Download citation
Download citation
link to html
In the title compound, C20H14F8N2O2, the eight-membered 1,5-diazacyclooctane ring adopts a boat-chair conformation. The dihedral angle between the benzene ring planes is 88.81 (11)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807060242/hb2666sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807060242/hb2666Isup2.hkl
Contains datablock I

CCDC reference: 673046

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.049
  • wR factor = 0.146
  • Data-to-parameter ratio = 13.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.97 PLAT432_ALERT_2_C Short Inter X...Y Contact C18 .. C18 .. 3.18 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

1,5-Diazacyclooctane (DACO), the most typical example of diazamesocycles, offers unique conformational requirements and potential for further functionalization (Musker 1992). A number of derivatives of DACO have been prepared by substituting the hydrogen atom on the amine groups with functional pendant arms such as pyridine, imidazole, phenol, carboxylic acid and thioalcohol (Bu et al., 2001; Du & Bu, 2004; Grapperhaus & Darensbourg, 1998). Several strucures of the derivatives such as 1,5-bis(2-pyridylmethyl)-1,5-diazacyclooctane (Halfen et al., 2002), 1,4,8,11-tetra-azatricyclo(9.3.3.34,8)icosane (Watson et al., 2006) and 1,5-bis(1-methyl-2-imidazolylmethyl)-1,5-diazoniacyclooctane (Du et al., 2000) have been reported. We herein report the structure of title compound, (I), (Fig. 1).

The DACO ring in (I) adopts the normal boat/chair conformation, and the bond distances and angles are all in normal range (Du et al., 2001; Halfen et al., 2002) with the mean C–C and C–N distances being 1.507 (4) and 1.470 (3) Å, respectively, and the bond angles ranging from 114.27 (19) to 118.07 (18)°. The dihedral angles of two phenyl rings planes and two amide planes are 88.77 (7) and 37.86 (14)°, respectively. The C–O and C–N bond lengths of the amide are similar to those found in N,N'-bis(2,3,4,5-tetrafluorobenzoyl)piperazine [1.2275 (18) Å and 1.3409 (19) Å, respectively] (Zhang & Lu, 2007). The dihedral angle between the phenyl ring planes is 88.81 (11)°.

Related literature top

For related literature, see: Bu et al. (2001); Du & Bu (2004); Du et al. (2000, 2001); Grapperhaus & Darensbourg (1998); Halfen et al. (2002); Musker (1992); Watson et al. (2006); Zhang & Lu (2007).

Experimental top

The title compound was synthesized by the reaction of 2,3,4,5-tetrafluorobenzoyl chloride (2.12 g, 10 mmol) with 1,5-diazacyclooctane (0.57 g, 5 mmol) in the presence of triethylamine (1.01 g, 10 mmol) in ethanol solution (30 ml). Colourless blocks of (I) (yield 78%) were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

The H atoms were placed at calculated positions (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity.
1,5-Bis(2,3,4,5-tetrafluorobenzoyl)-1,5-diazacyclooctane top
Crystal data top
C20H14F8N2O2F(000) = 1888
Mr = 466.33Dx = 1.602 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 7221 reflections
a = 14.8085 (11) Åθ = 2.3–21.6°
b = 20.5518 (16) ŵ = 0.16 mm1
c = 12.7062 (10) ÅT = 295 K
V = 3867.0 (5) Å3Block, colourless
Z = 80.36 × 0.30 × 0.24 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3805 independent reflections
Radiation source: fine-focus sealed tube2837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1818
Tmin = 0.942, Tmax = 0.962k = 2525
27117 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0719P)2 + 1.346P]
where P = (Fo2 + 2Fc2)/3
3805 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C20H14F8N2O2V = 3867.0 (5) Å3
Mr = 466.33Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 14.8085 (11) ŵ = 0.16 mm1
b = 20.5518 (16) ÅT = 295 K
c = 12.7062 (10) Å0.36 × 0.30 × 0.24 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3805 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2837 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.962Rint = 0.026
27117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
3805 reflectionsΔρmin = 0.17 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.03822 (13)0.40699 (9)0.15578 (13)0.1034 (6)
F21.12461 (12)0.50629 (8)0.06219 (14)0.0970 (5)
F31.16418 (12)0.49973 (7)0.14554 (15)0.0955 (5)
F41.11569 (13)0.39500 (7)0.25721 (11)0.0916 (5)
F50.74987 (11)0.08897 (8)0.18853 (14)0.0910 (5)
F60.81750 (14)0.03319 (8)0.18206 (17)0.1094 (6)
F70.99332 (15)0.05255 (8)0.13222 (13)0.1056 (6)
F81.10061 (12)0.04879 (10)0.08864 (14)0.1003 (6)
N10.90720 (12)0.29461 (9)0.09016 (14)0.0599 (5)
N20.80349 (12)0.22324 (9)0.06928 (14)0.0579 (5)
O11.03989 (12)0.24206 (10)0.06866 (16)0.0849 (6)
O20.87133 (16)0.23209 (9)0.22774 (15)0.0912 (6)
C11.05645 (15)0.40272 (13)0.05361 (18)0.0650 (6)
C21.10072 (16)0.45372 (12)0.0062 (2)0.0663 (6)
C31.12042 (16)0.45057 (11)0.0988 (2)0.0641 (6)
C41.09579 (16)0.39645 (12)0.15442 (18)0.0619 (6)
C51.05293 (15)0.34503 (11)0.10727 (17)0.0586 (5)
H51.03810.30830.14630.070*
C61.03189 (13)0.34806 (11)0.00162 (17)0.0560 (5)
C70.99237 (15)0.29038 (12)0.05516 (17)0.0593 (5)
C80.87319 (18)0.24394 (13)0.16115 (18)0.0717 (7)
H8A0.91870.23520.21420.086*
H8B0.82000.26040.19700.086*
C90.84910 (18)0.18079 (13)0.10705 (19)0.0713 (7)
H9A0.82860.15040.16040.086*
H9B0.90380.16290.07660.086*
C100.77848 (16)0.18371 (12)0.02210 (18)0.0662 (6)
H10A0.72330.20110.05200.079*
H10B0.76580.13980.00160.079*
C110.76174 (17)0.28843 (13)0.0803 (2)0.0717 (6)
H11A0.79570.31280.13240.086*
H11B0.70090.28290.10720.086*
C120.75687 (16)0.32815 (13)0.0184 (2)0.0761 (7)
H12A0.72190.36700.00370.091*
H12B0.72410.30330.07090.091*
C130.84638 (16)0.34870 (12)0.0655 (2)0.0716 (7)
H13A0.83480.37310.12940.086*
H13B0.87650.37770.01650.086*
C140.85343 (15)0.20073 (11)0.14872 (17)0.0603 (6)
C150.89052 (15)0.13281 (11)0.13940 (16)0.0578 (5)
C160.83737 (17)0.07971 (12)0.16267 (18)0.0659 (6)
C170.8707 (2)0.01773 (13)0.1597 (2)0.0746 (7)
C180.9594 (2)0.00780 (13)0.13399 (18)0.0746 (7)
C191.01321 (18)0.06046 (14)0.11227 (18)0.0710 (7)
C200.98093 (16)0.12265 (13)0.11452 (17)0.0642 (6)
H201.01870.15760.09970.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1175 (14)0.1279 (14)0.0649 (10)0.0298 (11)0.0231 (9)0.0331 (9)
F20.1127 (12)0.0797 (10)0.0986 (12)0.0191 (9)0.0009 (10)0.0303 (9)
F30.1125 (13)0.0683 (9)0.1057 (13)0.0139 (9)0.0222 (10)0.0067 (8)
F40.1335 (14)0.0847 (10)0.0566 (8)0.0044 (9)0.0140 (8)0.0050 (7)
F50.0745 (10)0.0937 (11)0.1049 (12)0.0148 (8)0.0144 (9)0.0077 (9)
F60.1366 (16)0.0754 (10)0.1161 (15)0.0261 (10)0.0034 (12)0.0104 (10)
F70.1576 (17)0.0815 (11)0.0776 (11)0.0311 (11)0.0003 (11)0.0045 (8)
F80.0860 (11)0.1299 (14)0.0850 (11)0.0268 (10)0.0088 (9)0.0015 (10)
N10.0538 (10)0.0715 (12)0.0543 (10)0.0045 (9)0.0046 (8)0.0054 (9)
N20.0504 (10)0.0667 (11)0.0565 (10)0.0085 (8)0.0036 (8)0.0016 (8)
O10.0597 (10)0.0946 (13)0.1006 (14)0.0095 (9)0.0001 (9)0.0280 (11)
O20.1234 (16)0.0831 (12)0.0671 (11)0.0120 (11)0.0308 (11)0.0211 (9)
C10.0562 (13)0.0834 (16)0.0553 (13)0.0008 (12)0.0063 (10)0.0120 (11)
C20.0580 (13)0.0664 (14)0.0745 (15)0.0007 (11)0.0015 (11)0.0173 (12)
C30.0620 (13)0.0569 (13)0.0734 (15)0.0024 (11)0.0034 (11)0.0029 (11)
C40.0662 (14)0.0673 (14)0.0521 (12)0.0100 (11)0.0016 (10)0.0026 (10)
C50.0603 (13)0.0609 (13)0.0545 (12)0.0051 (10)0.0076 (10)0.0038 (10)
C60.0434 (10)0.0687 (13)0.0559 (12)0.0029 (10)0.0032 (9)0.0040 (10)
C70.0500 (12)0.0741 (14)0.0537 (12)0.0008 (11)0.0052 (9)0.0008 (10)
C80.0716 (15)0.0956 (18)0.0480 (12)0.0049 (13)0.0106 (11)0.0005 (12)
C90.0801 (16)0.0776 (16)0.0562 (13)0.0080 (13)0.0150 (12)0.0166 (12)
C100.0620 (13)0.0731 (14)0.0636 (14)0.0156 (11)0.0180 (11)0.0012 (11)
C110.0558 (13)0.0807 (16)0.0784 (16)0.0056 (12)0.0011 (12)0.0039 (13)
C120.0549 (13)0.0829 (16)0.0905 (18)0.0100 (12)0.0161 (13)0.0035 (14)
C130.0603 (14)0.0677 (14)0.0867 (17)0.0053 (11)0.0142 (12)0.0147 (13)
C140.0600 (13)0.0688 (14)0.0522 (12)0.0085 (11)0.0024 (10)0.0037 (10)
C150.0639 (13)0.0669 (14)0.0427 (10)0.0081 (11)0.0042 (9)0.0017 (9)
C160.0687 (15)0.0749 (16)0.0541 (13)0.0068 (12)0.0009 (11)0.0015 (11)
C170.099 (2)0.0675 (16)0.0574 (14)0.0140 (14)0.0018 (14)0.0004 (11)
C180.107 (2)0.0706 (16)0.0464 (13)0.0142 (15)0.0052 (13)0.0056 (11)
C190.0711 (16)0.0952 (19)0.0466 (12)0.0102 (14)0.0014 (11)0.0032 (12)
C200.0678 (15)0.0777 (15)0.0472 (12)0.0041 (12)0.0031 (10)0.0008 (10)
Geometric parameters (Å, º) top
F1—C11.329 (3)C8—C91.511 (4)
F2—C21.341 (3)C8—H8A0.9700
F3—C31.339 (3)C8—H8B0.9700
F4—C41.339 (3)C9—C101.504 (4)
F5—C161.350 (3)C9—H9A0.9700
F6—C171.341 (3)C9—H9B0.9700
F7—C181.339 (3)C10—H10A0.9700
F8—C191.350 (3)C10—H10B0.9700
N1—C71.340 (3)C11—C121.498 (4)
N1—C131.465 (3)C11—H11A0.9700
N1—C81.467 (3)C11—H11B0.9700
N2—C141.334 (3)C12—C131.514 (4)
N2—C101.465 (3)C12—H12A0.9700
N2—C111.482 (3)C12—H12B0.9700
O1—C71.229 (3)C13—H13A0.9700
O2—C141.222 (3)C13—H13B0.9700
C1—C61.374 (3)C14—C151.505 (3)
C1—C21.375 (4)C15—C161.378 (3)
C2—C31.367 (4)C15—C201.391 (3)
C3—C41.367 (3)C16—C171.367 (4)
C4—C51.371 (3)C17—C181.368 (4)
C5—C61.380 (3)C18—C191.372 (4)
C5—H50.9300C19—C201.365 (4)
C6—C71.506 (3)C20—H200.9300
C7—N1—C13123.8 (2)N2—C10—H10B108.6
C7—N1—C8118.8 (2)C9—C10—H10B108.6
C13—N1—C8117.35 (19)H10A—C10—H10B107.6
C14—N2—C10123.21 (19)N2—C11—C12115.7 (2)
C14—N2—C11118.26 (19)N2—C11—H11A108.4
C10—N2—C11118.07 (18)C12—C11—H11A108.4
F1—C1—C6120.0 (2)N2—C11—H11B108.4
F1—C1—C2118.3 (2)C12—C11—H11B108.4
C6—C1—C2121.7 (2)H11A—C11—H11B107.4
F2—C2—C3120.0 (2)C11—C12—C13116.1 (2)
F2—C2—C1120.5 (2)C11—C12—H12A108.3
C3—C2—C1119.6 (2)C13—C12—H12A108.3
F3—C3—C4120.9 (2)C11—C12—H12B108.3
F3—C3—C2120.0 (2)C13—C12—H12B108.3
C4—C3—C2119.1 (2)H12A—C12—H12B107.4
F4—C4—C3117.6 (2)N1—C13—C12114.3 (2)
F4—C4—C5120.7 (2)N1—C13—H13A108.7
C3—C4—C5121.7 (2)C12—C13—H13A108.7
C4—C5—C6119.7 (2)N1—C13—H13B108.7
C4—C5—H5120.2C12—C13—H13B108.7
C6—C5—H5120.2H13A—C13—H13B107.6
C1—C6—C5118.3 (2)O2—C14—N2124.0 (2)
C1—C6—C7120.1 (2)O2—C14—C15118.3 (2)
C5—C6—C7121.2 (2)N2—C14—C15117.67 (19)
O1—C7—N1123.0 (2)C16—C15—C20118.7 (2)
O1—C7—C6118.7 (2)C16—C15—C14120.6 (2)
N1—C7—C6118.3 (2)C20—C15—C14120.5 (2)
N1—C8—C9114.27 (19)F5—C16—C17119.0 (2)
N1—C8—H8A108.7F5—C16—C15119.3 (2)
C9—C8—H8A108.7C17—C16—C15121.7 (2)
N1—C8—H8B108.7F6—C17—C16120.6 (3)
C9—C8—H8B108.7F6—C17—C18119.9 (3)
H8A—C8—H8B107.6C16—C17—C18119.5 (2)
C10—C9—C8117.1 (2)F7—C18—C17120.2 (3)
C10—C9—H9A108.0F7—C18—C19120.6 (3)
C8—C9—H9A108.0C17—C18—C19119.2 (2)
C10—C9—H9B108.0F8—C19—C20120.5 (3)
C8—C9—H9B108.0F8—C19—C18117.5 (2)
H9A—C9—H9B107.3C20—C19—C18122.1 (2)
N2—C10—C9114.53 (18)C19—C20—C15118.8 (2)
N2—C10—H10A108.6C19—C20—H20120.6
C9—C10—H10A108.6C15—C20—H20120.6
F1—C1—C2—F20.0 (4)C14—N2—C11—C12144.2 (2)
C6—C1—C2—F2179.4 (2)C10—N2—C11—C1243.4 (3)
F1—C1—C2—C3179.9 (2)N2—C11—C12—C1365.1 (3)
C6—C1—C2—C30.5 (4)C7—N1—C13—C12126.1 (2)
F2—C2—C3—F30.5 (4)C8—N1—C13—C1256.7 (3)
C1—C2—C3—F3179.4 (2)C11—C12—C13—N157.1 (3)
F2—C2—C3—C4179.8 (2)C10—N2—C14—O2176.4 (2)
C1—C2—C3—C40.2 (4)C11—N2—C14—O24.4 (3)
F3—C3—C4—F41.1 (3)C10—N2—C14—C154.2 (3)
C2—C3—C4—F4179.7 (2)C11—N2—C14—C15176.21 (19)
F3—C3—C4—C5178.4 (2)O2—C14—C15—C1699.4 (3)
C2—C3—C4—C50.8 (4)N2—C14—C15—C1681.2 (3)
F4—C4—C5—C6179.0 (2)O2—C14—C15—C2075.9 (3)
C3—C4—C5—C61.5 (3)N2—C14—C15—C20103.5 (2)
F1—C1—C6—C5179.2 (2)C20—C15—C16—F5179.0 (2)
C2—C1—C6—C50.2 (3)C14—C15—C16—F53.6 (3)
F1—C1—C6—C75.8 (3)C20—C15—C16—C171.4 (3)
C2—C1—C6—C7173.6 (2)C14—C15—C16—C17176.8 (2)
C4—C5—C6—C11.2 (3)F5—C16—C17—F60.0 (4)
C4—C5—C6—C7174.5 (2)C15—C16—C17—F6179.6 (2)
C13—N1—C7—O1173.3 (2)F5—C16—C17—C18179.7 (2)
C8—N1—C7—O19.5 (3)C15—C16—C17—C180.7 (4)
C13—N1—C7—C67.8 (3)F6—C17—C18—F70.7 (4)
C8—N1—C7—C6169.4 (2)C16—C17—C18—F7179.0 (2)
C1—C6—C7—O1105.0 (3)F6—C17—C18—C19179.4 (2)
C5—C6—C7—O168.2 (3)C16—C17—C18—C190.4 (4)
C1—C6—C7—N173.9 (3)F7—C18—C19—F80.4 (3)
C5—C6—C7—N1112.9 (2)C17—C18—C19—F8179.1 (2)
C7—N1—C8—C976.8 (3)F7—C18—C19—C20179.3 (2)
C13—N1—C8—C9105.8 (3)C17—C18—C19—C200.6 (4)
N1—C8—C9—C1059.0 (3)F8—C19—C20—C15179.9 (2)
C14—N2—C10—C983.7 (3)C18—C19—C20—C150.2 (3)
C11—N2—C10—C9104.3 (2)C16—C15—C20—C191.1 (3)
C8—C9—C10—N263.2 (3)C14—C15—C20—C19176.6 (2)

Experimental details

Crystal data
Chemical formulaC20H14F8N2O2
Mr466.33
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)295
a, b, c (Å)14.8085 (11), 20.5518 (16), 12.7062 (10)
V3)3867.0 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.36 × 0.30 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.942, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
27117, 3805, 2837
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.146, 1.04
No. of reflections3805
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.17

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds