Download citation
Download citation
link to html
In the mol­ecular title complex, [Ag(C4H4NO2)(C10H8N2)], the Ag atom adopts a distorted T-shaped AgN3 coordination. Aromatic π–π stacking inter­actions [centroid–centroid separation = 3.8393 (17) Å] lead to centrosymmetric dimers of mol­ecules in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807050301/hb2575sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807050301/hb2575Isup2.hkl
Contains datablock I

CCDC reference: 667178

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.037
  • wR factor = 0.084
  • Data-to-parameter ratio = 16.4

checkCIF/PLATON results

No syntax errors found




Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.91 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ag1 - N3 .. 5.26 su
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.909 Tmax scaled 0.791 Tmin scaled 0.641 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Ag1 (9) 0.86
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Most homoleptic silver coordination complexes form polymeric structures, many of which exhibit poor solubility, such as silver carboxylates (Tolochko et al., 1998; Whitcomb and Rajeswaran, 2006a; Jaber et al., 1996), silver cyclic amidates (Whitcomb and Rajeswaran 2006b; Whitcomb and Rajeswaran, 2006c), and silver thiolates (Fijolek et al., 1997; Voicu et al., 2001). The connecting groups of these polymeric structures can be disrupted by incorporating argentophilic neutral-donor ligands into the complex, especially triarylphosphines (Oldham and Sandford, 1977; Othman et al., 2003; Whitcomb and Rajeswaran, 2006b). In our investigations to manipulate the solid-state structure of silver complexes, we now consider the effect of weaker argentophilic N donor atoms in the ligand 2,2'-dipyridyl (dipy, C10H8N2). We report here the crystal structure of the title silver complex, (I).

The new structure is a simple molecular complex of both ligands, having the composition AgSI-dipy (SI = succinimide anion, C4H4NO2-), which are additionally held together by π-π stacking interactions between dipy rings with centroid separations of 3.8393 (17) Å. The molecular structure of (I) is shown in Fig. 1, and the packing diagram of the π-π -bonded dimers is given in Fig 2. In order to achieve this structure, the dipy ligand both depolymerized and dehydrated the starting {[AgSI]2.H2O} complex.

The structures of three complexes of silver cyclic amides can now be compared: the title complex, the starting {[AgSI]2.H2O} complex (Whitcomb and Rajeswaran, 2006c), and the related bis-triphenylphosphine silver phthalimide (Whitcomb and Rajeswaran, 2006b). The starting {[AgSI]2.H2O} complex exhibits the shortest Ag—N bond lengths at 2.077 (3) and 2.095 (3) Å, while the phthalimide complex has a single Ag—N at 2.223 (3) Å. The Ag—N bonds of the title complex (Table 1) span the normal range with a tendency to the high side.

Related literature top

For related literature, see: Fijolek et al. (1997); Jaber et al. (1996); Oldham & Sandford (1977); Othman et al. (2003); Tolochko et al. (1998); Voicu et al. (2001); Whitcomb & Rajeswaran (2006a,b,c).

Experimental top

Silver succinate hydrate (Whitcomb and Rajeswaran, 2006c) (0.40 g) was reacted with 0.40 g bipyridyl in 20 ml EtOH. The thick dispersion completely cleared with mild heating. Slow cooling yielded colourless rods of (I). M.P. 454 K (sharp). Analysis: calc. for C14H12N3O2Ag: C = 46.43, H =3.34, N =11.60%, found C = 46.15, H =3.15, N =11.31%.

Structure description top

Most homoleptic silver coordination complexes form polymeric structures, many of which exhibit poor solubility, such as silver carboxylates (Tolochko et al., 1998; Whitcomb and Rajeswaran, 2006a; Jaber et al., 1996), silver cyclic amidates (Whitcomb and Rajeswaran 2006b; Whitcomb and Rajeswaran, 2006c), and silver thiolates (Fijolek et al., 1997; Voicu et al., 2001). The connecting groups of these polymeric structures can be disrupted by incorporating argentophilic neutral-donor ligands into the complex, especially triarylphosphines (Oldham and Sandford, 1977; Othman et al., 2003; Whitcomb and Rajeswaran, 2006b). In our investigations to manipulate the solid-state structure of silver complexes, we now consider the effect of weaker argentophilic N donor atoms in the ligand 2,2'-dipyridyl (dipy, C10H8N2). We report here the crystal structure of the title silver complex, (I).

The new structure is a simple molecular complex of both ligands, having the composition AgSI-dipy (SI = succinimide anion, C4H4NO2-), which are additionally held together by π-π stacking interactions between dipy rings with centroid separations of 3.8393 (17) Å. The molecular structure of (I) is shown in Fig. 1, and the packing diagram of the π-π -bonded dimers is given in Fig 2. In order to achieve this structure, the dipy ligand both depolymerized and dehydrated the starting {[AgSI]2.H2O} complex.

The structures of three complexes of silver cyclic amides can now be compared: the title complex, the starting {[AgSI]2.H2O} complex (Whitcomb and Rajeswaran, 2006c), and the related bis-triphenylphosphine silver phthalimide (Whitcomb and Rajeswaran, 2006b). The starting {[AgSI]2.H2O} complex exhibits the shortest Ag—N bond lengths at 2.077 (3) and 2.095 (3) Å, while the phthalimide complex has a single Ag—N at 2.223 (3) Å. The Ag—N bonds of the title complex (Table 1) span the normal range with a tendency to the high side.

For related literature, see: Fijolek et al. (1997); Jaber et al. (1996); Oldham & Sandford (1977); Othman et al. (2003); Tolochko et al. (1998); Voicu et al. (2001); Whitcomb & Rajeswaran (2006a,b,c).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: SHELXTL (Bruker, 2001) and Materials Studio (Accelrys, 2002); software used to prepare material for publication: publCIF.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. Packing diagram for (I).
(2,2'-Bipyidyl-κ2N,N')(succinamidato-κN)silver top
Crystal data top
[Ag(C4H4NO2)(C10H8N2)]F(000) = 720
Mr = 362.14Dx = 1.856 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8777 reflections
a = 12.0853 (3) Åθ = 1.0–27.5°
b = 7.4188 (2) ŵ = 1.56 mm1
c = 14.6724 (4) ÅT = 293 K
β = 99.924 (1)°Rod, colorless
V = 1295.82 (6) Å30.5 × 0.25 × 0.15 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2967 independent reflections
Radiation source: fine-focus sealed tube2176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 4.1°
ω and φ scansh = 1515
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
k = 79
Tmin = 0.706, Tmax = 0.871l = 1619
14369 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0421P)2]
where P = (Fo2 + 2Fc2)/3
2967 reflections(Δ/σ)max = 0.002
181 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Ag(C4H4NO2)(C10H8N2)]V = 1295.82 (6) Å3
Mr = 362.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.0853 (3) ŵ = 1.56 mm1
b = 7.4188 (2) ÅT = 293 K
c = 14.6724 (4) Å0.5 × 0.25 × 0.15 mm
β = 99.924 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2967 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
2176 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.871Rint = 0.069
14369 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.07Δρmax = 0.44 e Å3
2967 reflectionsΔρmin = 0.98 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.180684 (16)0.19961 (3)1.040989 (15)0.04664 (12)
O10.4046 (2)0.3033 (3)0.96269 (17)0.0641 (7)
O20.36059 (15)0.0042 (3)1.22380 (13)0.0497 (5)
N10.35406 (18)0.1646 (3)1.08880 (16)0.0374 (6)
N20.00208 (19)0.2619 (3)1.01848 (16)0.0348 (5)
N30.09929 (18)0.1201 (4)0.88357 (16)0.0403 (6)
C10.4306 (3)0.2259 (4)1.0372 (2)0.0413 (7)
C20.5483 (3)0.1835 (4)1.0839 (2)0.0448 (8)
H2A0.59020.29311.10190.054*
H2B0.58760.11401.04340.054*
C30.5330 (2)0.0749 (4)1.1676 (2)0.0438 (7)
H3A0.57200.13051.22390.053*
H3B0.56070.04701.16370.053*
C40.4069 (2)0.0756 (4)1.16514 (19)0.0351 (6)
C50.0482 (3)0.3534 (4)1.0814 (2)0.0413 (7)
H50.00370.38011.13800.050*
C60.1581 (2)0.4094 (4)1.0658 (2)0.0438 (7)
H60.18710.47211.11130.053*
C70.2248 (2)0.3717 (5)0.9821 (2)0.0454 (7)
H70.29930.40930.96990.054*
C80.1789 (2)0.2764 (4)0.9162 (2)0.0429 (7)
H80.22240.24860.85930.051*
C90.0668 (2)0.2231 (4)0.93656 (19)0.0322 (6)
C100.0127 (2)0.1233 (4)0.86720 (18)0.0334 (6)
C110.0747 (2)0.0387 (4)0.79043 (19)0.0408 (7)
H110.15280.04120.78020.049*
C120.0174 (3)0.0496 (4)0.7294 (2)0.0468 (7)
H120.05690.10670.67740.056*
C130.0980 (3)0.0524 (4)0.7463 (2)0.0493 (8)
H130.13800.11070.70610.059*
C140.1524 (2)0.0329 (4)0.8237 (2)0.0474 (8)
H140.23050.03040.83550.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03268 (15)0.05414 (19)0.04831 (18)0.00169 (10)0.00653 (10)0.00760 (11)
O10.0784 (17)0.0724 (17)0.0437 (15)0.0069 (12)0.0170 (12)0.0134 (12)
O20.0411 (11)0.0646 (14)0.0435 (12)0.0047 (11)0.0074 (9)0.0113 (11)
N10.0327 (12)0.0456 (14)0.0330 (13)0.0016 (10)0.0030 (10)0.0013 (11)
N20.0362 (12)0.0354 (12)0.0316 (13)0.0028 (10)0.0028 (10)0.0039 (10)
N30.0335 (12)0.0463 (14)0.0391 (14)0.0004 (11)0.0010 (10)0.0017 (12)
C10.0476 (17)0.0403 (17)0.0384 (17)0.0021 (14)0.0139 (14)0.0046 (14)
C20.0398 (16)0.0470 (19)0.0507 (19)0.0045 (13)0.0167 (14)0.0099 (14)
C30.0307 (14)0.0497 (19)0.0491 (18)0.0007 (13)0.0018 (12)0.0019 (14)
C40.0325 (13)0.0357 (15)0.0354 (15)0.0010 (12)0.0010 (11)0.0065 (13)
C50.0504 (18)0.0396 (16)0.0337 (16)0.0040 (14)0.0061 (13)0.0054 (13)
C60.0482 (17)0.0409 (17)0.0450 (18)0.0005 (14)0.0159 (14)0.0011 (14)
C70.0356 (15)0.0464 (18)0.056 (2)0.0046 (14)0.0129 (14)0.0055 (16)
C80.0351 (15)0.0493 (19)0.0422 (17)0.0020 (13)0.0007 (12)0.0043 (15)
C90.0319 (14)0.0297 (14)0.0341 (15)0.0020 (11)0.0030 (11)0.0062 (12)
C100.0348 (14)0.0317 (14)0.0328 (15)0.0025 (12)0.0031 (11)0.0076 (12)
C110.0382 (15)0.0427 (16)0.0386 (16)0.0032 (13)0.0013 (12)0.0033 (14)
C120.0576 (18)0.0435 (18)0.0364 (16)0.0037 (15)0.0001 (13)0.0045 (14)
C130.0620 (19)0.0455 (18)0.0427 (18)0.0083 (15)0.0150 (15)0.0016 (14)
C140.0390 (16)0.059 (2)0.0446 (18)0.0069 (14)0.0085 (13)0.0020 (15)
Geometric parameters (Å, º) top
Ag1—N12.108 (2)C5—C61.372 (4)
Ag1—N22.225 (2)C5—H50.9300
Ag1—N32.422 (2)C6—C71.377 (4)
O1—C11.227 (4)C6—H60.9300
O2—C41.225 (3)C7—C81.388 (5)
N1—C41.361 (4)C7—H70.9300
N1—C11.369 (4)C8—C91.393 (4)
N2—C51.342 (4)C8—H80.9300
N2—C91.347 (3)C9—C101.497 (4)
N3—C101.333 (3)C10—C111.390 (4)
N3—C141.341 (4)C11—C121.387 (4)
C1—C21.502 (4)C11—H110.9300
C2—C31.507 (4)C12—C131.374 (4)
C2—H2A0.9700C12—H120.9300
C2—H2B0.9700C13—C141.366 (4)
C3—C41.518 (3)C13—H130.9300
C3—H3A0.9700C14—H140.9300
C3—H3B0.9700
N1—Ag1—N2168.37 (9)N2—C5—C6122.9 (3)
N1—Ag1—N3120.30 (8)N2—C5—H5118.5
N2—Ag1—N371.30 (8)C6—C5—H5118.5
C4—N1—C1110.5 (2)C5—C6—C7119.2 (3)
C4—N1—Ag1129.19 (18)C5—C6—H6120.4
C1—N1—Ag1120.15 (19)C7—C6—H6120.4
C5—N2—C9118.4 (2)C6—C7—C8118.8 (3)
C5—N2—Ag1121.49 (19)C6—C7—H7120.6
C9—N2—Ag1119.80 (18)C8—C7—H7120.6
C10—N3—C14118.5 (3)C7—C8—C9119.1 (3)
C10—N3—Ag1113.59 (17)C7—C8—H8120.5
C14—N3—Ag1125.51 (18)C9—C8—H8120.5
O1—C1—N1123.7 (3)N2—C9—C8121.6 (3)
O1—C1—C2125.5 (3)N2—C9—C10117.2 (2)
N1—C1—C2110.8 (3)C8—C9—C10121.2 (3)
C1—C2—C3104.1 (2)N3—C10—C11121.7 (3)
C1—C2—H2A110.9N3—C10—C9115.8 (2)
C3—C2—H2A110.9C11—C10—C9122.5 (2)
C1—C2—H2B110.9C12—C11—C10118.5 (3)
C3—C2—H2B110.9C12—C11—H11120.8
H2A—C2—H2B109.0C10—C11—H11120.8
C2—C3—C4104.0 (2)C13—C12—C11119.7 (3)
C2—C3—H3A111.0C13—C12—H12120.2
C4—C3—H3A111.0C11—C12—H12120.2
C2—C3—H3B111.0C14—C13—C12118.1 (3)
C4—C3—H3B111.0C14—C13—H13121.0
H3A—C3—H3B109.0C12—C13—H13121.0
O2—C4—N1125.6 (2)N3—C14—C13123.5 (3)
O2—C4—C3124.0 (3)N3—C14—H14118.2
N1—C4—C3110.3 (2)C13—C14—H14118.2
N2—Ag1—N1—C457.8 (5)Ag1—N2—C5—C6173.4 (2)
N3—Ag1—N1—C4127.1 (2)N2—C5—C6—C70.3 (4)
N2—Ag1—N1—C1126.9 (4)C5—C6—C7—C80.6 (4)
N3—Ag1—N1—C148.2 (2)C6—C7—C8—C90.4 (5)
N1—Ag1—N2—C54.4 (5)C5—N2—C9—C80.3 (4)
N3—Ag1—N2—C5171.1 (2)Ag1—N2—C9—C8173.3 (2)
N1—Ag1—N2—C9177.9 (4)C5—N2—C9—C10179.1 (2)
N3—Ag1—N2—C92.36 (19)Ag1—N2—C9—C105.4 (3)
N1—Ag1—N3—C10170.39 (19)C7—C8—C9—N20.1 (4)
N2—Ag1—N3—C1010.66 (19)C7—C8—C9—C10178.8 (3)
N1—Ag1—N3—C148.5 (3)C14—N3—C10—C110.2 (4)
N2—Ag1—N3—C14172.5 (3)Ag1—N3—C10—C11163.0 (2)
C4—N1—C1—O1176.5 (3)C14—N3—C10—C9179.9 (2)
Ag1—N1—C1—O10.4 (4)Ag1—N3—C10—C916.8 (3)
C4—N1—C1—C22.9 (3)N2—C9—C10—N315.5 (4)
Ag1—N1—C1—C2179.00 (18)C8—C9—C10—N3163.2 (3)
O1—C1—C2—C3175.1 (3)N2—C9—C10—C11164.4 (3)
N1—C1—C2—C34.2 (3)C8—C9—C10—C1116.9 (4)
C1—C2—C3—C43.8 (3)N3—C10—C11—C120.6 (4)
C1—N1—C4—O2179.2 (3)C9—C10—C11—C12179.6 (3)
Ag1—N1—C4—O23.6 (4)C10—C11—C12—C130.4 (4)
C1—N1—C4—C30.3 (3)C11—C12—C13—C140.1 (5)
Ag1—N1—C4—C3175.92 (19)C10—N3—C14—C130.3 (5)
C2—C3—C4—O2178.1 (3)Ag1—N3—C14—C13161.4 (2)
C2—C3—C4—N12.4 (3)C12—C13—C14—N30.5 (5)
C9—N2—C5—C60.2 (4)

Experimental details

Crystal data
Chemical formula[Ag(C4H4NO2)(C10H8N2)]
Mr362.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.0853 (3), 7.4188 (2), 14.6724 (4)
β (°) 99.924 (1)
V3)1295.82 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.5 × 0.25 × 0.15
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing 1995)
Tmin, Tmax0.706, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
14369, 2967, 2176
Rint0.069
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.084, 1.07
No. of reflections2967
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.98

Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELXTL (Bruker, 2001) and Materials Studio (Accelrys, 2002), publCIF.

Selected geometric parameters (Å, º) top
Ag1—N12.108 (2)Ag1—N32.422 (2)
Ag1—N22.225 (2)
N1—Ag1—N2168.37 (9)N2—Ag1—N371.30 (8)
N1—Ag1—N3120.30 (8)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds