Download citation
Download citation
link to html
In the title compound, C18H20N4O3, a glycoluril derivative, the oxadiazinane six-membered ring displays a chair conformation and the bridgehead cyclo­hexane ring a boat conformation. In the crystal structure, inter­molecular C—H...O hydrogen bonds may help to establish the packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052038/hb2603sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052038/hb2603Isup2.hkl
Contains datablock I

CCDC reference: 667444

Key indicators

  • Single-crystal X-ray study
  • T = 297 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.045
  • wR factor = 0.129
  • Data-to-parameter ratio = 15.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for C3 - C4 .. 6.04 su
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Glycolurils, due to their special pre-formed skeletal structures, are widely used as platforms or building blocks to construct a series of compounds with more sophisticated structures (e. g. Reek et al., 2003). In recent years a series of receptors derived from glycoluril have been developed (Jansen et al., 2001).

We report here the structure of the title glycoluril derivative, (I) (Fig. 1), which is an important intermediate for the preparation of glycoluril receptors (Wu et al., 2002). The bond lengths and angles present in (I) show no unusual features and are similar to those found in other similar compounds (Fettinger et al., 2004; Cao et al., 2006).

The imidazole ring A (N1/N3/C9/C11/C16) and ring B (N2/N4/C10–11/C16) are close to flat, the maximum deviation from the mean plane being 0.085 (2) Å and 0.093 (2) Å for atom C9 or N2. The dihedral angle between them is 72.28 (7)°. The C3N2O oxadiazinane six-membered ring displays a chair conformation.

In the crystal, weak intermolecular C—H···O hydrogen bonds lead to the formation of a tape-like structure (Fig. 2).

Related literature top

For related structures, see: Fettinger et al. (2004); Cao et al. (2006). For background, see: Jansen et al. (2001); Wu et al. (2002); Reek et al. (2003).

Experimental top

The title compound was synthesized according to the procedure of Wu et al. (2002). Colourless blocks of (I) were obtained by slow evaporation of a dichloromethane solution at 283 K.

Refinement top

The H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Glycolurils, due to their special pre-formed skeletal structures, are widely used as platforms or building blocks to construct a series of compounds with more sophisticated structures (e. g. Reek et al., 2003). In recent years a series of receptors derived from glycoluril have been developed (Jansen et al., 2001).

We report here the structure of the title glycoluril derivative, (I) (Fig. 1), which is an important intermediate for the preparation of glycoluril receptors (Wu et al., 2002). The bond lengths and angles present in (I) show no unusual features and are similar to those found in other similar compounds (Fettinger et al., 2004; Cao et al., 2006).

The imidazole ring A (N1/N3/C9/C11/C16) and ring B (N2/N4/C10–11/C16) are close to flat, the maximum deviation from the mean plane being 0.085 (2) Å and 0.093 (2) Å for atom C9 or N2. The dihedral angle between them is 72.28 (7)°. The C3N2O oxadiazinane six-membered ring displays a chair conformation.

In the crystal, weak intermolecular C—H···O hydrogen bonds lead to the formation of a tape-like structure (Fig. 2).

For related structures, see: Fettinger et al. (2004); Cao et al. (2006). For background, see: Jansen et al. (2001); Wu et al. (2002); Reek et al. (2003).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level for the non-hydrogen atoms.
[Figure 2] Fig. 2. A packing diagram for (I). C—H···O hydrogen bonds are shown as dashed lines.
1,2,13,14,14a,15,16,17,18,18a-Decahydro-1,14-methano-4H,6H,8H- 1,3,5-oxadiazino[3',4':3,3a]benzimidazo[1,7a-b][2,4]benzodiazepine- 6,19-dione top
Crystal data top
C18H20N4O3F(000) = 720
Mr = 340.38Dx = 1.405 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4769 reflections
a = 11.8315 (12) Åθ = 2.4–28.2°
b = 11.3603 (11) ŵ = 0.10 mm1
c = 11.9716 (12) ÅT = 297 K
β = 90.261 (2)°Block, colorless
V = 1609.1 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 4K CCD
diffractometer
2964 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 27.0°, θmin = 2.4°
ω scansh = 1315
9429 measured reflectionsk = 1014
3494 independent reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.2493P]
where P = (Fo2 + 2Fc2)/3
3494 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H20N4O3V = 1609.1 (3) Å3
Mr = 340.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8315 (12) ŵ = 0.10 mm1
b = 11.3603 (11) ÅT = 297 K
c = 11.9716 (12) Å0.30 × 0.20 × 0.20 mm
β = 90.261 (2)°
Data collection top
Bruker SMART 4K CCD
diffractometer
2964 reflections with I > 2σ(I)
9429 measured reflectionsRint = 0.020
3494 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
3494 reflectionsΔρmin = 0.24 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N21.00013 (9)0.16297 (9)0.17388 (9)0.0371 (3)
N30.87562 (9)0.04324 (10)0.39525 (9)0.0393 (3)
O10.93433 (10)0.18108 (9)0.52572 (8)0.0525 (3)
C111.02131 (10)0.07801 (11)0.26298 (10)0.0329 (3)
C90.94842 (11)0.12802 (11)0.43866 (11)0.0384 (3)
O20.84406 (10)0.26030 (10)0.10290 (9)0.0566 (3)
N11.03911 (9)0.13619 (10)0.36993 (9)0.0380 (3)
O30.70042 (9)0.13063 (10)0.34834 (11)0.0599 (3)
N40.82993 (9)0.08765 (10)0.20448 (10)0.0409 (3)
C160.90377 (10)0.01906 (11)0.27860 (10)0.0341 (3)
C100.88658 (12)0.18055 (12)0.15638 (11)0.0399 (3)
C121.11293 (11)0.01106 (13)0.23557 (12)0.0435 (3)
H12A1.18270.03040.21950.052*
H12B1.12610.06070.30020.052*
C150.90251 (12)0.11112 (11)0.24948 (12)0.0395 (3)
H15A0.82510.13910.24610.047*
H15B0.94200.15530.30690.047*
C61.08589 (11)0.35691 (12)0.22752 (12)0.0419 (3)
C131.08184 (14)0.08793 (14)0.13630 (14)0.0526 (4)
H13A1.13150.15590.13530.063*
H13B1.09470.04380.06820.063*
C71.08185 (13)0.25468 (13)0.14646 (11)0.0447 (3)
H7A1.06420.28500.07270.054*
H7B1.15640.21940.14310.054*
C81.13119 (12)0.21882 (13)0.38893 (12)0.0460 (3)
H8A1.19950.18720.35590.055*
H8B1.14420.22580.46870.055*
C170.75673 (13)0.04987 (15)0.42045 (14)0.0538 (4)
H17A0.72310.02750.41230.065*
H17B0.74710.07470.49740.065*
C51.06832 (13)0.47048 (14)0.18786 (16)0.0544 (4)
H51.05190.48220.11260.065*
C11.10963 (11)0.34032 (13)0.34123 (12)0.0429 (3)
C180.71283 (12)0.09427 (15)0.23565 (15)0.0544 (4)
H18A0.67410.14960.18700.065*
H18B0.67800.01770.22580.065*
C140.95944 (13)0.13044 (13)0.13732 (12)0.0468 (3)
H14A0.91720.08900.07990.056*
H14B0.95760.21370.11940.056*
C31.09754 (15)0.55057 (15)0.37046 (19)0.0662 (5)
H31.10150.61480.41840.079*
C41.07500 (14)0.56673 (15)0.2592 (2)0.0672 (5)
H41.06410.64230.23130.081*
C21.11438 (14)0.43785 (15)0.41086 (16)0.0569 (4)
H21.12920.42720.48650.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0430 (6)0.0330 (5)0.0352 (5)0.0025 (5)0.0016 (4)0.0022 (4)
N30.0402 (6)0.0360 (6)0.0417 (6)0.0005 (5)0.0086 (4)0.0033 (5)
O10.0746 (7)0.0445 (6)0.0384 (5)0.0023 (5)0.0057 (5)0.0076 (4)
C110.0354 (6)0.0303 (6)0.0331 (6)0.0004 (5)0.0008 (5)0.0000 (5)
C90.0487 (8)0.0312 (6)0.0354 (6)0.0035 (5)0.0003 (5)0.0010 (5)
O20.0676 (7)0.0432 (6)0.0590 (7)0.0108 (5)0.0153 (5)0.0088 (5)
N10.0428 (6)0.0380 (6)0.0332 (5)0.0068 (5)0.0018 (4)0.0007 (4)
O30.0417 (6)0.0529 (7)0.0850 (8)0.0110 (5)0.0086 (5)0.0094 (6)
N40.0357 (6)0.0355 (6)0.0514 (7)0.0032 (4)0.0069 (5)0.0001 (5)
C160.0334 (6)0.0308 (6)0.0380 (6)0.0016 (5)0.0003 (5)0.0007 (5)
C100.0479 (7)0.0324 (7)0.0393 (7)0.0046 (5)0.0071 (5)0.0042 (5)
C120.0364 (7)0.0408 (7)0.0533 (8)0.0045 (6)0.0057 (6)0.0031 (6)
C150.0419 (7)0.0294 (6)0.0471 (7)0.0013 (5)0.0005 (5)0.0016 (5)
C60.0343 (6)0.0362 (7)0.0553 (8)0.0047 (5)0.0063 (6)0.0020 (6)
C130.0620 (9)0.0405 (8)0.0553 (9)0.0048 (7)0.0191 (7)0.0053 (7)
C70.0531 (8)0.0430 (8)0.0381 (7)0.0070 (6)0.0059 (6)0.0051 (6)
C80.0472 (8)0.0471 (8)0.0437 (7)0.0101 (6)0.0076 (6)0.0024 (6)
C170.0461 (8)0.0502 (9)0.0652 (10)0.0006 (7)0.0181 (7)0.0042 (7)
C50.0410 (8)0.0422 (8)0.0801 (11)0.0021 (6)0.0037 (7)0.0106 (8)
C10.0367 (7)0.0406 (7)0.0514 (8)0.0081 (6)0.0076 (6)0.0064 (6)
C180.0357 (7)0.0482 (9)0.0791 (11)0.0037 (6)0.0071 (7)0.0054 (8)
C140.0612 (9)0.0366 (7)0.0427 (7)0.0046 (6)0.0013 (6)0.0060 (6)
C30.0530 (9)0.0454 (9)0.1005 (15)0.0072 (7)0.0239 (9)0.0274 (9)
C40.0434 (9)0.0354 (8)0.1228 (18)0.0020 (6)0.0160 (9)0.0013 (9)
C20.0521 (9)0.0534 (9)0.0653 (10)0.0136 (7)0.0150 (7)0.0190 (8)
Geometric parameters (Å, º) top
N2—C101.3734 (17)C6—C51.390 (2)
N2—C111.4593 (16)C6—C11.401 (2)
N2—C71.4598 (17)C6—C71.514 (2)
N3—C91.3912 (17)C13—C141.527 (2)
N3—C171.4419 (18)C13—H13A0.9700
N3—C161.4631 (17)C13—H13B0.9700
O1—C91.2161 (16)C7—H7A0.9700
C11—N11.4554 (16)C7—H7B0.9700
C11—C121.5198 (18)C8—C11.515 (2)
C11—C161.5556 (17)C8—H8A0.9700
C9—N11.3582 (17)C8—H8B0.9700
O2—C101.2169 (16)C17—H17A0.9700
N1—C81.4552 (17)C17—H17B0.9700
O3—C181.419 (2)C5—C41.390 (3)
O3—C171.423 (2)C5—H50.9300
N4—C101.3777 (19)C1—C21.387 (2)
N4—C181.4384 (18)C18—H18A0.9700
N4—C161.4665 (16)C18—H18B0.9700
C16—C151.5195 (18)C14—H14A0.9700
C12—C131.519 (2)C14—H14B0.9700
C12—H12A0.9700C3—C41.369 (3)
C12—H12B0.9700C3—C21.383 (3)
C15—C141.521 (2)C3—H30.9300
C15—H15A0.9700C4—H40.9300
C15—H15B0.9700C2—H20.9300
C10—N2—C11111.86 (10)C12—C13—H13B108.8
C10—N2—C7120.69 (11)C14—C13—H13B108.8
C11—N2—C7121.65 (11)H13A—C13—H13B107.7
C9—N3—C17119.25 (11)N2—C7—C6114.99 (11)
C9—N3—C16110.08 (10)N2—C7—H7A108.5
C17—N3—C16115.85 (11)C6—C7—H7A108.5
N1—C11—N2111.49 (10)N2—C7—H7B108.5
N1—C11—C12113.07 (10)C6—C7—H7B108.5
N2—C11—C12113.75 (10)H7A—C7—H7B107.5
N1—C11—C16102.45 (9)N1—C8—C1113.84 (11)
N2—C11—C16102.83 (9)N1—C8—H8A108.8
C12—C11—C16112.23 (10)C1—C8—H8A108.8
O1—C9—N1126.66 (13)N1—C8—H8B108.8
O1—C9—N3125.18 (13)C1—C8—H8B108.8
N1—C9—N3108.09 (11)H8A—C8—H8B107.7
C9—N1—C8122.84 (11)O3—C17—N3111.18 (12)
C9—N1—C11112.98 (10)O3—C17—H17A109.4
C8—N1—C11122.39 (11)N3—C17—H17A109.4
C18—O3—C17109.80 (11)O3—C17—H17B109.4
C10—N4—C18122.64 (12)N3—C17—H17B109.4
C10—N4—C16111.74 (10)H17A—C17—H17B108.0
C18—N4—C16116.27 (12)C4—C5—C6120.82 (18)
N3—C16—N4109.89 (10)C4—C5—H5119.6
N3—C16—C15113.56 (11)C6—C5—H5119.6
N4—C16—C15111.91 (11)C2—C1—C6118.92 (15)
N3—C16—C11103.97 (10)C2—C1—C8119.66 (14)
N4—C16—C11103.23 (10)C6—C1—C8121.43 (12)
C15—C16—C11113.53 (10)O3—C18—N4111.45 (12)
O2—C10—N2126.18 (14)O3—C18—H18A109.3
O2—C10—N4126.12 (13)N4—C18—H18A109.3
N2—C10—N4107.59 (11)O3—C18—H18B109.3
C13—C12—C11112.42 (12)N4—C18—H18B109.3
C13—C12—H12A109.1H18A—C18—H18B108.0
C11—C12—H12A109.1C15—C14—C13112.66 (12)
C13—C12—H12B109.1C15—C14—H14A109.1
C11—C12—H12B109.1C13—C14—H14A109.1
H12A—C12—H12B107.9C15—C14—H14B109.1
C16—C15—C14109.82 (11)C13—C14—H14B109.1
C16—C15—H15A109.7H14A—C14—H14B107.8
C14—C15—H15A109.7C4—C3—C2119.43 (16)
C16—C15—H15B109.7C4—C3—H3120.3
C14—C15—H15B109.7C2—C3—H3120.3
H15A—C15—H15B108.2C3—C4—C5120.17 (17)
C5—C6—C1119.05 (14)C3—C4—H4119.9
C5—C6—C7119.26 (14)C5—C4—H4119.9
C1—C6—C7121.67 (13)C3—C2—C1121.59 (18)
C12—C13—C14113.71 (12)C3—C2—H2119.2
C12—C13—H13A108.8C1—C2—H2119.2
C14—C13—H13A108.8
C10—N2—C11—N194.60 (12)C7—N2—C10—O212.3 (2)
C7—N2—C11—N158.67 (15)C11—N2—C10—N417.78 (14)
C10—N2—C11—C12136.10 (12)C7—N2—C10—N4171.35 (11)
C7—N2—C11—C1270.62 (15)C18—N4—C10—O224.9 (2)
C10—N2—C11—C1614.50 (13)C16—N4—C10—O2170.16 (13)
C7—N2—C11—C16167.77 (11)C18—N4—C10—N2158.67 (12)
C17—N3—C9—O128.9 (2)C16—N4—C10—N213.46 (15)
C16—N3—C9—O1166.34 (13)N1—C11—C12—C13168.61 (11)
C17—N3—C9—N1154.01 (12)N2—C11—C12—C1362.90 (15)
C16—N3—C9—N116.56 (14)C16—C11—C12—C1353.32 (15)
O1—C9—N1—C84.4 (2)N3—C16—C15—C14166.31 (11)
N3—C9—N1—C8178.55 (11)N4—C16—C15—C1468.56 (14)
O1—C9—N1—C11169.48 (13)C11—C16—C15—C1447.82 (15)
N3—C9—N1—C1113.47 (15)C11—C12—C13—C1442.71 (18)
N2—C11—N1—C9104.29 (12)C10—N2—C7—C675.03 (16)
C12—C11—N1—C9126.05 (12)C11—N2—C7—C675.93 (16)
C16—C11—N1—C95.05 (13)C5—C6—C7—N2123.34 (14)
N2—C11—N1—C860.86 (15)C1—C6—C7—N258.23 (18)
C12—C11—N1—C868.80 (16)C9—N1—C8—C185.48 (16)
C16—C11—N1—C8170.20 (12)C11—N1—C8—C178.21 (16)
C9—N3—C16—N496.99 (12)C18—O3—C17—N359.77 (16)
C17—N3—C16—N442.05 (15)C9—N3—C17—O382.31 (16)
C9—N3—C16—C15136.81 (11)C16—N3—C17—O352.80 (16)
C17—N3—C16—C1584.16 (14)C1—C6—C5—C40.5 (2)
C9—N3—C16—C1112.94 (13)C7—C6—C5—C4177.93 (14)
C17—N3—C16—C11151.98 (11)C5—C6—C1—C20.3 (2)
C10—N4—C16—N3106.11 (12)C7—C6—C1—C2178.71 (13)
C18—N4—C16—N341.49 (15)C5—C6—C1—C8179.11 (13)
C10—N4—C16—C15126.76 (12)C7—C6—C1—C80.7 (2)
C18—N4—C16—C1585.64 (14)N1—C8—C1—C2123.37 (14)
C10—N4—C16—C114.30 (14)N1—C8—C1—C657.23 (18)
C18—N4—C16—C11151.90 (11)C17—O3—C18—N459.14 (16)
N1—C11—C16—N34.75 (12)C10—N4—C18—O392.18 (16)
N2—C11—C16—N3120.54 (10)C16—N4—C18—O351.59 (17)
C12—C11—C16—N3116.83 (11)C16—C15—C14—C1359.16 (16)
N1—C11—C16—N4110.00 (10)C12—C13—C14—C1513.33 (18)
N2—C11—C16—N45.79 (12)C2—C3—C4—C50.5 (3)
C12—C11—C16—N4128.42 (11)C6—C5—C4—C30.9 (2)
N1—C11—C16—C15128.64 (11)C4—C3—C2—C10.4 (3)
N2—C11—C16—C15115.58 (11)C6—C1—C2—C30.7 (2)
C12—C11—C16—C157.06 (15)C8—C1—C2—C3178.67 (14)
C11—N2—C10—O2165.84 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O1i0.972.493.3991 (18)156
C17—H17A···O2ii0.972.543.510 (2)174
C12—H12B···O1i0.972.603.4963 (18)155
C3—H3···O1iii0.932.453.3144 (19)155
Symmetry codes: (i) x+2, y, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H20N4O3
Mr340.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)11.8315 (12), 11.3603 (11), 11.9716 (12)
β (°) 90.261 (2)
V3)1609.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 4K CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9429, 3494, 2964
Rint0.020
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.129, 1.05
No. of reflections3494
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O1i0.972.493.3991 (18)156
C17—H17A···O2ii0.972.543.510 (2)174
C12—H12B···O1i0.972.603.4963 (18)155
C3—H3···O1iii0.932.453.3144 (19)155
Symmetry codes: (i) x+2, y, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+2, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds