8)N2—C8—H8B109.4
C7—N1—C10110.40 (8)C7—C8—H8B109.4
C9—N2—C11108.92 (7)H8A—C8—H8B108.0
C9—N2—C8110.04 (7)N2—C9—C10110.79 (7)
C11—N2—C8112.66 (8)N2—C9—H9A109.5
C9—N2—H2N110.1 (9)C10—C9—H9A109.5
C11—N2—H2N108.2 (9)N2—C9—H9B109.5
C8—N2—H2N106.8 (9)C10—C9—H9B109.5
C6—C1—C2118.50 (9)H9A—C9—H9B108.1
C6—C1—N1122.71 (9)N1—C10—C9109.97 (8)
C2—C1—N1118.65 (8)N1—C10—H10A109.7
C3—C2—C1119.62 (9)C9—C10—H10A109.7
C3—C2—H2A120.2N1—C10—H10B109.7
C1—C2—H2A120.2C9—C10—H10B109.7
C2—C3—C4122.76 (9)H10A—C10—H10B108.2
C2—C3—Cl1118.44 (8)N2—C11—C12113.18 (8)
C4—C3—Cl1118.77 (8)N2—C11—H11A108.9
C5—C4—C3117.12 (9)C12—C11—H11A108.9
C5—C4—H4A121.4N2—C11—H11B108.9
C3—C4—H4A121.4C12—C11—H11B108.9
C4—C5—C6121.80 (10)H11A—C11—H11B107.8
C4—C5—H5A119.1C11—C12—C13107.62 (8)
C6—C5—H5A119.1C11—C12—H12A110.2
C5—C6—C1120.20 (10)C13—C12—H12A110.2
C5—C6—H6A119.9C11—C12—H12B110.2
C1—C6—H6A119.9C13—C12—H12B110.2
N1—C7—C8109.46 (8)H12A—C12—H12B108.5
N1—C7—H7A109.8C12—C13—Cl2110.47 (7)
C8—C7—H7A109.8C12—C13—H13A109.6
N1—C7—H7B109.8Cl2—C13—H13A109.6
C8—C7—H7B109.8C12—C13—H13B109.6
H7A—C7—H7B108.2Cl2—C13—H13B109.6
N2—C8—C7111.04 (8)H13A—C13—H13B108.1
N2—C8—H8A109.4
C7—N1—C1—C63.76 (14)C1—N1—C7—C8158.63 (8)
C10—N1—C1—C6133.72 (10)C10—N1—C7—C861.16 (10)
C7—N1—C1—C2171.80 (9)C9—N2—C8—C754.39 (10)
C10—N1—C1—C250.72 (12)C11—N2—C8—C7176.15 (8)
C6—C1—C2—C30.17 (14)N1—C7—C8—N257.77 (10)
N1—C1—C2—C3175.57 (9)C11—N2—C9—C10178.29 (8)
C1—C2—C3—C40.26 (15)C8—N2—C9—C1054.33 (10)
C1—C2—C3—Cl1177.57 (7)C1—N1—C10—C9157.53 (8)
C2—C3—C4—C50.65 (15)C7—N1—C10—C961.56 (10)
Cl1—C3—C4—C5177.17 (8)N2—C9—C10—N157.91 (10)
C3—C4—C5—C60.98 (16)C9—N2—C11—C12154.36 (8)
C4—C5—C6—C10.93 (16)C8—N2—C11—C1283.25 (10)
C2—C1—C6—C50.50 (14)N2—C11—C12—C13177.25 (8)
N1—C1—C6—C5175.06 (9)C11—C12—C13—Cl2174.23 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl30.929 (15)2.139 (15)3.0629 (9)172.4 (13)
C8—H8B···Cl3i0.992.903.7757 (10)147
C9—H9A···Cl3i0.992.833.7200 (10)150
C11—H11A···Cl3ii0.992.783.6981 (11)155
C12—H12A···Cl1iii0.992.873.5172 (11)123
C12—H12B···Cl30.992.943.6149 (10)126
C13—H13A···Cl3ii0.992.903.7940 (11)150
C13—H13B···Cl1iii0.992.953.6095 (12)125
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y, z.
 

Acknowledgements

RJB wishes to acknowledge NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research. The authors wish to acknowledge the assistance of Dr Matthias Zeller in the collection of the diffraction data and NSF Grant CHE 0087210, Ohio Board of Regents Grant CAP-491, and Youngstown State University for funds to purchase the X-ray diffractometer.

References

First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDalpiaz, A., Ferretti, V., Gilli, P. & Bertolasi, V. (1996). Acta Cryst. B52, 509–518.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHomrighausen, C. L. & Krause Bauer, J. A. (2002). Acta Cryst. E58, o1395–o1396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, K., Fujii, S. & Tomita, K. (1993). Acta Cryst. C49, 1125–1127.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVerdonk, M. L., Kanters, J. A. & Kroon, J. (1992). Acta Cryst. C48, 2271–2273.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds