Download citation
Download citation
link to html
In the title compound, C12H14ClN4+·C6H4NO2·H2O, the pyrimethamine mol­ecule is protonated at one of the pyrimidine N atoms. The protonated N atom and 2-amino group of the cation inter­act with an adjacent nicotinate anion through a pair of N—H...O hydrogen bonds [graph set R22(8)]. The cation, anion and water mol­ecule form a hydrogen-bonded ring motif with graph-set notation R42(8). The crystal structure is further stabilized by N—H...O and O—H...O hydrogen bonds and π–π inter­actions [centroid–centroid distance = 3.637 (6) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052397/hb2608sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052397/hb2608Isup2.hkl
Contains datablock I

CCDC reference: 257040

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.018 Å
  • R factor = 0.056
  • wR factor = 0.056
  • Data-to-parameter ratio = 7.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT026_ALERT_3_B Ratio Observed / Unique Reflections too Low .... 34 Perc. PLAT340_ALERT_3_B Low Bond Precision on C-C Bonds (x 1000) Ang ... 18
Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 7.38 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C16 PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C16 - C20 ... 1.53 Ang.
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 1807 Count of symmetry unique reflns 1809 Completeness (_total/calc) 99.89% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyrimethamine [2,4-diamino-5-(p-chlorophenyl)-6-ethylpyrimidine] is an antifolate drug used in anti-malarial chemotherapy (Olliaro, 2001). The crystal structure of pyrimethamine (PMN) has been reported from our laboratory (Sethuraman & Muthiah, 2002) as have the structures of various protonated PMN salts (e.g. Devi et al., 2007). As part of these ongoing studies, the synthesis and structure of the title compound, (I), is now described.

The asymmetric unit of (I) contains a protonated pyrimethaminium (PMN) cation, nicotinate anion and a water molecule (Fig. 1). The PMN is protonated at N1 as it is evident from the enhancement of the C—N—C from 116.3 (2)° in neutral PMN molecule A and 116.09 (18)° in molecule B (Sethuraman & Muthiah, 2002) to 119.9 (10)° in (I). The dihedral angle between the 2,4-diamino pyrimidine and p-chlorophenyl rings is 70.3 (6)°. The torsion angle C5—C6—C7—C8, which represents the deviation of the ethyl group from the pyrimidine ring is 77.6 (16)°. The values are close to the results of modeling studies of DHFR-PMN complexes (Sansom et al., 1989). The C5—C9 bond length connecting the pyrimidine and phenyl ring in (I) is 1.472 (2) Å, in agreement with related structutres (De et al., 1989). The protonated N1 cation interacts with the carboxylate group of the nicotinate ion via N—H···O hydrogen bonds forming cyclic hydrogen bonded ring motif represented by graph-set notation R22(8) (Bernstein et al., 1995). The oxygen atom of the nicotinate anion bridges the 2-amino, 4-amino group of the PMN cation and water molecule forming a hydrogen bonded ring motif with graph-set notation R42(8). The frequently occurring R22(8) motif and R42(8) motif combine to form another motif, namely a DDA array (Fig. 2). Furthermore, the nicotinate anion and water molecule form a one dimensional supramolecular chain involving N—H···O and O—H···N hydrogen bonds (Fig. 3). π-π interactions between the aromatic rings are observed. The pyrimidine ring of PMN stacks with the nicotinate ring with a perpendicular separation of 3.551 Å, centroid-to-centroid distance of 3.637 (6) Å and a slip angle (the angle between the centroid-to-centroid vector and the normal to the plane) 19.05°.

Related literature top

For related literature, see: Bernstein et al. (1995); De et al. (1989); Devi et al. (2007); Olliaro (2001); Sansom et al. (1989); Sethuraman & Muthiah (2002).

Experimental top

Hot methanolic solutions of pyrimethamine (62 mg) and nicotinic acid (31 mg) were mixed in a 1:1 ratio. The resultant mixture was warmed over a water bath for 15 minutes and kept at room temperature for crystallization. After a few days colourless blocks of (I) were obtained.

Refinement top

The C– and N-bound hydrogen atoms were fixed geometrically (C—H = 0.93–0.96 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier). The water hydrogen atoms were located from a difference map and were refined with isotropic thermal parameters.

Structure description top

Pyrimethamine [2,4-diamino-5-(p-chlorophenyl)-6-ethylpyrimidine] is an antifolate drug used in anti-malarial chemotherapy (Olliaro, 2001). The crystal structure of pyrimethamine (PMN) has been reported from our laboratory (Sethuraman & Muthiah, 2002) as have the structures of various protonated PMN salts (e.g. Devi et al., 2007). As part of these ongoing studies, the synthesis and structure of the title compound, (I), is now described.

The asymmetric unit of (I) contains a protonated pyrimethaminium (PMN) cation, nicotinate anion and a water molecule (Fig. 1). The PMN is protonated at N1 as it is evident from the enhancement of the C—N—C from 116.3 (2)° in neutral PMN molecule A and 116.09 (18)° in molecule B (Sethuraman & Muthiah, 2002) to 119.9 (10)° in (I). The dihedral angle between the 2,4-diamino pyrimidine and p-chlorophenyl rings is 70.3 (6)°. The torsion angle C5—C6—C7—C8, which represents the deviation of the ethyl group from the pyrimidine ring is 77.6 (16)°. The values are close to the results of modeling studies of DHFR-PMN complexes (Sansom et al., 1989). The C5—C9 bond length connecting the pyrimidine and phenyl ring in (I) is 1.472 (2) Å, in agreement with related structutres (De et al., 1989). The protonated N1 cation interacts with the carboxylate group of the nicotinate ion via N—H···O hydrogen bonds forming cyclic hydrogen bonded ring motif represented by graph-set notation R22(8) (Bernstein et al., 1995). The oxygen atom of the nicotinate anion bridges the 2-amino, 4-amino group of the PMN cation and water molecule forming a hydrogen bonded ring motif with graph-set notation R42(8). The frequently occurring R22(8) motif and R42(8) motif combine to form another motif, namely a DDA array (Fig. 2). Furthermore, the nicotinate anion and water molecule form a one dimensional supramolecular chain involving N—H···O and O—H···N hydrogen bonds (Fig. 3). π-π interactions between the aromatic rings are observed. The pyrimidine ring of PMN stacks with the nicotinate ring with a perpendicular separation of 3.551 Å, centroid-to-centroid distance of 3.637 (6) Å and a slip angle (the angle between the centroid-to-centroid vector and the normal to the plane) 19.05°.

For related literature, see: Bernstein et al. (1995); De et al. (1989); Devi et al. (2007); Olliaro (2001); Sansom et al. (1989); Sethuraman & Muthiah (2002).

Computing details top

Data collection: PW1100 Software (Philips, 1978); cell refinement: PW1100 Software (Philips, 1978); data reduction: PW1100 Software (Philips, 1978); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) with 10% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. A view of the hydrogen bonding network in (I). Symmetry code: (i) -x + 1, y + 1/2, -z + 1.
[Figure 3] Fig. 3. One dimensional chain in (I) observed between the water molecules and nicotinate ion. Symmetry code: (ii) x - 1, y, z.
Pyrimethaminium nicotinate monohydrate top
Crystal data top
C12H14ClN4+·C6H4NO2·H2OF(000) = 408
Mr = 389.84Dx = 1.312 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 6.570 (2) Åθ = 3.1–25.0°
b = 16.055 (3) ŵ = 0.22 mm1
c = 9.480 (2) ÅT = 120 K
β = 99.19 (3)°Block, colourless
V = 987.1 (6) Å30.23 × 0.20 × 0.18 mm
Z = 2
Data collection top
Philips PW1100
diffractometer
617 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 25.0°, θmin = 3.1°
ω scansh = 77
Absorption correction: ψ scan
(North et al., 1968)
k = 019
Tmin = 0.951, Tmax = 0.961l = 011
1909 measured reflections1 standard reflections every 100 reflections
1807 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap and geom
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0004P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max < 0.001
1807 reflectionsΔρmax = 0.20 e Å3
245 parametersΔρmin = 0.25 e Å3
4 restraintsAbsolute structure: Flack (1983), no Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (14)
Crystal data top
C12H14ClN4+·C6H4NO2·H2OV = 987.1 (6) Å3
Mr = 389.84Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.570 (2) ŵ = 0.22 mm1
b = 16.055 (3) ÅT = 120 K
c = 9.480 (2) Å0.23 × 0.20 × 0.18 mm
β = 99.19 (3)°
Data collection top
Philips PW1100
diffractometer
617 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.059
Tmin = 0.951, Tmax = 0.9611 standard reflections every 100 reflections
1909 measured reflections intensity decay: none
1807 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056Δρmax = 0.20 e Å3
S = 0.85Δρmin = 0.25 e Å3
1807 reflectionsAbsolute structure: Flack (1983), no Friedel pairs
245 parametersAbsolute structure parameter: 0.12 (14)
4 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.3820 (6)1.1235 (3)1.0788 (4)0.0826 (17)
N10.8723 (16)0.7185 (6)0.6563 (11)0.045 (4)
N20.5768 (16)0.6658 (6)0.5248 (12)0.068 (5)
N30.5978 (15)0.8085 (6)0.5670 (11)0.048 (4)
N40.6373 (14)0.9479 (6)0.5999 (10)0.043 (4)
C20.680 (2)0.7323 (8)0.5826 (14)0.046 (5)
C40.7123 (18)0.8716 (7)0.6251 (12)0.034 (5)
C50.9066 (17)0.8607 (7)0.7163 (12)0.033 (4)
C60.9795 (18)0.7822 (8)0.7277 (12)0.039 (5)
C71.181 (2)0.7542 (8)0.8174 (13)0.059 (5)
C81.160 (2)0.7484 (10)0.9758 (14)0.080 (6)
C91.0165 (17)0.9297 (7)0.7977 (13)0.036 (4)
C101.2012 (18)0.9616 (7)0.7664 (13)0.044 (5)
C111.309 (2)1.0223 (8)0.8517 (15)0.058 (6)
C121.232 (2)1.0511 (8)0.9668 (16)0.051 (5)
C131.052 (2)1.0240 (8)0.9967 (14)0.055 (6)
C140.944 (2)0.9633 (7)0.9141 (13)0.048 (5)
O10.7388 (16)0.4955 (5)0.5855 (10)0.064 (4)
O21.0354 (14)0.5657 (6)0.6448 (10)0.062 (4)
N51.042 (2)0.2718 (7)0.6972 (13)0.069 (5)
C150.949 (2)0.3422 (8)0.6563 (14)0.050 (5)
C161.0447 (18)0.4212 (8)0.6779 (11)0.033 (4)
C171.252 (2)0.4217 (9)0.7387 (12)0.051 (5)
C181.346 (2)0.3473 (11)0.7809 (14)0.067 (6)
C191.235 (3)0.2749 (9)0.7587 (17)0.071 (7)
C200.925 (2)0.5006 (9)0.6307 (14)0.052 (6)
O1W0.1720 (14)0.6202 (7)0.3881 (12)0.068 (4)
H10.925900.669600.657600.0540*
H2A0.455200.671500.476500.0810*
H2B0.632000.617200.536000.0810*
H4A0.518900.954900.547700.0510*
H4B0.707100.990300.635700.0510*
H7A1.289100.793500.805800.0710*
H7B1.219600.700300.784200.0710*
H8A1.052100.710100.987300.1190*
H8B1.128100.802401.009900.1190*
H8C1.288000.729201.029500.1190*
H101.253000.941900.686900.0520*
H111.433301.042900.830300.0690*
H130.998601.046301.073800.0660*
H140.819500.944500.937100.0570*
H150.812400.340100.610800.0600*
H171.324900.471400.750800.0620*
H181.483400.346200.824000.0810*
H191.300900.225200.788900.0850*
H11W0.116 (17)0.672 (5)0.346 (13)0.08 (5)*
H12W0.086 (15)0.604 (7)0.456 (10)0.09 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.086 (3)0.073 (3)0.080 (3)0.026 (3)0.014 (2)0.018 (3)
N10.052 (7)0.025 (6)0.053 (7)0.011 (6)0.004 (6)0.003 (6)
N20.059 (8)0.034 (7)0.098 (10)0.000 (6)0.024 (7)0.004 (7)
N30.049 (7)0.031 (7)0.061 (7)0.004 (6)0.002 (6)0.002 (6)
N40.034 (6)0.036 (6)0.053 (7)0.002 (5)0.008 (5)0.001 (5)
C20.056 (10)0.032 (8)0.047 (8)0.007 (7)0.005 (7)0.008 (7)
C40.041 (8)0.030 (8)0.034 (8)0.002 (6)0.014 (6)0.011 (6)
C50.035 (7)0.019 (7)0.044 (8)0.008 (6)0.003 (6)0.008 (6)
C60.041 (8)0.043 (8)0.033 (8)0.003 (7)0.003 (6)0.008 (7)
C70.069 (10)0.053 (9)0.051 (9)0.002 (8)0.004 (7)0.001 (8)
C80.080 (11)0.082 (11)0.063 (10)0.017 (9)0.031 (8)0.009 (9)
C90.030 (7)0.033 (7)0.043 (8)0.004 (6)0.003 (6)0.009 (7)
C100.040 (8)0.038 (8)0.056 (9)0.003 (6)0.017 (7)0.014 (7)
C110.043 (9)0.058 (10)0.077 (11)0.034 (7)0.024 (8)0.018 (9)
C120.036 (9)0.053 (9)0.058 (10)0.004 (7)0.013 (7)0.013 (8)
C130.059 (11)0.066 (10)0.038 (8)0.008 (8)0.006 (8)0.001 (8)
C140.059 (9)0.037 (8)0.050 (9)0.015 (7)0.017 (7)0.009 (7)
O10.062 (7)0.039 (6)0.084 (7)0.004 (5)0.011 (5)0.004 (6)
O20.061 (7)0.036 (5)0.083 (8)0.007 (5)0.004 (5)0.003 (6)
N50.082 (10)0.048 (9)0.073 (9)0.009 (8)0.003 (7)0.002 (7)
C150.066 (9)0.022 (7)0.063 (9)0.006 (7)0.010 (7)0.007 (8)
C160.044 (8)0.031 (7)0.027 (6)0.006 (7)0.017 (6)0.006 (6)
C170.049 (9)0.046 (9)0.055 (9)0.003 (8)0.005 (7)0.001 (8)
C180.052 (9)0.075 (11)0.069 (10)0.027 (10)0.005 (7)0.001 (10)
C190.104 (15)0.036 (9)0.076 (12)0.010 (10)0.025 (11)0.007 (9)
C200.060 (11)0.049 (9)0.044 (9)0.008 (9)0.004 (8)0.004 (8)
O1W0.056 (6)0.044 (6)0.104 (9)0.005 (6)0.013 (6)0.000 (7)
Geometric parameters (Å, º) top
Cl1—C121.765 (14)C9—C141.380 (17)
O1—C201.233 (17)C10—C111.386 (18)
O2—C201.267 (17)C11—C121.36 (2)
O1W—H11W0.97 (9)C12—C131.332 (19)
O1W—H12W0.96 (10)C13—C141.374 (18)
N1—C61.359 (16)C7—H7A0.9693
N1—C21.361 (17)C7—H7B0.9684
N2—C21.335 (16)C8—H8A0.9577
N3—C41.328 (15)C8—H8B0.9601
N3—C21.336 (16)C8—H8C0.9616
N4—C41.328 (15)C10—H100.9305
N1—H10.8597C11—H110.9329
N2—H2B0.8598C13—H130.9313
N2—H2A0.8599C14—H140.9299
N4—H4A0.8600C15—C161.416 (18)
N4—H4B0.8597C16—C171.392 (17)
N5—C151.314 (17)C16—C201.527 (19)
N5—C191.31 (2)C17—C181.37 (2)
C4—C51.434 (16)C18—C191.37 (2)
C5—C91.472 (16)C15—H150.9322
C5—C61.346 (17)C17—H170.9283
C6—C71.523 (18)C18—H180.9297
C7—C81.533 (18)C19—H190.9309
C9—C101.392 (16)
H11W—O1W—H12W106 (10)C8—C7—H7B109.47
C2—N1—C6119.9 (10)C6—C7—H7B109.38
C2—N3—C4117.4 (11)H7A—C7—H7B108.07
C2—N1—H1120.04C6—C7—H7A109.39
C6—N1—H1120.09C7—C8—H8B109.49
C2—N2—H2A120.09H8A—C8—H8B109.64
C2—N2—H2B119.91H8A—C8—H8C109.55
H2A—N2—H2B120.00H8B—C8—H8C109.31
H4A—N4—H4B120.00C7—C8—H8A109.55
C4—N4—H4B120.02C7—C8—H8C109.28
C4—N4—H4A119.98C9—C10—H10119.45
C15—N5—C19118.1 (12)C11—C10—H10119.50
N2—C2—N3121.1 (12)C12—C11—H11120.42
N1—C2—N3122.1 (11)C10—C11—H11120.38
N1—C2—N2116.7 (11)C12—C13—H13119.99
N3—C4—N4117.4 (10)C14—C13—H13119.66
N4—C4—C5119.4 (10)C13—C14—H14119.34
N3—C4—C5123.2 (10)C9—C14—H14119.32
C4—C5—C9122.6 (10)N5—C15—C16123.6 (12)
C4—C5—C6115.7 (10)C15—C16—C17116.6 (12)
C6—C5—C9121.6 (10)C15—C16—C20120.6 (11)
N1—C6—C7113.0 (11)C17—C16—C20122.7 (12)
C5—C6—C7126.0 (11)C16—C17—C18118.7 (13)
N1—C6—C5121.0 (11)C17—C18—C19119.3 (13)
C6—C7—C8111.0 (10)N5—C19—C18123.7 (14)
C5—C9—C14120.7 (10)O1—C20—O2127.7 (13)
C5—C9—C10122.4 (11)O2—C20—C16113.5 (11)
C10—C9—C14116.8 (11)O1—C20—C16118.9 (12)
C9—C10—C11121.0 (11)N5—C15—H15118.26
C10—C11—C12119.2 (12)C16—C15—H15118.15
Cl1—C12—C11117.7 (10)C18—C17—H17120.80
C11—C12—C13121.2 (13)C16—C17—H17120.51
Cl1—C12—C13121.1 (11)C17—C18—H18120.27
C12—C13—C14120.4 (13)C19—C18—H18120.46
C9—C14—C13121.3 (12)N5—C19—H19118.31
C8—C7—H7A109.45C18—C19—H19118.02
C6—N1—C2—N2174.7 (11)N1—C6—C7—C8102.2 (13)
C6—N1—C2—N36.0 (19)C5—C6—C7—C877.6 (16)
C2—N1—C6—C56.1 (17)C5—C9—C14—C13175.7 (11)
C2—N1—C6—C7173.7 (11)C5—C9—C10—C11175.1 (11)
C4—N3—C2—N10.8 (18)C10—C9—C14—C131.4 (18)
C2—N3—C4—C57.5 (17)C14—C9—C10—C112.0 (18)
C2—N3—C4—N4174.7 (11)C9—C10—C11—C120.4 (19)
C4—N3—C2—N2178.5 (11)C10—C11—C12—Cl1176.1 (10)
C15—N5—C19—C181 (2)C10—C11—C12—C132 (2)
C19—N5—C15—C161 (2)C11—C12—C13—C143 (2)
N3—C4—C5—C67.2 (17)Cl1—C12—C13—C14175.4 (10)
N4—C4—C5—C97.5 (17)C12—C13—C14—C91 (2)
N3—C4—C5—C9170.2 (11)N5—C15—C16—C20178.5 (12)
N4—C4—C5—C6175.1 (11)N5—C15—C16—C173.8 (18)
C4—C5—C9—C10111.4 (13)C15—C16—C17—C183.7 (17)
C4—C5—C9—C1471.6 (16)C15—C16—C20—O2173.8 (11)
C9—C5—C6—C72.4 (19)C17—C16—C20—O1175.8 (11)
C6—C5—C9—C1071.3 (16)C17—C16—C20—O23.8 (17)
C6—C5—C9—C14105.7 (14)C20—C16—C17—C18178.6 (11)
C4—C5—C6—C7179.9 (11)C15—C16—C20—O16.6 (18)
C9—C5—C6—N1177.3 (11)C16—C17—C18—C191.7 (19)
C4—C5—C6—N10.1 (17)C17—C18—C19—N51 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.832.686 (14)175
N2—H2A···O1W0.862.082.861 (15)150
N2—H2B···O10.862.102.957 (13)172
N4—H4A···O1i0.862.052.897 (14)168
N4—H4B···O1Wi0.862.263.031 (15)150
O1W—H11W···N5i0.97 (9)1.92 (9)2.862 (16)164 (10)
O1W—H12W···O2ii0.96 (10)1.97 (10)2.862 (14)154 (9)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H14ClN4+·C6H4NO2·H2O
Mr389.84
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)6.570 (2), 16.055 (3), 9.480 (2)
β (°) 99.19 (3)
V3)987.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.23 × 0.20 × 0.18
Data collection
DiffractometerPhilips PW1100
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.951, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
1909, 1807, 617
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.056, 0.85
No. of reflections1807
No. of parameters245
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.25
Absolute structureFlack (1983), no Friedel pairs
Absolute structure parameter0.12 (14)

Computer programs: PW1100 Software (Philips, 1978), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.832.686 (14)175
N2—H2A···O1W0.862.082.861 (15)150
N2—H2B···O10.862.102.957 (13)172
N4—H4A···O1i0.862.052.897 (14)168
N4—H4B···O1Wi0.862.263.031 (15)150
O1W—H11W···N5i0.97 (9)1.92 (9)2.862 (16)164 (10)
O1W—H12W···O2ii0.96 (10)1.97 (10)2.862 (14)154 (9)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds