metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-2,2,4,4,6,6-Hexa­kis­(3,5-di­methyl­pyrazol-1-yl)-2λ5,4λ5,6λ5-1,3,5,2,4,6-tri­aza­triphosphinine]bis­­[bis­­(nitrato- κ2O,O′)cadmium(II)]

aDepartment of Chemistry (BK21), Sungkyunkwan University, Natural Science Campus, Suwon 440-746, South Korea
*Correspondence e-mail: soonwlee@skku.edu

(Received 15 September 2008; accepted 1 November 2008; online 8 November 2008)

The complete title complex, [Cd2(NO3)4(C30H42N15P3)], is generated by crystallographic twofold symmetry, with one P and one N atom of the cyclo­triphosphazene ligand located on the rotation axis. The non-planar cyclo­triphosphazene ring accommodates two Cd ions, and only four out of six exocylcic pyrazolyl ligands are bound to the Cd metal atoms. Each of these two symmetry-related Cd atoms is coordinated by two bidentate nitrato ligands, two exocylic pyrazolyl N atoms, and one cyclo­triphosphazene N atom.

Related literature

For background, see: Allen (1991[Allen, C. W. (1991). Chem. Rev. 91, 119-135.]); Byun et al. (1996[Byun, Y. G., Min, D. W., Do, J. H., Yun, H. S. & Do, Y. K. (1996). Inorg. Chem. 35, 3981-3989.]); Chandrasekhar & Nagendran (2001[Chandrasekhar, V. & Nagendran, S. (2001). Chem. Soc. Rev. 30, 193-203.]); Mark et al. (2005[Mark, J. E., Allkock, H. R. & West, R. (2005). Inorganic Polymers, 2nd ed., pp. 62-153 New York: Oxford University Press.]); Thomas et al. (1997[Thomas, K. R. J., Chandrasekhar, V., Zanello, P. & Laschi, F. (1997). Polyhedron, 16, 1003-1011.] and references therein). For the synthesis of the ligand, see: Thomas et al. (1993[Thomas, K. R. J., Chandrasekhar, V., Pal, P., Scott, S. R., Hallford, R. & Cordes, A. W. (1993). Inorg. Chem. 32, 606-611.]). For related structures, see: Yun & Lee (2008[Yun, S. Y. & Lee, S. W. (2008). Acta Cryst. E64, m1084.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(NO3)4(C30H42N15P3)]

  • Mr = 1178.54

  • Orthorhombic, F d d 2

  • a = 28.2418 (5) Å

  • b = 36.2033 (6) Å

  • c = 10.3673 (2) Å

  • V = 10600.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 296 (2) K

  • 0.30 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.851, Tmax = 0.908

  • 32426 measured reflections

  • 6260 independent reflections

  • 5122 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.04

  • 6260 reflections

  • 299 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2758 Friedel pairs

  • Flack parameter: −0.02 (2)

Table 1
Selected bond lengths (Å)

Cd1—N1 2.546 (3)
Cd1—N4 2.265 (3)
Cd1—N8 2.311 (4)
Cd1—O1 2.509 (5)
Cd1—O2 2.365 (6)
Cd1—O5 2.367 (8)
Cd1—O4 2.373 (9)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Polyphosphazenes, linear or cyclic, are an important class of inorganic macromolecules (Mark et al., 2005), and various cyclotriphosphazene derivatives are frequently used as ligands for the preparation of their intriguing coordination and organometallic complexes (Allen, 1991; Chandrasekhar & Nagendran, 2001). Particular attention has been paid to the six-membered cyclotriphosphazene N3P3(3,5-Me2pz)6 (3,5-Me2pz = 3,5-dimethylpyrazolyl), due to its several potential donor sites such as the exocyxlic pyrazolyl nitrogen atoms and the central cyclotriphosphazene ring nitrogen and phosphorus atoms. This ligand binds to transition metals via (1) two non-geminal pyrazolyl N atoms (non-geminal N2 coordination), (2) two non-geminal pyrazolyl N atoms and one cyclotriphosphazene ring nitrogen (non-geminal N3 coordination), (3) two geminal pyrazolyl N atoms (geminal N2 coordination), or (4) two geminal pyrazolyl N atoms and one ring nitrogen (geminal N3 coordination) (Thomas et al., 1997). We recently reported the structure of a C3-symmetric tripalladium–cyclotriphosphazene complex, in which the cyclotriphosphazene exhibits the geminal N2 coordination mode (Yun & Lee, 2008). In this paper, we describe the preparation and structure of the title compound, (I), a dicadmium–cyclotriphosphazene complex [Cd2(NO3)4(N3P3(3,5-Me2pz)6)].

The molecular structure of (I) is given in Fig. 1, which demonstrates the non-geminal N3 coordination mode of the cyclotriphosphazene ligand. This molecule possesses a crystallographic 2-fold axis passing through the P2 and N2 atoms, which explains the Z value of 8 instead of 16. The cyclotriphosphazene ring is severely distorted from planarity with an average atomic displacement of 0.146 Å. Each Cd(II) metal is seven-coordinate and bonded to four O atoms from two nitrates, two N atoms from two imidazole rings, and one nitrogen atom from the cyclotriphosphazene ring (Table 1). Four imidazole N atoms coordinate to the two Cd metals to form four 5-membered (PdPN3) chelate rings. The fact that the cyclotriphosphazene ring accommodates only two rather than three Cd(NO3)2 units may be attributed to the steric bulk of the 7-coordinate Cd metals.

The Cd—Npyz bond lengths [2.265 (3)–2.311 (4) Å] are significantly shorter than the Cd—Nring bond length [2.546 (3) Å], indicating that the Cd ions interact more strongly with the imidazole N atoms than with the cyclotriphosphazene ring N atoms. Consistent with our expectation, the average P—Nring bond length [1.583 (3) Å] is considerably shorter than the average P—Npyz bond length [1.677 (3) Å]. The Cd···Cd separation is 7.0177 (6) Å, which is shorter than the corresponding separation (7.195 Å) observed in the chloro analogue [Cd2Cl4(N3P3(3,5-Me2pz)6)] (Byun et al., 1996).

Related literature top

For background, see: Allen (1991); Byun et al. (1996); Chandrasekhar & Nagendran (2001); Mark et al. (2005); Thomas et al. (1997 and references therein). For the synthesis of the ligand, see: Thomas et al. (1993). For related structures, see: Yun & Lee (2008).

Experimental top

The ligand was prepared by the literature method (Thomas et al., 1993). An acetone (30 ml) solution containing Cd(NO3)2.4H2O (0.144 g, 0.75 mmol) and ligand N3P3(3,5-Me2pz)6 (0.176 g, 0.25 mmol) was stirred for 24 h at room temperature. The resulting white solution was filtered off, washed with diethyl ether (6 ml x 2) and then hexane (5 ml x 2) to give a white solid, which was crystallized from acetone/hexane (1:1 v/v) to yield colorless blocks of (I). IR (KBr, cm-1): 2964 (s), 2362 (m), 1576 (m), 1383 (s), 1260 (s), 1095 (s), 1028 (s), 805 (s). mp: 411–413 K.

Refinement top

The hydrogen atoms were generated in ideal positions (C—H = 0.93–0.96Å) and refined in a riding model. The nitrato ligands are slightly disordered, but the disorder was not resolved and anisotropic refinement applying several possible site occupation factors was unstable. Site occupancy refinements of the nitrato atoms all yielded values close to unity.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms are omitted for clarity. Atoms with the suffix A are generated by the symmetry operation (–x, –y, z).
[µ-2,2,4,4,6,6-Hexakis(3,5-dimethylpyrazol-1-yl)-2λ5,4λ5,6λ5- 1,3,5,2,4,6-triazatriphosphinine]bis[bis(nitrato- κ2O,O')cadmium(II)] top
Crystal data top
[Cd2(NO3)4(C30H42N15P3)]F(000) = 4736
Mr = 1178.54Dx = 1.477 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 9939 reflections
a = 28.2418 (5) Åθ = 2.2–25.5°
b = 36.2033 (6) ŵ = 0.96 mm1
c = 10.3673 (2) ÅT = 296 K
V = 10600.0 (3) Å3BLOCK, colourless
Z = 80.30 × 0.14 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
6260 independent reflections
Radiation source: sealed tube5122 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 3628
Tmin = 0.851, Tmax = 0.908k = 4840
32426 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0676P)2 + 6.1853P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6260 reflectionsΔρmax = 0.85 e Å3
299 parametersΔρmin = 0.48 e Å3
1 restraintAbsolute structure: Flack (1983), 2758 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[Cd2(NO3)4(C30H42N15P3)]V = 10600.0 (3) Å3
Mr = 1178.54Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 28.2418 (5) ŵ = 0.96 mm1
b = 36.2033 (6) ÅT = 296 K
c = 10.3673 (2) Å0.30 × 0.14 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
6260 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
5122 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.908Rint = 0.033
32426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.112Δρmax = 0.85 e Å3
S = 1.04Δρmin = 0.48 e Å3
6260 reflectionsAbsolute structure: Flack (1983), 2758 Friedel pairs
299 parametersAbsolute structure parameter: 0.02 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.083094 (12)0.072056 (9)0.52427 (3)0.05498 (12)
P10.04843 (3)0.00189 (2)0.74616 (9)0.0339 (2)
P20.00000.00000.51827 (12)0.0311 (2)
O10.0099 (2)0.0965 (2)0.6318 (6)0.1100 (19)
O20.0638 (3)0.13446 (15)0.5667 (8)0.144 (3)
O30.0064 (4)0.1554 (3)0.6716 (11)0.251 (7)
O40.1372 (4)0.0530 (3)0.3622 (15)0.258 (8)
O50.1455 (4)0.1014 (3)0.4113 (10)0.195 (5)
O60.1902 (3)0.0824 (2)0.2697 (10)0.170 (4)
N10.04555 (11)0.01150 (8)0.5958 (3)0.0357 (7)
N20.00000.00000.8214 (4)0.0408 (10)
N30.08391 (12)0.03495 (9)0.8082 (3)0.0429 (8)
N40.10447 (12)0.06131 (10)0.7314 (3)0.0450 (8)
N50.07821 (10)0.03652 (9)0.7738 (4)0.0431 (7)
N60.12225 (13)0.03751 (11)0.7149 (4)0.0512 (9)
N70.01317 (12)0.03608 (9)0.4208 (3)0.0398 (7)
N80.02456 (14)0.05705 (10)0.3775 (4)0.0490 (8)
N90.0244 (3)0.1266 (3)0.6295 (8)0.114 (2)
N100.1568 (2)0.07751 (19)0.3548 (8)0.0857 (18)
C10.10083 (18)0.03802 (13)0.9323 (4)0.0536 (11)
C20.1308 (2)0.06616 (15)0.9360 (5)0.0703 (15)
H20.14720.07481.00780.084*
C30.13292 (19)0.08072 (14)0.8077 (5)0.0593 (12)
C40.0847 (3)0.01309 (18)1.0404 (5)0.0837 (18)
H4A0.06280.00481.00730.126*
H4B0.06950.02761.10590.126*
H4C0.11160.00071.07680.126*
C50.1598 (2)0.11282 (18)0.7556 (7)0.0834 (18)
H5A0.15330.11540.66520.125*
H5B0.19310.10880.76810.125*
H5C0.15040.13490.80010.125*
C60.07031 (19)0.06865 (11)0.8451 (4)0.0486 (10)
C70.11000 (19)0.08900 (14)0.8317 (5)0.0606 (12)
H70.11600.11190.86920.073*
C80.14106 (18)0.06886 (13)0.7490 (5)0.0607 (12)
C90.02660 (19)0.07712 (13)0.9190 (5)0.0615 (13)
H9A0.00460.05710.91030.092*
H9B0.03440.08041.00840.092*
H9C0.01260.09940.88620.092*
C100.1886 (3)0.0808 (2)0.7004 (8)0.097 (2)
H10A0.20160.06180.64640.146*
H10B0.18530.10310.65150.146*
H10C0.20940.08500.77220.146*
C110.05422 (16)0.04550 (12)0.3580 (4)0.0465 (10)
C120.0421 (2)0.07391 (11)0.2775 (5)0.0578 (12)
H120.06250.08680.22330.069*
C130.0061 (2)0.07985 (12)0.2915 (4)0.0569 (12)
C140.10103 (19)0.02914 (17)0.3787 (5)0.0659 (14)
H14A0.09870.00980.44160.099*
H14B0.11260.01910.29890.099*
H14C0.12250.04780.40910.099*
C150.0358 (3)0.10831 (18)0.2264 (6)0.092 (2)
H15A0.06800.10590.25460.138*
H15B0.02420.13250.24810.138*
H15C0.03420.10490.13470.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0606 (2)0.05662 (19)0.04776 (17)0.02047 (15)0.00994 (15)0.01297 (14)
P10.0381 (5)0.0323 (4)0.0314 (4)0.0014 (4)0.0036 (4)0.0026 (3)
P20.0365 (6)0.0296 (5)0.0272 (5)0.0004 (5)0.0000.000
O10.095 (4)0.137 (5)0.098 (4)0.043 (4)0.016 (3)0.033 (4)
O20.189 (6)0.068 (3)0.176 (8)0.022 (4)0.092 (6)0.016 (4)
O30.258 (10)0.203 (8)0.292 (12)0.150 (8)0.168 (9)0.191 (9)
O40.165 (7)0.185 (8)0.422 (19)0.087 (7)0.175 (11)0.126 (11)
O50.226 (9)0.213 (10)0.146 (7)0.137 (9)0.036 (7)0.002 (7)
O60.143 (6)0.135 (5)0.231 (9)0.028 (4)0.085 (7)0.035 (6)
N10.0366 (16)0.0361 (15)0.0343 (15)0.0021 (13)0.0017 (12)0.0047 (12)
N20.046 (3)0.045 (2)0.031 (2)0.000 (2)0.0000.000
N30.0471 (19)0.0413 (18)0.0403 (18)0.0063 (14)0.0082 (14)0.0033 (14)
N40.0414 (18)0.0480 (18)0.0455 (18)0.0091 (16)0.0084 (15)0.0042 (15)
N50.0419 (16)0.0422 (16)0.0452 (17)0.0065 (13)0.0021 (16)0.0110 (15)
N60.0417 (19)0.057 (2)0.055 (2)0.0120 (16)0.0053 (16)0.0146 (17)
N70.0434 (18)0.0391 (17)0.0368 (15)0.0047 (14)0.0064 (14)0.0042 (13)
N80.063 (2)0.0416 (18)0.0430 (18)0.0095 (17)0.0077 (16)0.0141 (15)
N90.114 (6)0.130 (7)0.098 (5)0.027 (6)0.063 (4)0.026 (5)
N100.072 (3)0.069 (4)0.116 (5)0.033 (3)0.000 (3)0.008 (3)
C10.065 (3)0.051 (2)0.045 (2)0.009 (2)0.017 (2)0.0054 (19)
C20.084 (4)0.069 (3)0.058 (3)0.013 (3)0.033 (3)0.006 (2)
C30.060 (3)0.059 (3)0.059 (3)0.018 (2)0.016 (2)0.002 (2)
C40.126 (5)0.085 (4)0.040 (3)0.028 (4)0.021 (3)0.013 (3)
C50.084 (4)0.087 (4)0.080 (4)0.042 (3)0.016 (3)0.003 (3)
C60.065 (3)0.039 (2)0.042 (2)0.0061 (19)0.002 (2)0.0057 (16)
C70.064 (3)0.048 (3)0.070 (3)0.016 (2)0.008 (2)0.019 (2)
C80.059 (3)0.065 (3)0.058 (3)0.026 (2)0.003 (2)0.013 (2)
C90.067 (3)0.051 (3)0.066 (3)0.001 (2)0.004 (3)0.025 (2)
C100.078 (4)0.099 (5)0.114 (5)0.039 (4)0.023 (4)0.028 (4)
C110.055 (3)0.048 (2)0.0358 (19)0.0123 (19)0.0070 (18)0.0062 (17)
C120.079 (3)0.053 (2)0.042 (2)0.013 (2)0.012 (2)0.008 (2)
C130.086 (3)0.044 (2)0.040 (2)0.005 (2)0.016 (2)0.0110 (19)
C140.049 (3)0.097 (4)0.052 (3)0.013 (3)0.010 (2)0.007 (3)
C150.136 (6)0.072 (3)0.069 (3)0.034 (4)0.019 (4)0.036 (3)
Geometric parameters (Å, º) top
Cd1—N12.546 (3)C1—C41.509 (7)
Cd1—N42.265 (3)C2—C31.432 (8)
Cd1—N82.311 (4)C2—H20.9300
Cd1—O12.509 (5)C3—C51.490 (8)
Cd1—O22.365 (6)C4—H4A0.9600
Cd1—O52.367 (8)C4—H4B0.9600
Cd1—O42.373 (9)C4—H4C0.9600
P1—N21.576 (2)C5—H5A0.9600
P1—N11.599 (3)C5—H5B0.9600
P1—N51.650 (3)C5—H5C0.9600
P1—N31.688 (3)C6—C71.349 (7)
P2—N11.573 (3)C6—C91.485 (7)
P2—N1i1.573 (3)C7—C81.427 (7)
P2—N7i1.693 (3)C7—H70.9300
P2—N71.693 (3)C8—C101.498 (8)
O1—N91.165 (11)C9—H9A0.9600
O2—N91.323 (11)C9—H9B0.9600
O3—N91.239 (10)C9—H9C0.9600
O4—N101.049 (9)C10—H10A0.9600
O5—N101.094 (12)C10—H10B0.9600
O6—N101.302 (10)C10—H10C0.9600
N2—P1i1.576 (2)C11—C121.368 (6)
N3—N41.372 (5)C11—C141.464 (8)
N3—C11.376 (6)C12—C131.386 (8)
N4—C31.328 (6)C12—H120.9300
N5—N61.386 (5)C13—C151.489 (7)
N5—C61.396 (5)C14—H14A0.9600
N6—C81.302 (5)C14—H14B0.9600
N7—C111.373 (5)C14—H14C0.9600
N7—N81.383 (5)C15—H15A0.9600
N8—C131.323 (6)C15—H15B0.9600
C1—C21.325 (7)C15—H15C0.9600
N4—Cd1—N8140.76 (12)C2—C1—N3108.1 (4)
N4—Cd1—O292.8 (2)C2—C1—C4129.1 (5)
N8—Cd1—O2100.51 (19)N3—C1—C4122.7 (4)
N4—Cd1—O5110.4 (3)C1—C2—C3106.4 (4)
N8—Cd1—O5108.2 (3)C1—C2—H2126.8
O2—Cd1—O580.4 (5)C3—C2—H2126.8
N4—Cd1—O4116.7 (4)N4—C3—C2109.5 (4)
N8—Cd1—O485.8 (4)N4—C3—C5120.3 (5)
O2—Cd1—O4123.8 (4)C2—C3—C5130.2 (5)
O5—Cd1—O445.7 (4)C1—C4—H4A109.5
N4—Cd1—O181.87 (16)C1—C4—H4B109.5
N8—Cd1—O177.65 (18)H4A—C4—H4B109.5
O2—Cd1—O152.5 (3)C1—C4—H4C109.5
O5—Cd1—O1132.4 (4)H4A—C4—H4C109.5
O4—Cd1—O1161.3 (4)H4B—C4—H4C109.5
N4—Cd1—N171.75 (11)C3—C5—H5A109.5
N8—Cd1—N172.03 (11)C3—C5—H5B109.5
O2—Cd1—N1132.3 (3)H5A—C5—H5B109.5
O5—Cd1—N1147.2 (4)C3—C5—H5C109.5
O4—Cd1—N1103.0 (3)H5A—C5—H5C109.5
O1—Cd1—N180.3 (2)H5B—C5—H5C109.5
N2—P1—N1116.61 (18)C7—C6—N5105.6 (4)
N2—P1—N5108.63 (13)C7—C6—C9129.1 (4)
N1—P1—N5112.25 (18)N5—C6—C9125.3 (4)
N2—P1—N3110.93 (16)C6—C7—C8107.1 (4)
N1—P1—N3104.34 (17)C6—C7—H7126.5
N5—P1—N3103.21 (17)C8—C7—H7126.5
N1—P2—N1i118.5 (2)N6—C8—C7111.0 (4)
N1—P2—N7i109.24 (16)N6—C8—C10121.7 (5)
N1i—P2—N7i106.30 (16)C7—C8—C10127.3 (4)
N1—P2—N7106.30 (16)C6—C9—H9A109.5
N1i—P2—N7109.24 (16)C6—C9—H9B109.5
N7i—P2—N7106.7 (2)H9A—C9—H9B109.5
N9—O1—Cd191.9 (6)C6—C9—H9C109.5
N9—O2—Cd194.6 (5)H9A—C9—H9C109.5
N10—O4—Cd198.5 (7)H9B—C9—H9C109.5
N10—O5—Cd197.3 (6)C8—C10—H10A109.5
P2—N1—P1118.8 (2)C8—C10—H10B109.5
P2—N1—Cd1114.81 (15)H10A—C10—H10B109.5
P1—N1—Cd1116.75 (16)C8—C10—H10C109.5
P1—N2—P1i120.7 (3)H10A—C10—H10C109.5
N4—N3—C1109.8 (3)H10B—C10—H10C109.5
N4—N3—P1121.5 (3)C12—C11—N7105.4 (4)
C1—N3—P1128.3 (3)C12—C11—C14128.2 (4)
C3—N4—N3106.2 (4)N7—C11—C14126.3 (4)
C3—N4—Cd1129.4 (3)C11—C12—C13107.3 (4)
N3—N4—Cd1123.9 (2)C11—C12—H12126.3
N6—N5—C6110.8 (3)C13—C12—H12126.3
N6—N5—P1113.7 (3)N8—C13—C12111.2 (4)
C6—N5—P1135.5 (3)N8—C13—C15121.0 (5)
C8—N6—N5105.6 (4)C12—C13—C15127.8 (5)
C11—N7—N8111.1 (3)C11—C14—H14A109.5
C11—N7—P2131.3 (3)C11—C14—H14B109.5
N8—N7—P2116.6 (2)H14A—C14—H14B109.5
C13—N8—N7104.9 (4)C11—C14—H14C109.5
C13—N8—Cd1125.4 (3)H14A—C14—H14C109.5
N7—N8—Cd1117.8 (2)H14B—C14—H14C109.5
O1—N9—O3129.7 (12)C13—C15—H15A109.5
O1—N9—O2120.5 (9)C13—C15—H15B109.5
O3—N9—O2109.7 (12)H15A—C15—H15B109.5
O4—N10—O5118.3 (10)C13—C15—H15C109.5
O4—N10—O6123.1 (10)H15A—C15—H15C109.5
O5—N10—O6117.9 (8)H15B—C15—H15C109.5
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Cd2(NO3)4(C30H42N15P3)]
Mr1178.54
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)296
a, b, c (Å)28.2418 (5), 36.2033 (6), 10.3673 (2)
V3)10600.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.30 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.851, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
32426, 6260, 5122
Rint0.033
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.04
No. of reflections6260
No. of parameters299
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.48
Absolute structureFlack (1983), 2758 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N12.546 (3)Cd1—O22.365 (6)
Cd1—N42.265 (3)Cd1—O52.367 (8)
Cd1—N82.311 (4)Cd1—O42.373 (9)
Cd1—O12.509 (5)
 

Acknowledgements

This paper was supported by Samsung Research Fund, Sungkyumkwan University, 2008.

References

First citationAllen, C. W. (1991). Chem. Rev. 91, 119–135.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationByun, Y. G., Min, D. W., Do, J. H., Yun, H. S. & Do, Y. K. (1996). Inorg. Chem. 35, 3981–3989.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationChandrasekhar, V. & Nagendran, S. (2001). Chem. Soc. Rev. 30, 193–203.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMark, J. E., Allkock, H. R. & West, R. (2005). Inorganic Polymers, 2nd ed., pp. 62–153 New York: Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, K. R. J., Chandrasekhar, V., Pal, P., Scott, S. R., Hallford, R. & Cordes, A. W. (1993). Inorg. Chem. 32, 606–611.  CSD CrossRef CAS Web of Science Google Scholar
First citationThomas, K. R. J., Chandrasekhar, V., Zanello, P. & Laschi, F. (1997). Polyhedron, 16, 1003–1011.  CrossRef CAS Google Scholar
First citationYun, S. Y. & Lee, S. W. (2008). Acta Cryst. E64, m1084.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds