inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

The solid solution Ba5.78Pb1.22F12Cl2

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: Matthias.Weil@tuwien.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 October 2015; accepted 17 December 2015; online 12 January 2016)

The title compound, hexa­barium lead(II) dodeca­fluoride dichloride, is a solid solution in the system Pb7F12Cl2–Ba7F12Cl2 and crystallizes isotypically with the ordered modification of the parent compounds in the space group P-6. The coordination polyhedra of the three different metal sites are distorted tricapped trigonal prisms with F7Cl2 coordination sets for two of these sites (Wyckoff positions 3k and 3j, each with site symmetry m..), and the remaining site being exclusively coordinated by fluoride ions (1a, -6..). By sharing faces, a three-dimensional structure is accomplished. The three metal sites have remarkably different occupancies by the two types of metal ions. Whereas the site on the 3k position shows only a minor incorporation of Pb2+ [occupancy ratio Ba:Pb = 0.93 (4):0.07 (4)], the 3j site shows the highest amount of incorporated Pb2+ [Ba:Pb = 0.71 (5):29 (5)]. The occupancy ratio with respect to the 1a site is Ba:Pb = 0.86 (5):0.14 (5).

3D view (loading...)
[Scheme 3D1]

Structure description

The current study provides indications as to which of the three metal sites of the Ba7F12Cl2 structure is preferentially substituted in solid solutions of the type Ba7-xMxF12Cl2 (M = divalent metal with ionic radius comparable to Ba2+) and hence could help to better understand spectroscopic data of europium-doped Ba7F12Cl2 phosphors (Hagemann et al., 2015[Hagemann, H., Bill, H., Rey, J. M., Kubel, F., Calame, L. & Lovy, D. (2015). J. Phys. Chem. C, 119, 141-147.]). The isotypic ordered parent phases Pb7F12Cl2 and Ba7F12Cl2 were first reported by Aurivillius (1976[Aurivillius, B. (1976). Chem. Scr. 10, 206-209.]) and Es-Sakhi et al. (1998[Es-Sakhi, B., Gravereau, P. & Fouassier, C. (1998). Powder Diffr. 13, 152-156.]), respectively. For a review of crystal–chemical peculiarities in the system BaF2/BaCl2, including the ordered (space group P[\overline{6}]) and disordered modifications (space group P63) of Ba7F12Cl2, see: Hagemann et al. (2012[Hagemann, H., D'Anna, V., Lawson Daku, M. & Kubel, F. (2012). Cryst. Growth Des. 12, 1124-1131.]). The crystal structure of the title compound is shown in Fig. 1[link]. Selected bond lengths are given in Table 1[link].

Table 1
Selected bond lengths (Å)

(Ba,Pb)1—F3 2.618 (8) (Ba,Pb)2—F3ii 2.560 (13)
(Ba,Pb)1—F2 2.659 (16) (Ba,Pb)2—F4 2.746 (14)
(Ba,Pb)1—F4 2.683 (8) (Ba,Pb)2—F2 3.001 (11)
(Ba,Pb)1—F1 2.760 (14) (Ba,Pb)2—Cl2 3.2922 (9)
(Ba,Pb)1—Cl1 3.3375 (10) (Ba,Pb)3—F3 2.549 (15)
(Ba,Pb)2—F4i 2.531 (15) (Ba,Pb)3—F2 2.870 (11)
(Ba,Pb)2—F1ii 2.559 (7)    
Symmetry codes: (i) -y+1, x-y, z; (ii) -x+y, -x, z.
[Figure 1]
Figure 1
The crystal structure of the title compound in a projection along [00[\overline{1}]]. Displacement ellipsoids are drawn at the 97% probability level.

Synthesis and crystallization

BaF2, BaCl2, PbF2 and PbCl2 were mixed in stoichiometric amounts according to a nominal composition of Ba6PbF12Cl2. The mixture was placed in a teflon container (capacity 10 ml) which was two-thirds filled with water. The container was closed with a teflon lid and placed in a steel autoclave at 493 K for one week. Colourless crystals with a needle-like form were obtained from the mother liquor by filtration. Unit-cell determination of several selected crystals with subsequent least-squares refinements of the lattice parameters revealed nearly identical unit cells, indicating that the composition of the grown crystals was consistent and very similar to that of the title compound.

Refinement

The three M2+ sites are occupied by both Ba and Pb. For the final model, the three metal sites were constrained to be fully occupied. Each of the sites was refined with common coordinates and displacement parameters for the two types of metals. The highest and lowest remaining electron density peaks are found 2.08 and 0.16 Å, respectively, from the M1 site. The crystal measured was twinned by inversion with an approximate ratio of the twin domains of 1:1 [Flack parameter 0.55 (5)]. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula Ba5.78Pb1.22F12Cl2
Mr 1345.45
Crystal system, space group Hexagonal, P[\overline{6}]
Temperature (K) 293
a, c (Å) 10.5878 (15), 4.1528 (8)
V3) 403.17 (16)
Z 1
Radiation type Mo Kα
μ (mm−1) 27.00
Crystal size (mm) 0.50 × 0.02 × 0.02
 
Data collection
Diffractometer Philips PW100 diffractometer
Absorption correction Numerical (HABITUS; Herrendorf, 1997[Herrendorf, W. (1997). HABITUS. University of Giessen, Germany.])
Tmin, Tmax 0.204, 0.888
No. of measured, independent and observed [I > 2σ(I)] reflections 2616, 877, 766
Rint 0.145
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.127, 1.05
No. of reflections 877
No. of parameters 48
Δρmax, Δρmin (e Å−3) 4.03, −4.13
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 466 Friedel pairs
Absolute structure parameter 0.55 (5)
Computer programs: PW1100 Operation Software (Philips, 1980[Philips (1980). PW1100 Operation Software. Philips, Eindhoven, The Netherlands.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Synthesis and crystallization top

BaF2, BaCl2, PbF2 and PbCl2 were mixed in stoichiometric amounts according to a nominal composition of Ba6PbF12Cl2. The mixture was placed in a teflon container (capacity 10 ml) which was two-thirds filled with water. The container was closed with a teflon lid and placed in a steel autoclave at 493 K for one week. Colourless crystals with a needle-like form were obtained from the mother liquor by filtration. Unit cell determination of several selected crystals with subsequent least-squares refinements of the lattice parameters revealed nearly identical unit cells, indicating that the composition of the grown crystals was consistent and very similar to that of the title compound.

Refinement top

The three M2+ sites are occupied by both Ba and Pb. For the final model, the three metal sites were constrained to be fully occupied. Each of the sites was refined with common coordinates and displacement parameters for the two types of metals. The highest and lowest remaining electron density peaks are found 2.08 Å and 0.16 Å, respectively, from the M1 site. The crystal measured was twinned by inversion with an approximate ratio of the twin domains of 1:1 [Flack parameter 0.55 (5)].

Related literature top

The current study provides indications as to which of the three metal sites of the Ba7F12Cl2 structure is preferentially substituted in solid solutions of the type Ba7-xMxF12Cl2 (M = divalent metal with ionic radius comparable to Ba2+) and hence could help to better understand spectroscopic data of europium-doped Ba7F12Cl2 phosphors (Hagemann et al., 2015). The isotypic ordered parent phases Pb7F12Cl2 and Ba7F12Cl2 were first reported by Aurivillius (1976) and Es-Sakhi et al. (1998), respectively. For a review of crystal-chemical peculiarities in the system BaF2/BaCl2, including the ordered (space group P6) and disordered modifications (space group P63) of Ba7F12Cl2, see: Hagemann et al. (2012).

Experimental top

BaF2, BaCl2, PbF2 and PbCl2 were mixed in stoichiometric amounts according to a nominal composition of Ba6PbF12Cl2. The mixture was placed in a teflon container (capacity 10 ml) which was two-thirds filled with water. The container was closed with a teflon lid and placed in a steel autoclave at 493 K for one week. Colourless crystals with a needle-like form were obtained from the mother liquor by filtration. Unit-cell determination of several selected crystals with subsequent least-squares refinements of the lattice parameters revealed nearly identical unit cells, indicating that the composition of the grown crystals was consistent and very similar to that of the title compound.

Refinement top

The three M2+ sites are occupied by both Ba and Pb. For the final model, the three metal sites were constrained to be fully occupied. Each of the sites was refined with common coordinates and displacement parameters for the two types of metals. The highest and lowest remaining electron density peaks are found 2.08 and 0.16 Å, respectively, from the M1 site. The crystal measured was twinned by inversion with an approximate ratio of the twin domains of 1:1 [Flack parameter 0.55 (5)]. Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The current study provides indications as to which of the three metal sites of the Ba7F12Cl2 structure is preferentially substituted in solid solutions of the type Ba7-xMxF12Cl2 (M = divalent metal with ionic radius comparable to Ba2+) and hence could help to better understand spectroscopic data of europium-doped Ba7F12Cl2 phosphors (Hagemann et al., 2015). The isotypic ordered parent phases Pb7F12Cl2 and Ba7F12Cl2 were first reported by Aurivillius (1976) and Es-Sakhi et al. (1998), respectively. For a review of crystal–chemical peculiarities in the system BaF2/BaCl2, including the ordered (space group P6) and disordered modifications (space group P63) of Ba7F12Cl2, see: Hagemann et al. (2012). Selected bond lengths are given in Table 1.

Computing details top

Data collection: PW1100 Operation Software (Philips, 1980); cell refinement: PW1100 Operation Software (Philips, 1980); data reduction: PW1100 Operation Software (Philips, 1980); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The crystal structure of the title compound in a projection along [001]. Displacement ellipsoids are drawn at the 97% probability level.
Hexabarium lead(II) dodecafluoride dichloride top
Crystal data top
Ba5.78Pb1.22F12Cl2Dx = 5.542 Mg m3
Mr = 1345.45Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6Cell parameters from 25 reflections
Hall symbol: P -6θ = 5.4–10.9°
a = 10.5878 (15) ŵ = 27.00 mm1
c = 4.1528 (8) ÅT = 293 K
V = 403.17 (16) Å3Needle, colourless
Z = 10.50 × 0.02 × 0.02 mm
F(000) = 566
Data collection top
Philips PW100
diffractometer
766 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.145
Graphite monochromatorθmax = 30.0°, θmin = 3.9°
θ/2θ scansh = 1414
Absorption correction: numerical
(HABITUS; Herrendorf, 1997)
k = 1414
Tmin = 0.204, Tmax = 0.888l = 05
2616 measured reflections3 standard reflections every 120 min
877 independent reflections intensity decay: 0.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0538P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.057(Δ/σ)max < 0.001
wR(F2) = 0.127Δρmax = 4.03 e Å3
S = 1.05Δρmin = 4.13 e Å3
877 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
48 parametersExtinction coefficient: 0.0019 (6)
0 restraintsAbsolute structure: Flack (1983), 466 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.55 (5)
Crystal data top
Ba5.78Pb1.22F12Cl2Z = 1
Mr = 1345.45Mo Kα radiation
Hexagonal, P6µ = 27.00 mm1
a = 10.5878 (15) ÅT = 293 K
c = 4.1528 (8) Å0.50 × 0.02 × 0.02 mm
V = 403.17 (16) Å3
Data collection top
Philips PW100
diffractometer
766 reflections with I > 2σ(I)
Absorption correction: numerical
(HABITUS; Herrendorf, 1997)
Rint = 0.145
Tmin = 0.204, Tmax = 0.8883 standard reflections every 120 min
2616 measured reflections intensity decay: 0.3%
877 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.127Δρmax = 4.03 e Å3
S = 1.05Δρmin = 4.13 e Å3
877 reflectionsAbsolute structure: Flack (1983), 466 Friedel pairs
48 parametersAbsolute structure parameter: 0.55 (5)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.28701 (11)0.40001 (12)0.50000.0144 (4)0.93 (4)
Pb10.28701 (11)0.40001 (12)0.50000.0144 (4)0.07 (4)
Ba20.41287 (11)0.10688 (12)0.00000.0192 (4)0.71 (5)
Pb20.41287 (11)0.10688 (12)0.00000.0192 (4)0.29 (5)
Ba30.00000.00000.00000.0269 (8)0.86 (5)
Pb30.00000.00000.00000.0269 (8)0.14 (5)
Cl10.33330.66670.00000.019 (2)
Cl20.66670.33330.50000.022 (2)
F10.0449 (14)0.4338 (13)0.50000.024 (4)
F20.2156 (17)0.1209 (18)0.50000.038 (5)
F30.1191 (14)0.2771 (16)0.00000.024 (3)
F40.4344 (16)0.3763 (16)0.00000.020 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0111 (6)0.0125 (6)0.0194 (7)0.0058 (5)0.0000.000
Pb10.0111 (6)0.0125 (6)0.0194 (7)0.0058 (5)0.0000.000
Ba20.0131 (6)0.0148 (6)0.0254 (7)0.0037 (4)0.0000.000
Pb20.0131 (6)0.0148 (6)0.0254 (7)0.0037 (4)0.0000.000
Ba30.0137 (8)0.0137 (8)0.0533 (16)0.0068 (4)0.0000.000
Pb30.0137 (8)0.0137 (8)0.0533 (16)0.0068 (4)0.0000.000
Cl10.019 (3)0.019 (3)0.020 (5)0.0094 (14)0.0000.000
Cl20.016 (2)0.016 (2)0.033 (7)0.0078 (12)0.0000.000
F10.020 (6)0.010 (6)0.047 (10)0.010 (5)0.0000.000
F20.036 (9)0.016 (7)0.055 (12)0.009 (7)0.0000.000
F30.012 (6)0.026 (7)0.032 (8)0.009 (5)0.0000.000
F40.022 (7)0.028 (7)0.019 (8)0.018 (6)0.0000.000
Geometric parameters (Å, º) top
Ba1—F32.618 (8)Ba3—F2iii2.870 (11)
Ba1—F3i2.618 (8)Ba3—F2vi2.870 (11)
Ba1—F22.659 (16)Ba3—Pb2vi3.9297 (12)
Ba1—F1ii2.670 (12)Ba3—Ba2vi3.9297 (12)
Ba1—F4i2.683 (8)Cl1—Ba1ix3.3374 (10)
Ba1—F42.683 (8)Cl1—Ba1x3.3374 (10)
Ba1—F12.760 (14)Cl1—Ba1ii3.3375 (10)
Ba1—Cl1i3.3375 (10)Cl1—Ba1xi3.3375 (10)
Ba1—Cl13.3375 (10)Cl1—Ba1iii3.3375 (10)
Ba1—Ba1i4.1528 (8)Cl2—Ba2xii3.2921 (9)
Ba1—Ba1iii4.1528 (8)Cl2—Ba2iv3.2921 (9)
Ba1—Pb1i4.1528 (8)Cl2—Ba2i3.2922 (9)
Ba2—F4iv2.531 (15)Cl2—Ba2xiii3.2922 (9)
Ba2—F1v2.559 (7)Cl2—Ba2xiv3.2922 (9)
Ba2—F1vi2.559 (7)F1—Pb2vii2.559 (7)
Ba2—F3vi2.560 (13)F1—Ba2vii2.559 (7)
Ba2—F42.746 (14)F1—Pb2xv2.559 (7)
Ba2—F2iii3.001 (11)F1—Ba2xv2.559 (7)
Ba2—F23.001 (11)F1—Pb1x2.670 (12)
Ba2—Cl23.2922 (9)F1—Ba1x2.670 (12)
Ba2—Cl2iii3.2922 (9)F2—Ba3i2.870 (11)
Ba2—Ba33.9297 (12)F2—Ba2i3.001 (11)
Ba2—Pb2i4.1528 (8)F3—Pb2vii2.560 (13)
Ba3—F3vii2.549 (15)F3—Ba2vii2.560 (13)
Ba3—F32.549 (15)F3—Ba1iii2.618 (8)
Ba3—F3vi2.549 (15)F3—Pb1iii2.618 (8)
Ba3—F22.870 (11)F4—Pb2xiv2.531 (15)
Ba3—F2v2.870 (11)F4—Ba2xiv2.531 (15)
Ba3—F2viii2.870 (11)F4—Pb1iii2.683 (8)
Ba3—F2vii2.870 (11)F4—Ba1iii2.683 (8)
F3—Ba1—F3i105.0 (5)F3vii—Ba3—F2vi69.4 (4)
F3—Ba1—F272.7 (4)F3—Ba3—F2vi133.7 (2)
F3i—Ba1—F272.7 (4)F3vi—Ba3—F2vi70.2 (4)
F3—Ba1—F1ii127.5 (2)F2—Ba3—F2vi73.4 (4)
F3i—Ba1—F1ii127.5 (2)F2v—Ba3—F2vi92.7 (5)
F2—Ba1—F1ii120.7 (4)F2viii—Ba3—F2vi139.61 (17)
F3—Ba1—F4i148.1 (4)F2vii—Ba3—F2vi73.4 (4)
F3i—Ba1—F4i67.8 (4)F2iii—Ba3—F2vi139.61 (17)
F2—Ba1—F4i75.6 (3)Ba1ix—Cl1—Ba1x76.95 (3)
F1ii—Ba1—F4i68.0 (3)Ba1ix—Cl1—Ba1ii133.912 (9)
F3—Ba1—F467.8 (4)Ba1x—Cl1—Ba1ii85.38 (2)
F3i—Ba1—F4148.1 (4)Ba1ix—Cl1—Ba1xi85.38 (2)
F2—Ba1—F475.6 (3)Ba1x—Cl1—Ba1xi133.912 (9)
F1ii—Ba1—F468.0 (3)Ba1ii—Cl1—Ba1xi76.95 (3)
F4i—Ba1—F4101.4 (4)Ba1ix—Cl1—Ba1iii85.38 (2)
F3—Ba1—F167.7 (3)Ba1x—Cl1—Ba1iii133.911 (9)
F3i—Ba1—F167.7 (3)Ba1ii—Cl1—Ba1iii133.909 (9)
F2—Ba1—F1112.2 (4)Ba1xi—Cl1—Ba1iii85.38 (2)
F1ii—Ba1—F1127.1 (4)Ba1ix—Cl1—Ba1133.911 (10)
F4i—Ba1—F1129.3 (2)Ba1x—Cl1—Ba185.38 (2)
F4—Ba1—F1129.3 (2)Ba1ii—Cl1—Ba185.38 (2)
F3—Ba1—Cl1i133.6 (3)Ba1xi—Cl1—Ba1133.909 (9)
F3i—Ba1—Cl1i72.7 (3)Ba1iii—Cl1—Ba176.95 (3)
F2—Ba1—Cl1i141.26 (4)Ba2xii—Cl2—Ba2iv78.21 (3)
F1ii—Ba1—Cl1i70.1 (2)Ba2xii—Cl2—Ba2134.340 (9)
F4i—Ba1—Cl1i75.6 (3)Ba2iv—Cl2—Ba284.45 (2)
F4—Ba1—Cl1i135.6 (3)Ba2xii—Cl2—Ba2i84.45 (2)
F1—Ba1—Cl1i69.12 (19)Ba2iv—Cl2—Ba2i134.340 (9)
F3—Ba1—Cl172.7 (3)Ba2—Cl2—Ba2i78.21 (3)
F3i—Ba1—Cl1133.6 (3)Ba2xii—Cl2—Ba2xiii84.45 (2)
F2—Ba1—Cl1141.26 (4)Ba2iv—Cl2—Ba2xiii134.339 (9)
F1ii—Ba1—Cl170.1 (2)Ba2—Cl2—Ba2xiii134.337 (9)
F4i—Ba1—Cl1135.6 (3)Ba2i—Cl2—Ba2xiii84.45 (2)
F4—Ba1—Cl175.6 (3)Ba2xii—Cl2—Ba2xiv134.339 (9)
F1—Ba1—Cl169.12 (19)Ba2iv—Cl2—Ba2xiv84.45 (2)
Cl1i—Ba1—Cl176.95 (3)Ba2—Cl2—Ba2xiv84.450 (19)
F4iv—Ba2—F1v72.1 (3)Ba2i—Cl2—Ba2xiv134.337 (9)
F4iv—Ba2—F1vi72.1 (3)Ba2xiii—Cl2—Ba2xiv78.20 (3)
F1v—Ba2—F1vi108.5 (5)Pb2vii—F1—Ba2vii0.00 (10)
F4iv—Ba2—F3vi115.8 (4)Pb2vii—F1—Pb2xv108.5 (5)
F1v—Ba2—F3vi71.7 (3)Ba2vii—F1—Pb2xv108.5 (5)
F1vi—Ba2—F3vi71.7 (3)Pb2vii—F1—Ba2xv108.5 (5)
F4iv—Ba2—F4126.1 (5)Ba2vii—F1—Ba2xv108.5 (5)
F1v—Ba2—F4125.7 (2)Pb2xv—F1—Ba2xv0.00 (10)
F1vi—Ba2—F4125.7 (2)Pb2vii—F1—Pb1x109.6 (3)
F3vi—Ba2—F4118.2 (4)Ba2vii—F1—Pb1x109.6 (3)
F4iv—Ba2—F2iii135.8 (2)Pb2xv—F1—Pb1x109.6 (3)
F1v—Ba2—F2iii67.5 (3)Ba2xv—F1—Pb1x109.6 (3)
F1vi—Ba2—F2iii137.7 (4)Pb2vii—F1—Ba1x109.6 (3)
F3vi—Ba2—F2iii67.1 (4)Ba2vii—F1—Ba1x109.6 (3)
F4—Ba2—F2iii69.3 (4)Pb2xv—F1—Ba1x109.6 (3)
F4iv—Ba2—F2135.8 (2)Ba2xv—F1—Ba1x109.6 (3)
F1v—Ba2—F2137.7 (4)Pb1x—F1—Ba1x0.00 (5)
F1vi—Ba2—F267.5 (3)Pb2vii—F1—Ba1108.1 (3)
F3vi—Ba2—F267.1 (4)Ba2vii—F1—Ba1108.1 (3)
F4—Ba2—F269.3 (4)Pb2xv—F1—Ba1108.1 (3)
F2iii—Ba2—F287.6 (4)Ba2xv—F1—Ba1108.1 (3)
F4iv—Ba2—Cl270.5 (2)Pb1x—F1—Ba1112.9 (4)
F1v—Ba2—Cl2139.3 (3)Ba1x—F1—Ba1112.9 (4)
F1vi—Ba2—Cl274.6 (3)Ba1—F2—Ba3102.5 (4)
F3vi—Ba2—Cl2140.896 (13)Ba1—F2—Ba3i102.5 (4)
F4—Ba2—Cl268.3 (2)Ba3—F2—Ba3i92.7 (5)
F2iii—Ba2—Cl2137.3 (3)Ba1—F2—Ba2i103.7 (4)
F2—Ba2—Cl282.1 (3)Ba3—F2—Ba2i153.7 (6)
F4iv—Ba2—Cl2iii70.5 (2)Ba3i—F2—Ba2i83.99 (13)
F1v—Ba2—Cl2iii74.6 (3)Ba1—F2—Ba2103.7 (4)
F1vi—Ba2—Cl2iii139.3 (3)Ba3—F2—Ba283.99 (13)
F3vi—Ba2—Cl2iii140.896 (13)Ba3i—F2—Ba2153.7 (6)
F4—Ba2—Cl2iii68.3 (2)Ba2i—F2—Ba287.6 (4)
F2iii—Ba2—Cl2iii82.1 (3)Ba3—F3—Pb2vii100.6 (5)
F2—Ba2—Cl2iii137.3 (3)Ba3—F3—Ba2vii100.6 (5)
Cl2—Ba2—Cl2iii78.21 (3)Pb2vii—F3—Ba2vii0.000 (6)
F3vii—Ba3—F3120.0Ba3—F3—Ba1113.2 (4)
F3vii—Ba3—F3vi120.0Pb2vii—F3—Ba1112.6 (4)
F3—Ba3—F3vi120.0Ba2vii—F3—Ba1112.6 (4)
F3vii—Ba3—F2133.7 (2)Ba3—F3—Ba1iii113.2 (4)
F3—Ba3—F270.2 (4)Pb2vii—F3—Ba1iii112.6 (4)
F3vi—Ba3—F269.4 (4)Ba2vii—F3—Ba1iii112.6 (4)
F3vii—Ba3—F2v69.4 (4)Ba1—F3—Ba1iii105.0 (5)
F3—Ba3—F2v133.7 (2)Ba3—F3—Pb1iii113.2 (4)
F3vi—Ba3—F2v70.2 (4)Pb2vii—F3—Pb1iii112.6 (4)
F2—Ba3—F2v139.61 (17)Ba2vii—F3—Pb1iii112.6 (4)
F3vii—Ba3—F2viii70.2 (4)Ba1—F3—Pb1iii105.0 (5)
F3—Ba3—F2viii69.4 (4)Ba1iii—F3—Pb1iii0.00 (6)
F3vi—Ba3—F2viii133.7 (2)Pb2xiv—F4—Ba2xiv0.00 (5)
F2—Ba3—F2viii139.61 (17)Pb2xiv—F4—Pb1iii110.1 (4)
F2v—Ba3—F2viii73.4 (4)Ba2xiv—F4—Pb1iii110.1 (4)
F3vii—Ba3—F2vii70.2 (4)Pb2xiv—F4—Ba1iii110.1 (4)
F3—Ba3—F2vii69.4 (4)Ba2xiv—F4—Ba1iii110.1 (4)
F3vi—Ba3—F2vii133.7 (2)Pb1iii—F4—Ba1iii0.00 (5)
F2—Ba3—F2vii73.4 (4)Pb2xiv—F4—Ba1110.1 (4)
F2v—Ba3—F2vii139.61 (17)Ba2xiv—F4—Ba1110.1 (4)
F2viii—Ba3—F2vii92.7 (5)Pb1iii—F4—Ba1101.4 (4)
F3vii—Ba3—F2iii133.7 (2)Ba1iii—F4—Ba1101.4 (4)
F3—Ba3—F2iii70.2 (4)Pb2xiv—F4—Ba2113.9 (5)
F3vi—Ba3—F2iii69.4 (4)Ba2xiv—F4—Ba2113.9 (5)
F2—Ba3—F2iii92.7 (5)Pb1iii—F4—Ba2110.3 (4)
F2v—Ba3—F2iii73.4 (4)Ba1iii—F4—Ba2110.3 (4)
F2viii—Ba3—F2iii73.4 (4)Ba1—F4—Ba2110.3 (4)
F2vii—Ba3—F2iii139.61 (17)
Symmetry codes: (i) x, y, z+1; (ii) y+1, xy+1, z; (iii) x, y, z1; (iv) y+1, xy, z; (v) x+y, x, z1; (vi) x+y, x, z; (vii) y, xy, z; (viii) y, xy, z1; (ix) x+y, x+1, z1; (x) x+y, x+1, z; (xi) y+1, xy+1, z1; (xii) y+1, xy, z+1; (xiii) x+y+1, x+1, z+1; (xiv) x+y+1, x+1, z; (xv) y, xy, z+1.
Selected bond lengths (Å) top
Ba1—F32.618 (8)Ba2—F3ii2.560 (13)
Ba1—F22.659 (16)Ba2—F42.746 (14)
Ba1—F42.683 (8)Ba2—F23.001 (11)
Ba1—F12.760 (14)Ba2—Cl23.2922 (9)
Ba1—Cl13.3375 (10)Ba3—F32.549 (15)
Ba2—F4i2.531 (15)Ba3—F22.870 (11)
Ba2—F1ii2.559 (7)
Symmetry codes: (i) y+1, xy, z; (ii) x+y, x, z.

Experimental details

Crystal data
Chemical formulaBa5.78Pb1.22F12Cl2
Mr1345.45
Crystal system, space groupHexagonal, P6
Temperature (K)293
a, c (Å)10.5878 (15), 4.1528 (8)
V3)403.17 (16)
Z1
Radiation typeMo Kα
µ (mm1)27.00
Crystal size (mm)0.50 × 0.02 × 0.02
Data collection
DiffractometerPhilips PW100
Absorption correctionNumerical
(HABITUS; Herrendorf, 1997)
Tmin, Tmax0.204, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
2616, 877, 766
Rint0.145
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.127, 1.05
No. of reflections877
No. of parameters48
Δρmax, Δρmin (e Å3)4.03, 4.13
Absolute structureFlack (1983), 466 Friedel pairs
Absolute structure parameter0.55 (5)

Computer programs: PW1100 Operation Software (Philips, 1980), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The author thanks Professor H. Völlenkle for measurement time and introduction to the PW1100 four-circle diffractometer.

References

First citationAurivillius, B. (1976). Chem. Scr. 10, 206–209.  CAS Google Scholar
First citationDowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationEs-Sakhi, B., Gravereau, P. & Fouassier, C. (1998). Powder Diffr. 13, 152–156.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHagemann, H., Bill, H., Rey, J. M., Kubel, F., Calame, L. & Lovy, D. (2015). J. Phys. Chem. C, 119, 141–147.  Web of Science CrossRef CAS Google Scholar
First citationHagemann, H., D'Anna, V., Lawson Daku, M. & Kubel, F. (2012). Cryst. Growth Des. 12, 1124–1131.  Web of Science CrossRef CAS Google Scholar
First citationHerrendorf, W. (1997). HABITUS. University of Giessen, Germany.  Google Scholar
First citationPhilips (1980). PW1100 Operation Software. Philips, Eindhoven, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds