Download citation
Download citation
link to html
In the title compound, [Ni(C9H10NO2S2)2], the NiII ion adopts a distorted cis-NiS2O2 square-planar geometry arising from the two S,O-bidentate ligands. The thio­phene rings in each ligand are disordered, with site occupancy ratios of 0.874 (3):0.126 (3) and 0.741 (2):0.259 (2).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045850/hb2545sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045850/hb2545Isup2.hkl
Contains datablock I

CCDC reference: 663638

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.041
  • wR factor = 0.090
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT301_ALERT_3_C Main Residue Disorder ......................... 22.00 Perc.
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 28
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound, (I), was synthesized in the course of our studies of the thermochemical properties of thiocarbamate derivates in order to elucidate the binding process in complexes with transition metal ions (Ribeiro da Silva et al., 2007).

The ligand (N-2thienylcarbonylthiocarbamic-O-propylester) combines with the nickel(II) ion to from a tetra co-ordinated complex with an S2O2 co-ordination sphere in a cis configuration (Fig. 1, Table 1). The complex shows a slightly distortion to square planar geometry, where the maximum deviation of the atoms from the best plane formed by the five central atoms are: 0.043 (1), 0.053 (1), 0.043 (1), 0.053 (1) and 0.009 (1) Å, for S1, O1, S3 O3 and Ni1, respectively.

Otherwise, the bond lengths involving the ligands are within the range reported for similar complexes, derived from thioureas (Gomes et al., 2007; Emen et al., 2003); Binzet et al., 2003).

Related literature top

For related literature, see: Gomes et al. (2007); Emen et al. (2003); Binzet et al. (2003). For the synthesis, see: Ribeiro da Silva et al. (2007). For reference structural data, see: Allen et al. (1987).

Experimental top

The preparation of the complex was been described elsewhere (Ribeiro da Silva et al., 2007). Brown plates of (I) were obtained allowing slow vaporization of a methanolic/dichloromethane (1:1) solution of the complex.

Refinement top

All the H atoms bonded to C atoms were refined with standard distances: 0.93 Å for aromatic and 0.98, 0.96 and 0.97 Å, for tertiary, secondary and primary aliphatic groups respectively, with Uiso(H) = 1.5Ueq(C) for methyl groups and with Uiso(H) = 1.2Ueq(C). The thiophene groups are disorded in both ligands by rotation through 180° about the pivot atoms C11 and C31.

The double and single C—C bonds of the thiophene residue were refined with the bond-length restraints 1.424 (1) and 1.362 (1) Å respectively and the S—C bond length value was assigned to be 1.712 (1) Å.

The S atoms in the disordered groups were refined isotropically with the anisotropic temperature factor of the minor component constrained to that of the respective major components by means of the EADP instruction (Sheldrick, 1997). The carbon atoms of the major (parts A) components were refined anisotropically with their anisotropic temperature factors constained to that of the pivot atoms C11 and C31, respectively, for each group by means of the EADP instruction (Sheldrick, 1997). The carbon atoms of the minor components, (parts B), were refined isotropically with U common U values defined by free variables, (Sheldrick, 1997), for each group.

Structure description top

The title compound, (I), was synthesized in the course of our studies of the thermochemical properties of thiocarbamate derivates in order to elucidate the binding process in complexes with transition metal ions (Ribeiro da Silva et al., 2007).

The ligand (N-2thienylcarbonylthiocarbamic-O-propylester) combines with the nickel(II) ion to from a tetra co-ordinated complex with an S2O2 co-ordination sphere in a cis configuration (Fig. 1, Table 1). The complex shows a slightly distortion to square planar geometry, where the maximum deviation of the atoms from the best plane formed by the five central atoms are: 0.043 (1), 0.053 (1), 0.043 (1), 0.053 (1) and 0.009 (1) Å, for S1, O1, S3 O3 and Ni1, respectively.

Otherwise, the bond lengths involving the ligands are within the range reported for similar complexes, derived from thioureas (Gomes et al., 2007; Emen et al., 2003); Binzet et al., 2003).

For related literature, see: Gomes et al. (2007); Emen et al. (2003); Binzet et al. (2003). For the synthesis, see: Ribeiro da Silva et al. (2007). For reference structural data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). Only the major disorder components of the thiophene rings are shown.
Bis[O-propyl N'-(2-thienylcarbonyl)thiocarbamato]nickel(II) top
Crystal data top
[Ni(C9H10NO2S2)2]V = 1097.40 (8) Å3
Mr = 515.31Z = 2
Triclinic, P1F(000) = 532
Hall symbol: -P 1Dx = 1.559 Mg m3
a = 7.2627 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2917 (4) Åθ = 3.2–38.3°
c = 15.6218 (6) ŵ = 1.29 mm1
α = 72.742 (2)°T = 100 K
β = 80.847 (3)°Plate, brown
γ = 82.978 (3)°0.26 × 0.12 × 0.02 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3845 independent reflections
Radiation source: fine-focus sealed tube2975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 1.4°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1212
Tmin = 0.730, Tmax = 0.975l = 1818
10984 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.6558P]
where P = (Fo2 + 2Fc2)/3
3845 reflections(Δ/σ)max = 0.005
254 parametersΔρmax = 0.47 e Å3
28 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Ni(C9H10NO2S2)2]γ = 82.978 (3)°
Mr = 515.31V = 1097.40 (8) Å3
Triclinic, P1Z = 2
a = 7.2627 (3) ÅMo Kα radiation
b = 10.2917 (4) ŵ = 1.29 mm1
c = 15.6218 (6) ÅT = 100 K
α = 72.742 (2)°0.26 × 0.12 × 0.02 mm
β = 80.847 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3845 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2975 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.975Rint = 0.044
10984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04128 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.08Δρmax = 0.47 e Å3
3845 reflectionsΔρmin = 0.50 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.51058 (7)0.10730 (4)0.74876 (3)0.01716 (14)
S10.62325 (14)0.29040 (8)0.66089 (6)0.0231 (2)
O10.5852 (3)0.0037 (2)0.66876 (15)0.0202 (6)
O210.7603 (3)0.3728 (2)0.49805 (15)0.0214 (6)
C20.7036 (5)0.2589 (3)0.5591 (2)0.0190 (8)
C10.6648 (5)0.0293 (3)0.5886 (2)0.0182 (8)
C220.8974 (5)0.5022 (3)0.3542 (2)0.0238 (9)
H22A0.98680.52910.38450.029*
H22B0.78930.56810.35090.029*
C230.9853 (6)0.5022 (4)0.2594 (2)0.0318 (10)
H23A1.02250.59170.22650.048*
H23B0.89600.47730.22910.048*
H23C1.09300.43760.26260.048*
C210.8384 (5)0.3631 (3)0.4076 (2)0.0199 (8)
H21A0.74520.33640.37940.024*
H21B0.94510.29590.41100.024*
C110.7005 (5)0.08429 (18)0.54975 (17)0.0199 (5)
S11A0.63615 (19)0.24368 (11)0.61030 (8)0.0215 (3)0.874 (3)
C12A0.7804 (7)0.0818 (4)0.4644 (2)0.0199 (5)0.874 (3)
H12A0.82400.00360.42210.024*0.874 (3)
C13A0.7911 (7)0.2100 (3)0.4457 (3)0.0199 (5)0.874 (3)
H13A0.84140.22610.39090.024*0.874 (3)
C14A0.7169 (7)0.3057 (4)0.51981 (19)0.0199 (5)0.874 (3)
H14A0.71070.39600.52110.024*0.874 (3)
S11B0.8057 (14)0.0619 (8)0.4409 (3)0.0215 (3)0.126 (3)
C12B0.653 (4)0.2138 (12)0.593 (2)0.025 (6)*0.126 (3)
H12B0.59670.23670.65270.030*0.126 (3)
C13B0.693 (5)0.313 (3)0.5443 (17)0.025 (6)*0.126 (3)
H13B0.67150.40510.56140.030*0.126 (3)
C14B0.772 (4)0.2315 (11)0.465 (2)0.025 (6)*0.126 (3)
H14B0.81280.27210.41840.030*0.126 (3)
S30.40865 (14)0.22063 (8)0.84354 (6)0.0237 (2)
O30.4300 (3)0.0572 (2)0.82358 (14)0.0200 (6)
C310.3188 (5)0.2395 (2)0.93802 (15)0.0194 (6)
S31A0.3791 (3)0.34726 (14)0.87133 (10)0.0214 (3)0.741 (2)
C32A0.2338 (8)0.3073 (4)1.0208 (2)0.0194 (6)0.741 (2)
H32A0.19340.26511.06620.023*0.741 (2)
C33A0.2111 (10)0.4474 (4)1.0330 (4)0.0194 (6)0.741 (2)
H33A0.15400.50671.08500.023*0.741 (2)
C34A0.2871 (9)0.4801 (4)0.9558 (3)0.0194 (6)0.741 (2)
H34A0.28880.56730.94950.023*0.741 (2)
S31B0.2082 (7)0.3039 (4)1.04503 (19)0.0214 (3)0.259 (2)
C32B0.361 (3)0.3334 (13)0.8907 (10)0.026 (3)*0.259 (2)
H32B0.42240.31120.83190.031*0.259 (2)
C33B0.307 (3)0.4676 (17)0.9362 (9)0.026 (3)*0.259 (2)
H33B0.32280.54420.91500.031*0.259 (2)
C34B0.226 (3)0.4553 (11)1.0185 (11)0.026 (3)*0.259 (2)
H34B0.17930.53151.06170.031*0.259 (2)
C410.1610 (5)0.0915 (3)1.0900 (2)0.0192 (8)
H41A0.24140.01251.11720.023*
H41B0.04750.06031.08020.023*
N10.7199 (4)0.1486 (3)0.53306 (17)0.0187 (7)
C30.3537 (5)0.0960 (3)0.9041 (2)0.0160 (8)
C420.1151 (5)0.1831 (3)1.1506 (2)0.0216 (8)
H42A0.03960.26381.12150.026*
H42B0.22980.21211.16090.026*
C40.3167 (5)0.1082 (3)0.9416 (2)0.0171 (8)
O410.2562 (3)0.1712 (2)1.00466 (14)0.0190 (6)
N20.2979 (4)0.0229 (3)0.96285 (17)0.0195 (7)
C430.0080 (5)0.1084 (4)1.2414 (2)0.0241 (8)
H43A0.01990.16831.27940.036*
H43B0.08340.02911.27050.036*
H43C0.10650.08111.23120.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0219 (3)0.0141 (2)0.0156 (2)0.00209 (18)0.00078 (19)0.00487 (17)
S10.0335 (6)0.0172 (4)0.0190 (4)0.0064 (4)0.0037 (4)0.0076 (4)
O10.0266 (15)0.0154 (12)0.0189 (12)0.0022 (10)0.0002 (11)0.0068 (10)
O210.0305 (16)0.0152 (12)0.0180 (12)0.0039 (11)0.0031 (11)0.0062 (10)
C20.019 (2)0.0184 (18)0.0196 (18)0.0020 (15)0.0009 (16)0.0057 (15)
C10.014 (2)0.0219 (19)0.0187 (18)0.0022 (15)0.0032 (15)0.0054 (15)
C220.030 (2)0.0208 (19)0.0189 (18)0.0019 (16)0.0048 (17)0.0068 (15)
C230.038 (3)0.030 (2)0.023 (2)0.0001 (19)0.0012 (19)0.0043 (17)
C210.024 (2)0.0225 (18)0.0132 (17)0.0017 (16)0.0003 (15)0.0067 (14)
C110.0226 (13)0.0200 (11)0.0177 (11)0.0006 (9)0.0023 (10)0.0069 (10)
S11A0.0269 (7)0.0161 (5)0.0221 (7)0.0030 (5)0.0020 (5)0.0064 (5)
C12A0.0226 (13)0.0200 (11)0.0177 (11)0.0006 (9)0.0023 (10)0.0069 (10)
C13A0.0226 (13)0.0200 (11)0.0177 (11)0.0006 (9)0.0023 (10)0.0069 (10)
C14A0.0226 (13)0.0200 (11)0.0177 (11)0.0006 (9)0.0023 (10)0.0069 (10)
S11B0.0269 (7)0.0161 (5)0.0221 (7)0.0030 (5)0.0020 (5)0.0064 (5)
S30.0360 (6)0.0155 (4)0.0179 (4)0.0037 (4)0.0035 (4)0.0051 (4)
O30.0262 (15)0.0160 (12)0.0172 (12)0.0031 (10)0.0023 (11)0.0058 (10)
C310.0241 (15)0.0174 (11)0.0166 (13)0.0034 (9)0.0008 (11)0.0048 (9)
S31A0.0275 (8)0.0163 (6)0.0212 (7)0.0031 (5)0.0008 (6)0.0070 (5)
C32A0.0241 (15)0.0174 (11)0.0166 (13)0.0034 (9)0.0008 (11)0.0048 (9)
C33A0.0241 (15)0.0174 (11)0.0166 (13)0.0034 (9)0.0008 (11)0.0048 (9)
C34A0.0241 (15)0.0174 (11)0.0166 (13)0.0034 (9)0.0008 (11)0.0048 (9)
S31B0.0275 (8)0.0163 (6)0.0212 (7)0.0031 (5)0.0008 (6)0.0070 (5)
C410.021 (2)0.0180 (17)0.0182 (18)0.0049 (15)0.0020 (16)0.0048 (14)
N10.0218 (18)0.0182 (15)0.0168 (15)0.0011 (13)0.0005 (13)0.0073 (12)
C30.0109 (19)0.0192 (17)0.0183 (18)0.0004 (14)0.0053 (15)0.0049 (14)
C420.023 (2)0.0211 (18)0.0221 (19)0.0031 (15)0.0035 (16)0.0067 (15)
C40.016 (2)0.0193 (18)0.0180 (17)0.0000 (14)0.0014 (15)0.0088 (14)
O410.0252 (15)0.0151 (12)0.0165 (12)0.0045 (10)0.0020 (11)0.0054 (10)
N20.0259 (19)0.0161 (15)0.0175 (15)0.0018 (13)0.0001 (13)0.0077 (12)
C430.024 (2)0.028 (2)0.0210 (18)0.0015 (16)0.0015 (16)0.0092 (15)
Geometric parameters (Å, º) top
Ni1—O11.851 (2)C13B—H13B0.9300
Ni1—O31.851 (2)C14B—H14B0.9300
Ni1—S32.1368 (10)S3—C41.715 (3)
Ni1—S12.1424 (9)O3—C31.259 (4)
S1—C21.715 (3)C31—C32B1.3619 (10)
O1—C11.258 (4)C31—C32A1.3623 (10)
O21—C21.335 (4)C31—C31.453 (4)
O21—C211.464 (4)C31—S31B1.7104 (10)
C2—N11.302 (4)C31—S31A1.7117 (10)
C1—N11.341 (4)S31A—C34A1.7113 (10)
C1—C111.449 (4)C32A—C33A1.4237 (10)
C22—C211.502 (4)C32A—H32A0.9300
C22—C231.516 (5)C33A—C34A1.3618 (10)
C22—H22A0.9700C33A—H33A0.9300
C22—H22B0.9700C34A—H34A0.9300
C23—H23A0.9600S31B—C34B1.7120 (10)
C23—H23B0.9600C32B—C33B1.4239 (10)
C23—H23C0.9600C32B—H32B0.9300
C21—H21A0.9700C33B—C34B1.3618 (10)
C21—H21B0.9700C33B—H33B0.9300
C11—C12A1.3617 (10)C34B—H34B0.9300
C11—C12B1.3619 (10)C41—O411.458 (4)
C11—S11B1.7110 (10)C41—C421.498 (5)
C11—S11A1.7119 (10)C41—H41A0.9700
S11A—C14A1.7115 (10)C41—H41B0.9700
C12A—C13A1.4236 (10)C3—N21.337 (4)
C12A—H12A0.9300C42—C431.536 (4)
C13A—C14A1.3618 (10)C42—H42A0.9700
C13A—H13A0.9300C42—H42B0.9700
C14A—H14A0.9300C4—N21.310 (4)
S11B—C14B1.7121 (10)C4—O411.325 (4)
C12B—C13B1.4239 (10)C43—H43A0.9600
C12B—H12B0.9300C43—H43B0.9600
C13B—C14B1.3620 (10)C43—H43C0.9600
O1—Ni1—O382.18 (9)C13B—C14B—H14B116.6
O1—Ni1—S3176.43 (8)S11B—C14B—H14B116.6
O3—Ni1—S395.16 (7)C4—S3—Ni1107.56 (12)
O1—Ni1—S195.46 (7)C3—O3—Ni1134.2 (2)
O3—Ni1—S1175.91 (8)C32B—C31—C32A105.8 (8)
S3—Ni1—S187.33 (4)C32B—C31—C3125.9 (7)
C2—S1—Ni1106.78 (12)C32A—C31—C3128.3 (2)
C1—O1—Ni1133.9 (2)C32B—C31—S31B113.5 (7)
C2—O21—C21117.4 (2)C3—C31—S31B120.5 (2)
N1—C2—O21117.4 (3)C32A—C31—S31A110.4 (2)
N1—C2—S1132.4 (3)C3—C31—S31A121.32 (19)
O21—C2—S1110.2 (2)S31B—C31—S31A118.11 (19)
O1—C1—N1128.8 (3)C34A—S31A—C3191.1 (2)
O1—C1—C11116.3 (3)C31—C32A—C33A115.4 (4)
N1—C1—C11114.9 (3)C31—C32A—H32A122.3
C21—C22—C23110.7 (3)C33A—C32A—H32A122.3
C21—C22—H22A109.5C34A—C33A—C32A108.6 (5)
C23—C22—H22A109.5C34A—C33A—H33A125.7
C21—C22—H22B109.5C32A—C33A—H33A125.7
C23—C22—H22B109.5C33A—C34A—S31A114.4 (4)
H22A—C22—H22B108.1C33A—C34A—H34A122.8
C22—C23—H23A109.5S31A—C34A—H34A122.8
C22—C23—H23B109.5C31—S31B—C34B85.6 (6)
H23A—C23—H23B109.5C31—C32B—C33B116.5 (13)
C22—C23—H23C109.5C31—C32B—H32B121.8
H23A—C23—H23C109.5C33B—C32B—H32B121.8
H23B—C23—H23C109.5C34B—C33B—C32B102.4 (16)
O21—C21—C22106.6 (3)C34B—C33B—H33B128.8
O21—C21—H21A110.4C32B—C33B—H33B128.8
C22—C21—H21A110.4C33B—C34B—S31B122.1 (14)
O21—C21—H21B110.4C33B—C34B—H34B119.0
C22—C21—H21B110.4S31B—C34B—H34B119.0
H21A—C21—H21B108.6O41—C41—C42107.0 (3)
C12A—C11—C12B107.6 (15)O41—C41—H41A110.3
C12A—C11—C1127.3 (2)C42—C41—H41A110.3
C12B—C11—C1125.0 (15)O41—C41—H41B110.3
C12B—C11—S11B114.3 (15)C42—C41—H41B110.3
C1—C11—S11B120.7 (3)H41A—C41—H41B108.6
C12A—C11—S11A111.4 (2)C2—N1—C1122.2 (3)
C1—C11—S11A121.3 (2)O3—C3—N2129.0 (3)
S11B—C11—S11A118.0 (3)O3—C3—C31115.8 (3)
C14A—S11A—C1191.11 (18)N2—C3—C31115.2 (3)
C11—C12A—C13A113.8 (3)C41—C42—C43110.5 (3)
C11—C12A—H12A123.1C41—C42—H42A109.5
C13A—C12A—H12A123.1C43—C42—H42A109.5
C14A—C13A—C12A110.2 (4)C41—C42—H42B109.5
C14A—C13A—H13A124.9C43—C42—H42B109.5
C12A—C13A—H13A124.9H42A—C42—H42B108.1
C13A—C14A—S11A113.5 (3)N2—C4—O41117.5 (3)
C13A—C14A—H14A123.2N2—C4—S3131.7 (3)
S11A—C14A—H14A123.2O41—C4—S3110.7 (2)
C11—S11B—C14B82.7 (11)C4—O41—C41117.4 (2)
C11—C12B—C13B118 (3)C4—N2—C3122.3 (3)
C11—C12B—H12B121.0C42—C43—H43A109.5
C13B—C12B—H12B121.0C42—C43—H43B109.5
C14B—C13B—C12B98 (3)H43A—C43—H43B109.5
C14B—C13B—H13B131.0C42—C43—H43C109.5
C12B—C13B—H13B131.0H43A—C43—H43C109.5
C13B—C14B—S11B127 (2)H43B—C43—H43C109.5

Experimental details

Crystal data
Chemical formula[Ni(C9H10NO2S2)2]
Mr515.31
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.2627 (3), 10.2917 (4), 15.6218 (6)
α, β, γ (°)72.742 (2), 80.847 (3), 82.978 (3)
V3)1097.40 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.26 × 0.12 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.730, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
10984, 3845, 2975
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.091, 1.08
No. of reflections3845
No. of parameters254
No. of restraints28
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.50

Computer programs: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
Ni1—O11.851 (2)Ni1—S32.1368 (10)
Ni1—O31.851 (2)Ni1—S12.1424 (9)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds